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Abstract—Autonomous systems (AS) would soon revolutionize
the way we live and work. The days are not so far when these
systems, from delivery drones to driverless cars, would be seen
around us. These systems are connected and rely heavily on
the communication network for the information exchange, hence
prone to several attacks. Human lives will be at risk if these
systems are compromised. Cybersecurity modeling and attack
analysis of AS needs the utmost attention of the research com-
munity. Primarily, a typical AS has three modules – perception,
cognition, and control – and each one of them comes with
their own vulnerabilities. In this work, we propose a new AS
architecture that may prove useful in AS cybersecurity modeling.
We also model the attacks on them, and defense mechanisms
applied to these modules using a non-cooperative non-zero sum
game. Finally, we solve this game to obtain optimal strategies to
maintain a secure system state.

Index Terms—autonomous systems, cybersecurity, game the-
ory, Nash Equilibrium

I. INTRODUCTION

The world is progressing towards the era of AS. Au-

tonomous operations with voluminous data processing, inte-

grated AI, and high definition imaging would develop new

areas of applications for UAVs (Unmanned Autonomous Ve-

hicles) that would change the outlook of this booming industry.

These AS would increase efficiency and task productivity

with improved safety in work environments. For example, any

accident investigation that could manually take three hours to

collect information could be done in less than an hour using a

drone, reducing the traffic delays and saving time and money

[1]. The driverless cars are estimated to save around millions of

lives worldwide by avoiding accidents caused by human errors

[2]. As the level of autonomy of these systems moves towards

full automation, attack vectors and their impact would increase

as well, which may result in deadly consequences [3]. Attacks

with increased complexity are on the rise in recent days. It is

critical to consider the security of these systems and explore

the solutions thereby. Also, the research community lacks

generalized modeling of cyberattacks on AS. One approach

could be to apply game theory in this regard [4].
The main contributions of this paper are multi-fold. First,

we model a generalized AS architecture based on common

modules of AS such as a driverless car, robot, and drones.

An attack on an autonomous system can be on any of its

modules, and, based on the defensive measures, the impact

would vary accordingly. Second, we propose a strategic non-
cooperative non-zero sum game for modeling attacks on an

AS to numerically compute the mixed strategies that achieve

the Nash Equilibrium (NE) and the expected payoffs of the

players. The AS would act as a defender while an adversary

could be an individual attacker, a network node, or another

AS. A game-theoretic framework can be used to analyze the

system’s response and payoffs for both the players in an attack

situation when certain measures are in action. Third, we have

taken into account the probability of a successful attack in

defense and no defense scenarios and the cost of damage in our

computation. In addition, we consider the game as a ’non-zero

sum’, which maps to the real world more realistically than the

works of [5], [6]. Fourth, we extend the works in [7] to a n×n
bimatrix game represented in a normal form. This method is

easier than the algebraic/differential method to calculate the

mixed strategies of n × n games where n > 2. Although

various works have analyzed the threat and attack modeling

of these systems individually, the research community lacks a

generalized security modeling of these systems. Also, Section

II discuss various cyber attack-defense game, but to the best

of our knowledge, none has proposed a game related to the

security of the autonomous system.

The rest of the paper is organized as follows. A summary

of related work is provided in Section II. In Section III, we

discuss the high-level architecture of an AS. The architecture

will give us an idea to design the game, proposed in Section

IV for which we evaluate the payoffs and Nash equilibrium.

In Section V, we validate our approach through a case study.

Finally, we conclude the paper in Section VI.

II. RELATED WORK

Various game models have been applied in network security

to model attacks as well as propose secure design or operation

for specific cyber-physical systems (CPS). However, there

are limited works that attempt to address the cybersecurity

issue of AS. An early work from 2015 developed a game-

based security framework for multi-agent AS [8]. The work

leverages the cyber-physical nature of AS to formulate a

min-max model-based predictive control (MPC) problem and

proposes a dynamic signaling game model to solve it. Another

relevant work in 2018 applied a robust deep reinforcement

learning (DRL) model in combination with long-short term

memory (LSTM) and game theory for security and safety in

autonomous vehicle systems [9]. Several works have attempted

to apply game theory principles to secure design, operation,
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Fig. 1. Autonomous System Game Model and Architecture

or control of CPS, not necessarily, autonomous. Such CPSs

include train control system [10], drone delivery system [11],

and smart grid [12]. The application domain where game

theory has been applied most is the security of computer

networks. The nature of the computer network makes it more

attractive to apply the game theory that may result in higher

payoffs. In the past decade, several works have focused on

modeling, design, simulation, and analysis of game-theory

based defense mechanisms to protect (i) computer networks

against DoS/DDoS attacks [13], [14], (ii) software-defined

networks (SDN), Cloud or IoT environments [15], [16], and

(iii) wireless sensor networks against intrusions [17]. A notable

recent work attempts to propose a non-cooperative zero-sum

attacker-defender dynamic game that allows players to choose

between 3 levels of actions (No action, low-intensity action,

high-intensity action) [5].

III. AUTONOMOUS SYSTEM (AS) ARCHITECTURE

It is essential to understand the high-level architecture of

an AS and the functions of each module [18] before we move

to the design and instructions of the game. In [19], Berntorp

et al. gave a high-level control architecture of autonomous

vehicles, which includes motion planning, vehicle control, and

actuator control along with sensing and mapping as major

blocks. Petnga et al. discuss a high-level architecture of a

UAV reflecting the interactions between cyber (command,

control, communication) and physical (sensors and actuators)

components of these systems [20]. Based on these studies,

we identify three major modules common to popular AS i)

perception, ii) cognition, and iii) control. Fig. 1 shows a high-

level architecture of an AS.

An AS senses the environment through sensors that act as

eyes/ears for the AS. The perception module combines data

from various sensors to create a picture of the environment

through a sophisticated algorithm. As discussed in [21], there

are two types of sensors: Exteroceptive and Proprioceptive

sensors. Exteroceptive sensors are those that give information

about robot workspaces like LASERs, LiDAR, and cameras.

Proprioceptive sensors are those that measure value internally

to the system, such as compass, gyroscope, potentiometers.

The sensors have private information about the owner or the

status of the machine itself, hence poses high-security risks

if the system gets compromised. The sensor data fusion not

only helps in localization and grid mapping for navigation, but

it also helps to detect dynamic objects and recognize them,

such as pedestrians and traffic signs [22]. An attack on the

perception of the AS would disrupt the understanding of its

environment leading to wrong decision making [23].

Cognition is the ability of a system to make complex

decisions based on the systems intelligence algorithms on the

data it receives from the perception module and the hardware.

An AS with a high-level of autonomy would have to make a

more complex analysis of the data for mission planning with

many unknown factors. It has to assess the complexity of the

given task and the environment, level of autonomy, risks, costs,

and the broader mission before making effective decisions

[18]. For example, an autonomous vehicle would need to make

judgments of the best route, be aware of its surroundings, and

avoid collision to reach its destination. Also, the cognition

module should perform a threat assessment to ensure the

security of the system and detect any malicious activities.

Application layer attacks such as GPS jamming/spoofing and

Sybil attacks may cause the system to make erroneous deci-

sions [24].

Control can be described as the ability of the AS to execute

the decisions made by the cognition module through physical

or digital means [18]. In 2015, A remote attack on the actuators

of Jeep Cherokee was launched that took over the controls of

the steering wheel and brake systems [25]. Guo et al. proposed

a mobile robot intrusion detection system for the detection of

sensor and actuator attacks [26]. Hwang et al. modeled the

attack and analyzed the security of the system for deception

attack on sensors, actuators, or both [27].

The effects and consequences of cyberattacks on perception,

cognition, or/and control module will vary with the system

(driverless car, robot, UXVs where X could be air, underwater,
or ground) and subsystem (e.g., navigation, communication,

network) under attack, the criticality of the mission, and the

operating environment. For instance, an attack on a system

designed for operation in a highly critical environment will
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have more impact on the surroundings than on the one working

in a relatively less critical environment. An attack on the

navigation module of a Roomba vacuum cleaner wouldn’t

yield much to the attacker than on a UAV or a driverless car.

However, it still may cause inconvenience to the owner, like

cleaning the same area again and again or going in circles.

The degree of autonomy may also vary based on the severity

or motive of the cyber attack. The attack may even disconnect

the user from the system or deny requests for support.

IV. STRATEGIC GAME MODEL

In this section, we introduce the autonomous system security

game model, define the payoff functions based on the optimal

actions for a given set of conditions of rational players and

then, reach a state of equilibrium. Fig 1 shows the game model.

A. Autonomous System (AS) Security Game Representation

A non-cooperative game is one in which the players don’t

cooperate with each others’ strategy. They try to bring down

other player’s payoff. It is a non-zero sum game as there would

always be some loss to the defender. We represent the game us-

ing normal form and Nash equilibrium is reached. The security

game model is represented by G =< N ,S j|j ∈ N ,U j|j ∈ N >
where N is the set of players {a, d}, S j is the strategy space

and U j is the utility for j ∈ N . In an attack scenario, the

players, their actions and the payoffs are discussed as follows.

1) Players: There are two players involved in this game;

the attacker and the defender.

Attacker- An attacker could be a malicious individual/party,

attack node(s) in the network, or another AS(s) who would

benefit from the maximum damage caused by the attack to

the target AS. There is a possibility that the attacker plans

to attack more than one module simultaneously. The attacker

action set would include no attack, attack on one or more

modules.

Defender- The other player is called the defender whose

actions would minimize the vulnerability of the system and

take security measures in case of an attack. Such an entity

would include system administrator, developer, or the system

itself. Defender action set would include no defense, defense

on one or more modules.

2) Strategy Space: Strategy space S t =
{St

i |t ∈ N , i ∈ 1 to z} is the action set of all the possible

strategies of the players, z is the sum of all possible

combinations of attack/defense. For an autonomous

system with three major modules, n = 3, there will be

z = (3C1 +
3 C2 +

3 C3) action strategies. The possible attack

and defense strategies are enumerated in Table I. Each module

is represented by 0s and 1s. For the attacker, 0 means no

attack, and 1 means the system is under attack. Similarly, for

defender 0 means no defense, and 1 means there is a defense

on that module. For example, from an attacker’s perspective,

St
7 indicates all the three modules are under attack, and

from the defender’s perspective, all the three modules have a

defense mechanism.

TABLE I
ENUMERATION OF ATTACK/DEFENSE STRATEGIES

Strategies Perception
(P)

Cognition
(Cg)

Control
(Cn)

St
1(P) 1 0 0

St
2(Cg) 0 1 0

St
3(Cn) 0 0 1

St
4(CgCn) 0 1 1

St
5(PCn) 1 0 1

St
6(PCg) 1 1 0

St
7 (PCgCn) 1 1 1

TABLE II
ENUMERATION OF POSSIBLE CASES OF ATTACK AND DEFENSE

Case Attack Status Condition Probability
0 no attack
1 successful mk �= ml pk
2 unsuccessful mk �= ml 1− pk
3 successful mk = ml qk
4 unsuccessful mk = ml 1− qk

B. Payoff Calculation

In game theory, each strategy results in a payoff to the

players. The security breach can result in loss of data, commu-

nication, or the system itself. The attacker would incur the cost

of attacking. We denote the cost associated with implementing

these attacks as CA. The defender would employ strategies to

block or mitigate the attacks. For example, AS would switch

to Inertial Navigation System (INS) and other sensors if the

navigation system is down. The cost incurred by the defender

for implementing defending measures is denoted by CD. The

costs considered here are the monetary measure of the time,

effort, or resources used. The damage or the impact incurred

by the attack is represented by W .

The impact of a simple attack on a single module of an

autonomous system could be high enough to cause a cascading

failure effect, from few crashes to traffic jams, to loss of

business and trust of the end-users. Such political, social, and

environmental impacts of the attack are difficult to quantify

and are beyond the scope of our work. For the sake of

simplicity, we consider the economic value of the damage

directly related to the defender.

Let pk be the probability of a successful attack when no

defense has been applied on that module, i.e, mk �= ml where

0 < k � n, 0 < l � n, mk,ml represents the modules that the

attacker decides to attack and the defender decides to defend,

respectively. And qk be the probability of a successful attack

when the defensive measures are active, i.e., mk = ml. Table

II enumerates all the possible scenarios of an attack which

should be taken into account when calculating the damage

caused by the attack. Case 1 indicates that the module that

was attacked, was not the one that was defended. This leaves

the module in a vulnerable state and so there is a probability

pk that the attack was successful. And probability 1− pk the

attacker was not successful in exploiting the vulnerability of

the module. For case 3, the module that was attacked had

defenses but failed to counter the attack with a probability qk.
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Let a = 1 represents ‘attack successful’ and a = 0
represents ‘attack unsuccessful’. Therefore, for each module

k, the probability of each case is given by:

bk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk, if mk �= ml, a = 1

1− pk, if mk �= ml, a = 0

qk, if mk = ml, a = 1

1− qk, if mk = ml, a = 0

(1)

Let Ck be the cost of damage incurred by the module

that was successfully attacked. When attack was

unsuccessful (a=0), Ck = 0 as there is no loss or

damage of the property. Suppose, attacker plans strategy

Sa
4 = {0, 1, 1} and defender plans Sd

2 = {0, 1, 0}. Let

s be an element of the set of all possible outcomes, S =
{(H0, H3, H1), (H0, H3, H2), (H0, H4, H1), (H0, H4, H2)}
if the game of attack and defend is played, where H‘X’

indicates the cases from Table II. The total economic loss

for the defender can be calculated as the summation over all

possible outcomes, the product of the probabilities of each

attacked module and total cost of damage [28]:

Wi =
∑
s∈S

⎛
⎝
⎛
⎝

n∏
k=1|Sa

i (k)=1

bk

⎞
⎠ ·

⎛
⎝

n∑
k=1|a=1

Ck

⎞
⎠
⎞
⎠ (2)

We have not considered the situation of no attack and

completely no defense, as this will yield zero payoffs to the

attacker. If the attacker succeeds in his attack, he will cause

damage to W to the defender. His payoff would benefit minus

the cost of attack. If the defender has defending measures,

the attack would cost him the amount of damage as well as

the amount he spent on defending the system. The payoffs of

both the players corresponding to the possible strategies of the

attacker (Sa
i ) and the defender(Sd

j ) (refer to the Table I) for a

non-zero sum is given by:

uij = −CAi +Wi, RD −Wi − CDj if 1 ≤ i, j ≤ z (3)

where, RD is the total cost of the modules, CAi is the

sum of cost of attack on individual modules (
∑n

k=1 CAk)

and CDj is the sum of cost of defense on individual modules

(
∑n

k=1 CDk). In case the attack is unsuccessful, from equation

(2), Wi = 0.

Based on eqn(3), Table III shows the 3x3 ordered pair of

payoff matrices [A, D] for a non-cooperative non-zero-sum

bimatrix game for autonomous system in case the attacker

attacks only one module at a time.

C. Nash Equilibrium Calculation

Let X be a set of all mixed strategies of the attacker which

is reduced to a vector x = (x1, x2, ..., xz), satisfying

xi > 0 and

z∑
i=1

xi = 1 (4)

Similarly, let Y represent the set of defender’s mixed strategies.

For a bimatrix game [A,B] where A = [aij ] and D = [dij ],
if the attacker chooses the mixed strategy x and the defender

TABLE III
PAYOFF MATRICES FOR THE AS SECURITY GAME

Attacker/
Defender

Sd
1 Sd

2 Sd
3

Sa
1 −CA1 + W1,

RD −W1 −CD1

−CA1 + W1,
RD −W1 −CD2

−CA1 + W1,
RD −W1 −CD3

Sa
2 W2 − CA2,

RD −W2 −CD1

W2 − CA2,
RD −W2 −CD2

−CA2 + W2,
RD −W2 −CD3

Sa
3 −CA3 + W3,

RD −W3 −CD1

−CA3 + W3,
RD −W3 −CD2

−CA3 + W3,
RD −W3 −CD3

chooses y, the expected payoff of the attacker and the defender

would be

A(x, y) =
z∑

i=1

z∑
j=1

xiyjaij , D(x, y) =
z∑

i=1

z∑
j=1

xiyjdij (5)

As discussed in [7], if the expected payoff value of the attacker

is v(a), we have

x1y1a11 + x1y2a12 + ...+ xzyzazz = v(a)

or,

x1(y1a11 + y2a12 + ...+ yza1z)+

x2(y1a12 + y2a22 + ...+ yza2z)+

...

+xz(y1a1z + y2az2 + ...+ yzazz) = v(a)

For the above and equation 4 to hold simultaneously, the

coefficients of xi in the above equation must be ≤ v(a). Since

xi > 0, these coefficients must be equal to v(a) for equation 4

to hold, as shown below:

x1v(a) + x2v(a)+...+ xzv(a) = v(a)

v(a)(x1 + x2+...+ xz) = v(a)

x1 + x2+...+ xz = 1

Hence,

y1a11 + y2a12 + ...+ yza1z = v(a)

y1a12 + y2a22 + ...+ yza2z = v(a)

...

y1a1z + y2az2 + ...+ yzazz = v(a)

In matrix form, the above equation can be written as below

where J is the z-vector (1,1, ..., 1)

AyT =

⎛
⎜⎜⎜⎝

v(a)
v(a)

...

v(a)

⎞
⎟⎟⎟⎠ = v(a).

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ = v(a).JT

We will have ,

yT = v(a)A−1JT (6)

Since, sum of the components of y, i.e., yJT must be 1 (or,

JyT = 1), we can write,

v(a)JA−1JT = 1 =⇒ v(a) =
1

JA−1JT
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Therefore, substituting for v(a) in equation (6),

yT =
A−1JT

JA−1JT
(7)

Since, A−1 = A∗
|A| , y can be written as

y = (
A∗JT

JA∗JT
)T (8)

Similarly, if the the expected payoff value of the defender is

v(d) We can see that

y1(x1d11 + x2d12 + ...+ xzd1z)+

y2(x1d12 + y2d22 + ...+ yzd2z)+

...

+yz(x1d1z + x2dz2 + ...+ xzdzz) = v(d)

And since, yi > 0 and y1 + y2 + ...+ yz = 1,

x1d11 + x2d12 + ...+ xzd1z = v(d)

x1d12 + y2d22 + ...+ yzd2z = v(d)

...

x1d1z + x2dz2 + ...+ xzdzz = v(d)

In matrix form, it can be written as

xD = (v(d), v(d), ..., v(d)) = v(d)J

We will have ,

x = v(d)JD−1 (9)

On solving similarly, we get,

x =
JD∗

JD∗JT
(10)

Hence, for a n × n bimatrix game, the unique equilibrium

strategies for the defender and the attacker are given by

equations (8) and (10), respectively, and the expected payoffs

of the players can be given by [7],

v(a) =
|A|

JA∗JT
, v(d) =

|D|
JD∗JT

(11)

where A∗, D∗ is the adjoint of A and D, |A|, |D| is the

determinant of A and D, respectively and J is a z-vector (1,

1, ..., 1)

V. CASE STUDY

This section presents a case study to validate the applicabil-

ity of the game proposed. We consider an autonomous system

with the three modules and quantify the cost of the attacker and

the defending action taken by the system, as shown in Table

IV. Table V shows the payoff matrix of the game, taking the

best-case scenario for the attacker where all his attacks are

successful. Equation (3) calculates the payoffs of the players.

For both attacker/defender’s strategy S
a/d
1 = {1, 0, 0}, the

possible outcomes are {{H3, H0, H0} , {H4, H0, H0}}. For

this particular example, from table IV, the probability of a

successful attack with defense is qk = 0. Using equation (2),

TABLE IV
QUANTIFICATION OF ACTIONS FOR THE AS SECURITY GAME

Perception
(module 1)

Cognition
(module 2)

Control
(module 3)

Attack Cost (CAi) 5 10 15
Defend Cost (CDj ) 6 10 12
Module Cost (Ck) 10 20 30
Attack success prob,
no defense (pk)

1 1 1

Attack success prob,
defended (qk)

0 0 0

TABLE V
PAYOFF MATRICES FOR THE AS SECURITY GAME

Attacker/
Defender

Sd
1 Sd

2 Sd
3

Sa
1 -5, 54 5, 40 5, 38

Sa
2 10, 34 -10, 50 10, 28

Sa
3 15, 24 15, 20 -15, 48

W1 = 0. Attacker’s payoff will be −5. If defender’s strategy

is Sd
2 for attacker’s strategy Sa

1 , the probability of attack of

the defended module, pk = 1. The rest of the cells of the

bimatrix is calculated likewise. From the payoff matrix [A,B]

(Table V),

A =

⎛
⎝
−5, 5, 5
10, −10, 10
15, 15, −15

⎞
⎠ and D =

⎛
⎝
54, 40, 38
34, 50, 28
24, 20, 48

⎞
⎠

JD∗ =
(
360, 400, 340

)
, (A∗JT )T =

(
250, 400, 450

)

and JA∗JT = JD∗JT = 1100

|A| = 3000 = 2.72, and |D| = 41200 = 37.45

Therefore, the Nash equilibrium of the game is

x = (18/55, 4/11, 17/55), and y = (5/22, 4/11, 9/22).

And, the expected payoffs of the attacker and the defender

are v(a) = 30/11 = 2.72, and v(d) = 412/11 = 37.45,

respectively.

Figure 2 shows the variation of expected payoffs of the

players with qk. If the value of qk is changed to 0.5 for

Perception (module 1), this will change the value of the first

cell of the payoff matrix (-5, 54) to (0,49). The expected payoff

of the attacker would increase to 3.5, with minimal change

for the defender; his payoff would be 37.64. When the value

of qk for module 2 is changed to 0.5, the attacker’s payoff is

4.28, and the defender’s payoff is decreased to 34.85. It clearly

shows that the control module needs to be better defended

than the perception module or the cognition module. This

way, the defender could analyze the payoffs and then decide

to distribute and prioritize the resources among the modules

accordingly. Admittedly, the attack cost and probability of a

successful attack is an estimation.
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Fig. 2. Variation in Expected Payoffs of the players with probability of
successful attack (qk).

VI. CONCLUSION

In this paper, a game-theory based framework has been

proposed to model an attack on an autonomous system. The

proposed framework can be used to analyze the strategies

of the attacker and the defender. We evaluate the cost of

damage or loss of resources based on the probability of a

successful attack. We propose a matrix method for calculating

the Nash equilibrium for a n×n bimatrix game. For the sake of

simplicity, we analyze a game based on three strategies of the

attacker and the defender. The game considers attack/defense

on only one module at a time. Future work would include the

analysis of attacks on multiple modules. We acknowledge that

our work is preliminary, and we plan to simulate our model

in our future work.
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