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Abstract—Safety-critical applications in the cooperative
vehicular networks are built to improve safety, traffic efficiency
and handle emergencies by communicating the road condition
captured using data from sensors (camera, LiDAR, RADAR,
etc.). These cyber-physical systems maintain records of the data
received from its sensors to make decisions while driving on road.
Such proliferation of data opens possibilities of scenarios where
attackers can forge into the system with unrestricted access to the
internal network of the vehicle and perform malicious acts. Due
to the possibility of such acts, it is crucial how forensic analysis
should be carried out in case of traffic accidents that include
autonomous vehicles (AV).

In this paper, we propose a forensic investigation protocol
on autonomous vehicles, specifically to investigate if there was
an attack that targeted the vehicle sensors. The proposed
process consists of three main phases: data curation, analysis
and decision making. We argue that, by using supervised deep
neural network-based architecture YOLO trained in the Darknet
framework and tested with SORT, an effective model to detect
traffic data can be built to perform forensic investigations.

Index Terms—Autonomous vehicle, deep learning, digital
forensics, security, sensors

I. INTRODUCTION

Autonomous cyber-physical systems combine the physics of

motion with advanced algorithms to ensure safety, privacy and

improved experience without any close human supervision.

Autonomous vehicles (AV), an application of cyber-physical

systems, are gradually preparing the consumers for the time

where they relinquish control of their vehicles. Even though

driverless cars are still at the advance testing stage, partially

automated technology has been around for half a decade [12].

Some manufacturers even produce cars capable of driving

without any driver intervention, but prefer to brand these

capabilities as driver assist technology due to regulations [6].

To monitor the driving environment and warn the driver of

immediate dangers, AVs rely on several sensors and actuators.

With the advances in sensing technologies and information

fusion, the transportation industry is moving forward into

the era of full autonomy (Level 5) as defined in standard

SAE J3016. Unfortunately, cyber-attacks have become one

of the major threats in today’s IoT world, and AVs are no

exception [9]. Although millions of dollars are invested by

the industries for improving the robustness and accuracy of

the sensors in AVs, the security threat still persists. Instances

like the death of a woman bicyclist in Arizona USA, on

road at night, when hit by Uber Self-Driving car [18], and

successful spoofing of vehicle’s LiDAR system showcased by

researchers in BlackHat Europe 2015 [10] demonstrate that

existing autonomous vehicle sensors cannot be completely

trusted even on normal road conditions.

Sensors inside the AV help in three major tasks that

include: Navigation and guidance (GPS, road maps), Driving

and Safety (LiDAR, RADAR, Camera) and performance

(On-Board Units, Wheel encoders, etc.) [14]. The safety of

these sensors has been a focus of the prolonged debate over

this technologyAttacks like sensor blinding, misidentifying

the object and falsifying the sensors’ wrong traffic light sign

resulting in false driving actions could be life-threatening [9].

In this work, we outline an AI-based forensic analysis

protocol for traffic accidents involving AVs to detect

if the sensors of the vehicle is attacked. Our work

utilizes the extensive research on the security concerns of

sensors equipped in state-of-the-art AVs and digital forensics

know-how on IoT systems. The protocol works as follows: (1)

it curates visuals from storage and memory devices that may

be damaged in the accident, (2) analyzes the accident through

a supervised deep convolutional neural network model, and

(3) identifies anomalies in curated data for law-enforcement

and third party experts. Experts, then, use these anomalies as

evidence of foul-play, if there is any.

The rest of this paper is organized as follows. The life cycle

of sensor data inside AVs is discussed in Section II. Section III

introduces the system and attacker model. The details of the

protocol is given in Section IV. In Section V, we discuss the

possible validation scenarios. Finally, Section VI presents the

future work.

II. SENSOR DATA LIFECYCLE IN AUTONOMOUS VEHICLES

AVs rely on numerous sensors to ensure passenger safety.

To achieve high accuracy, Original Equipment Manufacturers

(OEMs) continuously develop and enhance the reliability of

the perception systems. However, there have been several

instances in the past where attackers were successfully able

to fool the sensor systems and control the vehicle [10].

To achieve reliable automation, it is crucial to accurately

create a threat model that defines the attacker profile, possible

motives, and the system components that they can target. This

section identifies the major assets within AVs and data fusion

life-cycle.

Figure 1 presents the process of how sensor functions and

data collection in AVs as represented in Petit et al. [10]. Sensor

Data Life-cycle can be categorized into three parts: (1) Sense,
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Fig. 1: Autonomous Car Sensor and Control System

(2) Understand, and (3) Action. The phases of the life-cycle

are as follows.

• Data Collection: This is the initial state of data in AVs.

Several sensors contribute to the generation of data using

light intensity, radio waves, sound waves, etc. The data

from several sensors is collected in raw format.

• Data Processing: This stage requires the manipulation

of raw data collected from different sensors to

machine-understandable data. The acquired data is

encoded/decoded as per the system requirements.

• Sensor Fusion: This is one of the crucial steps for

autonomous vehicles. Sensor fusion aims to precisely

understand the environment and the objects as perceived

by different sensors. Eg: a Camera is a great tool for

detecting roads, reading signs and recognizing an object.

LiDAR is better at estimating the position of the object

and RADAR is good at estimating the speed of the same

object. It can also be referred to as Decision Maker.

• Vehicle Control: This stage provides the final step

after decision making. Once the AV understands its

surrounding environment based on data received from

several sensors, the final action (brake, speeding, turning,

etc.) is made.

III. THREAT MODEL

Cyber-physical systems (CPS) typically consist of

networked embedded systems that are used to sense, actuate

and control physical processes. The physical layer aspects of

such systems are subject to novel attack vectors, and as well

as providing opportunities for defenses that require advanced

attackers’ capabilities to penetrate.

As described in Figure 1, AV sensor infrastructure

comprises of three phases, i.e., ‘Sense’, ‘Understand’,

and ‘Action’. After collecting raw sensor data from its

surroundings using multiple sensors, AV generates an image

of the environment by fusing the data giving directions to

‘Action Engine’. In this paper, we mainly focus on the ‘Sense’

part. Similar to the case of the human body, inhaling polluted

air leads to lungs/breathing problem, feeding/collecting bad or

fake data leads to improper AV functioning.
For this work, we consider the attacker as an external entity

that targets the sensor data acquisition. Therefore, in our work,

we focus on sensor jamming that operates on the physical

layer, corrupting the sensor data quality. The attacker focuses

on creating an attack to provoke an accident, disrupting road

traffic, risky lane changing and/or controlling the car remotely.
Criminals use physical-layer cyber-attacks to steal

autonomous vehicles and their freight, cause crashes, or

imperil passengers and pedestrians. In a Sensor Jamming

Attack, the attacker spoofs the autonomous vehicle sensors

by blocking the access to the vehicle for a short term with

an unknown object. Performing such an attack blindly may

not be enough to deceive machine learning models. However,

there are more advanced approaches that can successfully

deceive existing systems [2].

IV. METHODOLOGY

As stated before, we have divided the methodology into

three phases: data curation, analysis and decision making.

A. Data Curation
Digital forensics is a branch of forensic science concerned

with the use of digital information produced, stored and

241



transmitted by computers as a source of evidence in

investigations and legal proceedings. Recently specialized

analysis software systems have been made available for both

the private and public sector users [8]. For example, Feng et
al. [5] has used digital forensic methods on an AV to identify

vehicle diagnostics to understand if a malfunction caused an

accident. However, accessing and preserving evidence is one

of the first obstacles in IoT and vehicular technology [3].

There are two types of devices that we can curate our data:

• Memory: In-memory data collection requires the

computer system to be continuously running after

the accident. However, in-memory data can reveal

information on the processes running on the CPU,

passenger activity, any malfunction, and many more.

Furthermore, it is possible to access sensor information

such as cameras and LIDAR on some operating systems

(OS) such as Android [13]. Even if the onboard computer

is turned off, it may also be possible to find snapshots

of the memory by default on some OSes. Since the OS

used on an AV is vendor specific, the forensic investigator

would need to check the vendor specifications.

• Storage Devices: Extracting information from HDD and

SSD devices is a common practice and can be achieved

through a variety of software and hardware. Moreover,

data curation from these devices may be performed even

if the storage device gets damaged in the event of an

accident depending on the extent of the damage. We also

expect AVs to be equipped with black boxes.

In our case, we are using CARLA [4], an open-source

simulator, to generate data and demonstrate the effectiveness

of the model visually and quantitatively.

B. Data Analysis
In the second phase, after collecting data, the analysis of

data is performed. There are two sub-phases: The forensic

investigator should (1) build the AI model using real-world

normal sensor information, and (2) identify the relevant

curated data through metadata or visual analysis.

The first phase can be standardized with a sensor data

corpus. With such a corpus, the investigators would not need

to retrain a new model for each incident. Two aspects of any

AI-model should be considered carefully: (1) designing an

appropriate architecture, and (2) choosing the right learning

algorithm. In this case, we have data collected from the

CARLA simulator in the form of images (frames) generated

at the rate of 10Hz. Since we are using (Supervised) Deep

Learning Model to identify the attacker and benign vehicles,

data needs to be labeled. We have used a tool named

LabelImg [17] for data labeling. LabelImg is a graphical

image annotation tool that labels multiple objects in a single

image, classify and label them (in our case as benign or

attacker) with their location in each frame (as a bounding box).

For our work, we have a small dataset of around 1225

labeled images with around 1000 instances containing benign

vehicles (82%) and 225 images with attacker vehicles (18%).

The training and testing ratio for this work is 80:20 for the

complete dataset. For object detection, we have used YOLO

(You Look Only Once) [11] algorithm. YOLO reframe object

detection as a single regression problem, straight from image

pixels to bounding box coordinates and class probabilities

by just looking at an image once during the whole training

and testing phase. The architecture of the YOLO network

has 24 convolutional layers with 2 fully connected layers to

reduce the features space from preceding layers. By default,

we have pre-defined the images to 416px x 416px square sizes.

Further, we use Darknet [16], an open source neural network

framework that has pre-trained configuration and weights, to

train YOLO by providing it the architecture of the network.

After training the CNN based YOLO network with 80% of the

data, the Darknet framework provides the label of the object,

detection confidence level and the overall time consumed for

making the decision.

In the simulation, we have multiple vehicles on the road.

This means that we can have both benign and attacker vehicles

captured in a single frame and it is important to know if

a vehicle in one frame is the same as one in a previous

frame. This is also known as object tracking and requires

multiple tracking to identify a specific object over time. To

address this, we have used SORT [1] algorithm that uses a

Kalman Filter to predict the traces of previously identified

objects. Authors in [15] have demonstrated the successful

use of Kalman Filtering techniques for tracking purposes.

SORT focuses on frame-to-frame prediction and association

for timely tracking of the objects in a frame.

C. Decision Making

The last phase utilizes the trained model to determine if the

sensor data leading up to the accident includes any anomalies.

The outputs of this phase are then evaluated by experts to

determine if the anomaly is a product of foul-play.

In the next section, we describe 3 test scenarios that we

can measure the usability of the model. We acknowledge that

the machine learning models should be further evaluated with

various machine learning metrics including Confusion Matrix,

F-measures, Detection Accuracy and Detection Rate. We will

further investigate and release our evaluation.

Many autonomous systems follow the OODA loop, which is

the cycle of observe-orient-decide-act [7]. Another verification

technique we can use is to follow the events that led to each

decision that the AV made based on its OODA loop prior to

collision from the logs.

V. TEST SCENARIOS

CARLA is an open-source simulator for autonomous

driving research and has been developed from the ground

up to support the development, training, and validation of

autonomous driving systems. We conduct three test scenarios

in Carla. We also released the code on GitHub for our

experiments 1. Figure 2 includes an instance from Carla

simulator demonstrating all the features equipped in the

vehicles.

1https://github.com/PrinkleSharma/WAAS2020
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Fig. 2: Carla Simulator view

We consider three scenarios:

• Autonomous normal mode driving behavior

• Accidents not involving foul-play

• Fooling sensors via the sudden appearance of another

vehicles/obstacles or vanishing objects

• Autonomous normal mode driving behavior:
The main objective here is to observe the difference

between the driving behavior of autonomous and

manually driven cars on road traffic. In this scenario, the

input data is supplied by the various sensors of an AV.

• Accidents not involving foul-play: In such a scenario,

the aim is to collect information about accidents where

there is no sensor malfunction. This data specifically

helps the model to distinguish features that leads to

accidents.

• Fooling sensors via the sudden appearance of another
vehicles/obstacles or vanishing objects: While driving,

an autonomous car senses its environment and identifies

objects around it. However, when sensors have tampered,

they tend to miss the objects/cars around it, causing

violation of traffic rules and in the worse case causing

accidents. For example, an autonomous car whose sensor

is tempered with sensors sees an object 100 meters away

and while nearing, the object may disappear to the car

sensors.

VI. FUTURE WORK

Sensor spoofing can severely impact the decision making

capability of AVs, both the AV and the network of AVs.

The authors are currently working on a comprehensive attack

detection framework that accompanies the proposed protocol.

Future work includes work focusing on identifying the specific

sensor that is tampered during the attack. The results and

analysis will be demonstrated in the upcoming publications.
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