
Case Study: Safety Verification of an Unmanned
Underwater Vehicle

Diego Manzanas Lopez
Vanderbilt University

Patrick Musau
Vanderbilt University

Nathaniel Hamilton
Vanderbilt University

Hoang-Dung Tran
Vanderbilt University

Taylor T. Jonhson
Vanderbilt University

Abstract—This manuscript evaluates the safety of a neural
network controller that seeks to ensure that an Unmanned Un-
derwater Vehicle (UUV) does not collide with a static object in its
path. To achieve this, we utilize methods that can determine the
exact output reachable set of all the UUV’s components through
the use of star-sets. The star-set is a computationally efficient
set representation adept at characterizing large input spaces.
It supports cheap and efficient computation of affine mapping
operations and intersections with half-spaces. The system under
consideration in this work represents a more complex system than
Neural Network Control Systems (NNCS) previously considered
in other works, and consists of a total of four components. Our
experimental evaluation uses four different scenarios to show that
our star-set based methods are scalable and can be efficiently used
to analyze the safety of real-world cyber-physical systems (CPS).

Index Terms—Safe AI, Data-driven Methods, Cyber-Physical
Systems, Learning-Enabled Components, Autonomous Vehicles

I. INTRODUCTION

Over the last decade, advancements in Artificial Intelligence

(AI) have allowed us to re-imagine the ways we organize

our cities, communicate, and move around. In fact, AI has

been lauded to be one of the most influential and disrup-

tive set of methodologies of our era. Underpinning these

advancements are the success of artificial neural networks

whose adroit pattern recognition competencies have allowed

for technologies such as Amazon’s Alexa, Apple’s Siri, and

DeepMind’s AlphaGo to flourish and enter everyday conver-

sation. Despite these successes, AI methodologies have not

had the same level of impact in safety critical systems due

to the looming apprehension that it is often impossible to

identify the specific factors that led to a neural network’s

prediction. In other words, utilizing a ”black box” model in a

safety critical system, constitutes the highest form of technical

debt [1]. Moreover, in a famous study, Christian Szegedy et

al. demonstrated the fragility of neural network models by

showing that a hardly perceptible modification to an input

could cause a well-trained network to produce an incorrect

classification [2].

In light of the potential to revolutionize the development

of robust and intelligent systems, the last several years have

seen a significant increase in the development of verification,

testing, and falsification methods for systems that make use of

neural networks. A comprehensive review of these techniques

can be found in the survey by Liu et al. [3] and Xiang

et al. [4]. While a great deal of these methods deal with

networks in isolation, in recent years several methods have

been proposed for verifying neural network control systems

[5]–[9]. Neural network control systems commonly appear in

safety critical systems where the neural network controller

is generated through the use of reinforcement learning and

learning by demonstration [6]. In this realm, the safety verifi-

cation problem is postulated as a reachability problem. Here

the challenge is to estimate the set of reachable states of

the closed loop system where the plant is modeled using

linear ordinary differential equations and the controller is

a feed-forward neural network. Despite significant progress

in neural network control systems verification, developing

a scalable methodology remains a key challenge. Recently,

analyses by Ivanov et al. [10] and Tran et al. [11], have

explored the limits of the existing verification approaches,

and the trade-offs between scalability and precision. Building

on these achievements, the following work seeks to examine

the efficacy of star-set based methods through the analysis

of a Neural Network Control System that represents a more

complex system than those previously considered in other

works [12].

Considering this challenge, this paper examines the problem

of verifying the safety of an unmanned underwater vehicle

whose mission is to autonomously navigate without collisions.

Our approach is based on the use of the star-set, which

determines the exact output reachable set of the closed-loop

system [13]. The utilization of the star-set in this work is

largely due to the fact that the star-set is a computationally

efficient set representation adept at characterizing large input

spaces, and supports cheap and efficient computation of affine

mapping operations, and intersections with half-spaces [14].

Our experimental evaluation using four different scenarios

demonstrates that our star-set based methods are scalable

and can be efficiently used to analyze the safety of real-

world Cyber-Physical Systems (CPS) for up to 30 second time

windows.

A. Problem Formulation

Research in recent years has demonstrated that acquiring

pipeline inspection data from Unmanned Underwater Vehicles
(UUV) offers superior data quality and consistency since

UUV’s often move in a highly efficient and stable manner.

Thus, the unmanned methodology represents a paradigm shift

in offshore geophysical survey and pipeline inspection. By

utilizing a small UUV, the carbon footprint per inspection

189

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Diego Manzanas Lopez. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00047

line kilometer can be reduced dramatically. A traditional host

vessel may use 10,000 - 15,000 liters of fuel per day of

operations, whereas a small unmanned craft uses up to 95%

less fuel [15].

In this paper, the problem we wish to consider is verifying

that the UUV operates safely by successfully avoiding obsta-

cles while executing its mission of inspecting a given pipeline.

The obstacles we consider are static obstacles of varying sizes,

and the safety specification we wish to consider is that the

UUV does not move within a δ radius of a given obstacle.

Mathematically, the safety specification, p, is satisfied if at

every time step t ∈ [t0, tf] in the bounded range [t0, tf],
governed by the start time t0 and end time tf ,

∀t
(
||Xv(t)−Xo(t)||2 > δ

)
, (1)

where Xv and Xo are the vehicle and obstacle positions,

respectively.

Verification of the safety specification occurs at design time.

Given an environment, an initial state and location for the

UUV and an obstacle placed in front of it, our experiments

evaluate the safety of the UUV.

II. SYSTEM ARCHITECTURE

The simulation experiments considered in this work were

run using the Robotics Operating System (ROS) [16] and

visualized using the Gazebo robot simulator [17]. The sim-

ulation package that we utilized is called the Unmanned
Underwater Vehicle Simulator (UUVS) [18], which provides

a rich set of Gazebo plugins that are used to describe the

dynamics and realistic simulation environments for surface and

underwater vehicles. Additionally a variety of Gazebo plugins

were modified and added in an effort to more accurately

capture hydrodynamic disturbance events and randomly place

objects along the UUV path.

The UUV system in the Unmanned Underwater Vehicle

Simulator, which we refer to as the UUVS Model, is made

up of several components, shown in Figure 1. There is a

Learning Enabled Component (LEC), FNN Controller, which

determines the control output for each time step. It utilizes

two inputs, the distance to an object and the Closest Point
of Approach (CPA), that are calculated based on observations

from the forward looking and side scan sonars. The controller

then outputs 4 values, 2 regarding the heading change and 2

regarding the speed commands, which are then fed through

a highly nonlinear normalization function, mapping these 4

values to a control command made up of a desired heading

change (rad) and desired speed (m/s). These control commands

are then processed by a low-level PID controller that converts

these commands into actuation commands for the UUV.

Combining the nonlinearities of the PID, the normalization

function, and the sonar sensors, makes the task of formally

verifying the UUVS Model highly complicated. These com-

plexities make performing safety verification via reachability

analysis intractable. Therefore, we created a modified model

that approximates the performance of the UUVS Model and

Fig. 1. UUV system architecture with the proposed modification for reacha-
bility analysis suitability with current available methods.

allows us to perform reachability analysis more conveniently.

We will refer to this model as our Verifiable Model and it is

composed of the four parts shown in Figure 4, Feed Forward
Neural Network Sensor, Feed Forward Neural Network Con-
troller, Feed Forward Neural Network Normalization, and a

plant model.

A. Feed Forward Neural Network Sensor

We replace the Forward Looking Sonar (FLS) with a feed-

forward neural network with 3 inputsm 7 hidden ReLU layers

consisting of 10 neurons each, and a linear output layer with

2 neurons. This change corresponds to the purple dashed

rectangle in Figure 1. From the plant’s outputs and the obstacle

location, the neural network is able to compute both values

needed for the controller’s input, i.e. the distance to the

obstacle and the CPA.

B. Feed Forward Neural Network Controller

The Feed Forward Neural Network Controller (FNN Con-

troller) is the same in the UUVS Model and in the Verifiable
Model. The FNN Controller is a Reinforcement Learning

controller that was trained using the Vanilla Policy Gradient

Method and optimized to maximize the a reward function

enforcing the certain conditions. If there is no object in the

UUV’s path then the UUV is expected to maintain its current

heading. Any deviation from this heading results in a penalty.

However, if there is an obstacle within the UUV’s path then the

UUV is penalized with respect to the closest point of approach

and actions that change the UUV’s heading are incentivized.

Thus, the reward is associated with a given state, i.e. the input

to the FNN Controller.

This neural network consists of 2 hidden layers of 32 fully

connected, ReLU activated neurons. The two inputs are the

distance to the obstacle and the closest point of approach. The

linear output layer is made up of two values related to the

heading change (rad) and two related to the speed (m/s).

C. Feed Forward Neural Network Normalization

The output of the FNN Controller is connected to this neural

network in order to transform the 4 values provided into 2

outputs commands, the desired heading change (rad) and the

desired speed (m/s). This feedforward neural network consists

of 3 ReLU hidden layers with 50 neurons total and a linear

190

output layer with 2 neurons. In Figure 1, we add this neural

network following the controller as a substitute of the highly

nonlinear normalization function.

D. Plant Model

We replace the highly nonlinear UUV dynamical model

with a simpler 2-dimensional linear discrete-time data-driven

model obtained via system identification techniques [19]. We

are able to consider a planar model (no z component) due

to the constant depth that the UUVS is able to maintain due

to the fixed constant depth command sent to the low-level

PID controller. The data used in the system identification was

obtained by performing a series of diverse maneuvers in the

simulator and recording the data at fixed intervals. Because

of the way the data was collected, the model of the vehicle’s

dynamics also includes the low-level PID controller, which

further makes the reachability analysis more amenable. The

result is our plant model, which is defined by a set of discrete

linear difference equations of the form

x(t+ 1) = Ax(t) +Bu(t) (2)

y(t) = Cx(t) +Du(t), (3)

where t is the time step, and A,B,C and D are constant matrices

of size 8x8, 8x2, 3x8, and 3x2 respectively. The model is

learned using classical system identification methods [19], and

treat the dynamics to be learned as a black-box model. Initially,

none of the system parameters are known [20].

We validate our plant model with respect to the results

from following the same control inputs used by the Gazebo-

simulated vehicle, choosing a different scenario from the

previously collected trajectories. The recorded trajectory and

the respective simulated one from our data-driven model are

shown in Figure 2.

The results show that, given the same inputs and initial state,

our linear model captures the behavior of Gazebo vehicle very

well. For simplicity, we do not include any obstacles in the

graph, only the (x, y) trajectories of the simulated vehicle and

the identified vehicle. Normally, an average error of ≈ 0.6m
would be considered large. However, the UUV modeled is 2m
long and travels at an average of 1.5m/s. Therefore, the error

is relatively small compared to the size of the problem.

III. REACHABILITY ANALYSIS OF NEURAL NETWORK

CONTROL SYSTEMS

A standard architecture of a reachability analysis problem

for a Neural Network Control System (NNCS) is displayed in

Figure 3 and is formulated as follows. Starting from an initial

set of states X0 for our model P , the controller C takes the

output set of the plant Yp as an input to compute the controller

output set U = F (Yp). Then, the control set (controller output

set) is applied to the plant to compute the next set of states

Xk+1 = AXk +BUk, where k ∈ [0, t].
This process is then repeated iteratively to obtain a sequence

of reachable sets of states, X0, X1, X2, ..., Xt, where X0 is

the initial state and Xt are the reachable states at time t.
To obtain precise reachable sets for the NNCS, we compute

Fig. 2. Model validation: the orange line denotes the UUV trajectory recorded
by the ROS simulation. The blue trajectory denotes the trajectory of the data-
driven model obtained via system identification. This is the model we use in
our MATLAB experiments. We include the average and maximum distance
between each x-y position of the ROS trajectory and the MATLAB simulation
at each point in time. We also show the mean-square error (MSE) between
both trajectories.

Fig. 3. Neural network control system (NNCS).

the exact control set U given the output set Yp. Also, we

compute the exact set of reachable states Xi given the previous

set of states Xi−1 and the corresponding control set Ui−1.

To compute these exact reachable sets we utilize the star-

set set representation to describe them, since the star-set

is computationally less expensive than other common set

representations such as polytopes and zonotopes [13]. We refer

the reader to the following papers for an in-depth discussion

of star-set based techniques [11], [13].

At each time step, given the states of the learned model

of the UUV, the location of the obstacle, the distance to the

obstacle, the closest point of approach to the obstacle with

respect to the UUV trajectory, we pass these values to FNN

Controller, and compute its output set. It is worth noting that

if an obstacle is observed by the FLS then the distance to

the obstacle is returned otherwise a constant value is returned

for the closest point of approach and the distance to the

object. The controller output set is fed through normalization

component, the other NN of the system, which computes an

output set in terms of heading change and speed. This is

then fed through the model dynamics, which computes the

reach sets for the outputs. From these, we only take the x

and y position intervals, as these are the only ones needed to

calculate the data for the feedback loop back to controller.

191

A. Reachability algorithm for NNCS

We are able to compute the exact reachable set of the NNCS

by computing the exact control set and the exact plant output

set at each timestep. However, in obtaining the reachable sets

for a complex system, the number of sets increase quickly over

time, making it computationally more and more expensive to

obtain reachable sets for successive time steps. Therefore, this

process is very time-consuming even through the use of time

optimizations such as parallel computing.

To avoid the explosion of the number of sets needed to

represent the reachable set, we take a single convex hull of

the reachable sets of states of the plant after each step, and

then we compute the the output reachable set of the plant

(Y = CX), which is then fed back to the next component as

a single star set. However, the tradeoff here is that the solution

to this problem is no longer exact.

Fig. 4. Modified neural network control system for the analysis of the
unmanned underwater vehicle. We compute the exact output reach set of all
3 FNN, but over-approximate the plant’s output.

B. Reachability algorithm for UUV System

Our Verifiable Model uses three LEC’s and a singular plant

model connected as shown in Figure 4. Due to the increased

number of LEC’s in our system, we modified the general

algorithm for NNCS to add all the components in the system

according to Algorithm 1.

We have four main steps in the reachability analysis com-

putation. (1) We compute the output set of the plant given the

initial state. (2) Using the location of the UUV output from the

plant, we compute the exact output set of the sensor neural

network, FNN Sensor. (3) We compute the exact output set of

the controller, divided into 2 operations, the main controller,

FNN Controller, and the normalizing neural network, FNN

Normalization. (4) We compute the set of approximate states

of the plant at the next time step.

IV. EVALUATION: COLLISION AVOIDANCE

For our underwater vehicle system, we present several

different scenarios in which we modify the initial states and the

location of the obstacle to be avoided. The obstacle is located

in front of the vehicle at the beginning of the experiment, and

the objective is for the vehicle to detect it and avoid a collision

with it.

Based on the assumption that our vehicle maintains a

constant depth, we only consider the x and y positions of the

obstacles. The obstacles placed in the UUV path are boxes

Algorithm 1: Reachability Algorithm UUV System.

% kmax: Number of steps

% A,B,C: plant’s matrices

% I: Set of initial states for the plant

% X: Set of current states for the plant

% Y : Output set of the plant

% R: Output reachable set of the plant

% F : Neural network controller

% N : Neural network normalizing output controller

% S: Neural network as sensor function

% D: Set of unsafe states

INITIALIZE

R = cell(1,kmax +1);

R{1, 1} = I;

X1 = R{1, k};
REACH COMPUTATION

for k = 1 : kmax do
Yk = CXk;

Sout = S(Yk);

Fout = F(Sout);

Nout = N(Fout);

for j = 1:length(Nout) do
Xj

k+1 = AXk + BN j
out;

end
Xk+1 = IntervalHull(Xk+1);

R{1, k + 1} = Xk+1;

if (Xk+1 ∩D) �= ∅ then
return;

end

with 1 meter long edges. The safety specification p, formally

defined in equation 1, that we analyze is that the vehicle will

never travel within a δ = 2 meter radius of the center of the

object.

Given an initial state set and an obstacle location, we

calculate the output reachable sets for a kmax steps until the

vehicle violates the safety specification or until the vehicle has

cleared the obstacle and the safety specification has not been

violated.

V. RESULTS

Here we experiment with four different scenarios where the

vehicle has been placed at a different location with different

initial states, as well as modifying the location of the obstacle
1. These four scenarios generally represent a wide range of the

scenarios the UUV might encounter. Since the FNN Controller

makes decisions based solely on the distance between the

UUV and the obstacle and the CPA, these scenarios can

generalized to any case where the UUV is at the same distance

with the same CPA.

1Code to reproduce the results can be found at
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/WAAS2020

192

In all four scenarios, we pick an initial point, (x, y, yaw),

from a trajectory generated in UUVS. From this starting point,

we estimate the initial states of the plant using MATLAB’s

System Identification Toolbox [20]. We take these 8 initial

states2 (estimated) and set them as the initial point for the

UUV trajectory in UUVS, which is marked in blue. Addition-

ally, the starting point of the UUV in UUVS is used to generate

the no object path (N.O.P.), which is the magenta dashed

line representing the projected path the UUV would travel if

it were to keep its orientation, (yaw), constant. Displaying

the N.O.P. helps visualize how the FNN Controller directs the

UUV away from the obstacle. For the reachability analysis,

we take the estimated initial states and create lower and upper

bounds around these points by adding -0.0001 and +0.0001

to each state respectively. The blue boxes in the result figures

visualize the reachable states at each time step.

A. Experiment 1: A Minor Course Correction
In Experiment 1, shown in Figure 5, the UUV starts with a

trajectory that does not intersect with the obstacle. Therefore,

little to no course correction is needed to avoid the obstacle.
We observe this behavior in Figure 5 as the UUV meets the

specification and clears the obstacle after 24 seconds.

Fig. 5. The UUV is initialized at (-1905.577, 73.085) pointing 23.115 degrees
from horizontal. The obstacle is generated at (-1888.260, 89.443). The actual
trajectory of the UUV stays within the computed reachable sets and the UUV
passes the obstacle after 24 seconds.

B. Experiment 2: Immediate Course Correction
In Experiment 2, we initialize the UUV with a path directed

towards the middle of the obstacle. In order to avoid a

collision, the UUV must make an immediate course correction.

The UUV is able to detect the object and as a result, it manages

to turn and deviates its trajectory to avoid the obstacle in a

safe manner as shown in Figure 6.

C. Experiment 3: Unsafe Scenario
In Experiment 3, we initialize the UUV within 17m of the

obstacle and heading towards it. This represents a scenario

where the UUV does not satisfy the safety condition. We

can see that at the eleventh step, 11 seconds, the intersection

of the vehicle’s reachable set and the unsafe set is not null.

However, based on the over-approximation method used in the

reachabilty analysis, these results are inconclusive.

2Since the state values lack a direct physical meaning, we refer the reader
to Appendix A where all the initial state values related to all 4 experiments
are presented.

Fig. 6. The UUV is initialized at (-2051.187, -423.978) pointing -170.256
degrees from horizontal. The obstacle is generated at (-2099.480, -431.911).
The actual trajectory of the UUV stays within the computed reachable sets
and the UUV passes the obstacle after 30 seconds.

Fig. 7. The UUV is initialized at (-1933.337, 41.836) pointing 18.478 degrees
from horizontal. The obstacle is generated at (-1918.790, 50.456). The actual
trajectory of the UUV stays within the computed reachable sets and the UUV
passes the obstacle after 11 seconds.

D. Experiment 4: Choosing a New Path

In Experiment 4, the UUV is initialized far enough away

from the obstacle that a small change in the initial heading

finds a clear and open path that does not require further

adjustments. This highlights the learned behavior of the FNN

Controller to minimize heading changes while maximizing the

distance between the UUV and the obstacle. Behavior like

this could be considered undesirable and is the reason why

designing a reward function is so important to the performance

of a reinforcement learning controller3.

However, we clearly observe that the UUV avoids the

obstacle and does not get closer than 12 meters to the center

of the obstacle.

VI. CONCLUSION

This paper presents an efficient over-approximate reachabil-

ity scheme that consists of an exact method for the reachability

analysis of neural networks, and an over-approximate method

used in the plant reachability analysis in order to consider

the safety verification of a cyber-physical system with an RL

3For more information about this problem, look into work discussing
Reward Shaping.

193

Fig. 8. The UUV is initialized at (-1948.779, 43.165) pointing 6.807 degrees
from horizontal. The obstacle is generated at (-1918.790, 50.456). The actual
trajectory of the UUV stays within the computed reachable sets and the UUV
passes the obstacle after 29 seconds.

controller. The safety specification is defined based on the

location of obstacles and the underwater vehicle. We have

shown that our method is scalable for real-world applications

in our analysis of the obstacle avoidance capabilities of an

unmanned underwater vehicle.

In future work we hope to extend the proposed methods for

nonlinear NNCS with neural networks that contain other types

of nonlinear activation functions such as Tanh or Sigmoid.

Additionally, while the current paper deals with a discrete-

time plant, future endeavors will consider continuous-time

dynamical plants. Furthemore, we seek to examine other UUV

tasks and safety specifications, such as a safety and perfor-

mance analysis of the UUV’s pipe-following performance in

conjunction with obstacle avoidance.

ACKNOWLEDGMENT

The material presented in this paper is based upon work

supported by the National Science Foundation (NSF) under

grant numbers SHF 1910017 and FMitF 1918450, the Air

Force Office of Scientific Research (AFOSR) through con-

tract number FA9550-18-1-0122, and the Defense Advanced

Research Projects Agency (DARPA) through contract number

FA8750-18-C-0089. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied,

of AFOSR, DARPA, or NSF.

REFERENCES

[1] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 2503–2511. [Online]. Available: http://papers.nips.cc/paper/5656-
hidden-technical-debt-in-machine-learning-systems.pdf

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv e-prints,
p. arXiv:1312.6199, Dec 2013.

[3] C. Liu, T. Arnon, C. Lazarus, C. W. Barrett, and
M. J. Kochenderfer, “Algorithms for verifying deep neural
networks,” CoRR, vol. abs/1903.06758, 2019. [Online]. Available:
http://arxiv.org/abs/1903.06758

[4] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang,
J. A. Rosenfeld, and T. T. Johnson, “Verification for machine learning,
autonomy, and neural networks survey,” CoRR, vol. abs/1810.01989,
2018. [Online]. Available: http://arxiv.org/abs/1810.01989

[5] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network
controllers,” in Proceedings of the 22Nd ACM International Conference
on Hybrid Systems: Computation and Control, ser. HSCC ’19. New
York, NY, USA: ACM, 2019, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/3302504.3311806

[6] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,”
in Proceedings of the 22Nd ACM International Conference on
Hybrid Systems: Computation and Control, ser. HSCC ’19. New
York, NY, USA: ACM, 2019, pp. 157–168. [Online]. Available:
http://doi.acm.org/10.1145/3302504.3311807

[7] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural
network controlled autonomous systems,” CoRR, vol. abs/1810.13072,
2018. [Online]. Available: http://arxiv.org/abs/1810.13072

[8] W. Xiang, D. M. Lopez, P. Musau, and T. T. Johnson, “Reachable
set estimation and verification for neural network models of nonlinear
dynamic systems,” pp. 123–144, 2019.

[9] W. Xiang, H.-D. Tran, J. Rosenfeld, and T. T. Johnson, “Reachable
set estimation and verification for a class of piecewise linear systems
with neural network controllers,” in American Control Conference (ACC
2018), Special Session on Formal Methods in Controller Synthesis I.
IEEE, Jun. 2018.

[10] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee,
“Case Study: Verifying the Safety of an Autonomous Racing Car with a
Neural Network Controller,” arXiv e-prints, p. arXiv:1910.11309, Oct.
2019.

[11] H.-D. Tran, F. Cei, D. M. Lopez, T. T. Johnson, and X. Koutsoukos,
“Safety verification of cyber-physical systems with reinforcement learn-
ing control,” in ACM SIGBED International Conference on Embedded
Software (EMSOFT’19). ACM, October 2019.

[12] D. M. Lopez, P. Musau, H.-D. Tran, and T. T. Johnson, “Verification
of closed-loop systems with neural network controllers,” in ARCH19.
6th International Workshop on Applied Verification of Continuous
and Hybrid Systems, ser. EPiC Series in Computing, G. Frehse and
M. Althoff, Eds., vol. 61. EasyChair, 2019, pp. 201–210. [Online].
Available: https://easychair.org/publications/paper/ZmnC

[13] H.-D. Tran, P. Musau, D. M. Lopez, X. Yang, L. V. Nguyen, W. Xiang,
and T. T. Johnson, “Star-based reachability analysis for deep neural net-
works,” in 23rd International Symposium on Formal Methods (FM’19).
Springer International Publishing, October 2019.

[14] S. Bak and P. S. Duggirala, “Simulation-equivalent reachability of large
linear systems with inputs,” in Computer Aided Verification, R. Majum-
dar and V. Kunčak, Eds. Cham: Springer International Publishing,
2017, pp. 401–420.

[15] J. Bellingham, “Platforms: Autonomous underwater vehicles,”
in Encyclopedia of Ocean Sciences (Second Edition),
second edition ed., J. H. Steele, Ed. Oxford: Academic
Press, 2009, pp. 473 – 484. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B978012374473900730X

[16] A. Koubaa, Robot Operating System (ROS): The Complete Reference
(Volume 2), 1st ed. Springer Publishing Company, Incorporated, 2017.

[17] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, pp. 2149–2154 vol.3, 2004.

[18] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “UUV simulator: A gazebo-based package for
underwater intervention and multi-robot simulation,” in OCEANS
2016 MTS/IEEE Monterey. IEEE, sep 2016. [Online]. Available:
https://doi.org/10.1109%2Foceans.2016.7761080

[19] L. Ljung, System Identification (2nd Ed.): Theory for the User. USA:
Prentice Hall PTR, 1999.

[20] M. S. I. Toolbox, (R2019b). Natick, Massachusetts: The MathWorks
Inc., 2019.

194

APPENDIX

As mentioned in Section 5, we will present the exact initial

state (x0) intervals used for each experiment as well as the

exact location of the obstacles (Pobs), where

A. Experiment 1

(Figure 5)

x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−0.044174880802800 , −0.043974880802800][
0.007009187707955 , 0.007209187707955

]
[
0.003998288293794 , 0.004198288293794

]
[−0.066590984864864 , −0.066390984864864][

0.076075384291567 , 0.076275384291567
]

[−0.063045980165905 , −0.062845980165905][−7.781701966436715e− 04 , −5.781701966436714e− 04
]

[
0.095613905722162 , 0.095813905722162

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Pobs =

[−1888.260
89.443

]

B. Experiment 2

(Figure 6)

x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−0.039780351857121 , −0.039580351857121][
0.062835250855941 , 0.063035250855941

]
[
0.151063041362560 , 0.151263041362560

]
[
0.829311305915308 , 0.829511305915308

]
[−0.628460030147656 , −0.628260030147656][

0.283328195630901 , 0.283528195630901
]

[−0.042414499938101 , −0.042214499938101][−0.304932444834164 , −0.304732444834164]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Pobs =

[−2099.480
−431.911

]

C. Experiment 3

(Figure 7)

x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−0.044316470241293 , 0.044116470241293
]

[
0.010611741142870 , 0.010811741142870

]
[
0.028460902915747 , 0.028660902915747

]
[−1.020282211033473e− 04 , 9.797177889665276e− 05

]
[−9.329615809094399e− 05 , 1.067038419090560e− 04

]
[−2.667311115387110e− 04 , −6.673111153871095e− 05

]
[−7.128280405342853e− 05 , 1.287171959465715e− 04

]
[−1.422996186804232e− 04 , 5.770038131957683e− 05

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Pobs =

[−1918.790
50.456

]

D. Experiment 4

(Figure 8)

x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−0.044991857837650 , −0.044791857837650][
0.010793055476382 , 0.010993055476382

]
[
0.017457598529114 , 0.017657598529114

]
[
0.022151317193675 , 0.022351317193675

]
[
0.101951191993133 , 0.102151191993133

]
[−0.280253273679023 , −0.280053273679023][

0.172975572623461 , 0.173175572623461
]

[
0.195338830333452 , 0.195538830333452

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Pobs =

[−1918.790
50.456

]

195

