
Mission Assurance for Autonomous Undersea
Vehicles

Karl Siil
JHU Applied Physics Laboratory

Laurel, Maryland
Karl.Siil@jhuapl.edu

Aviel Rubin
Johns Hopkins University

Baltimore, Maryland
rubin@jhu.edu

Matthew Elder
JHU Applied Physics Laboratory

Laurel, Maryland
Matthew.Elder@jhuapl.edu

Anton Dahbura
Johns Hopkins University

Baltimore, Maryland
antondahbura@jhu.edu

Matthew Green
Johns Hopkins University

Baltimore, Maryland
mgreen47@jhu.edu

Lanier Watkins
Johns Hopkins University

Baltimore, Maryland
Lanier.Watkins@jhuapl.edu

Abstract—Autonomous vehicles are all but inevitable, and

assurance that they will behave safely with respect to passengers,
as well as bystanders incidentally exposed to them, is moving
forward, albeit slowly. The state of the art often involves stopping
the vehicle, perhaps after diverting it to a nearby safe place. While
this is good news, it does not fully realize the benefits of autonomy.
Autonomous vehicles are built for a purpose; call it a mission.
Being able to perform the mission, or part of it, while experiencing
faults (or cyber-attack) should be a factor in determining the
vehicle’s suitability for the mission. This paper explores the state
of the art in achieving autonomous mission assurance in the
context of autonomous undersea vehicles (AUVs). It identifies gaps
in the literature and proposes a novel plan to address certain gaps.

Keywords—assurance, autonomy, mission, resilience, safety,
vehicle

I. INTRODUCTION
Autonomous vehicles are all but inevitable, and assurance

that they will behave safely with respect to passengers, as well
as bystanders incidentally exposed to them, is moving forward,
albeit slowly. For example, safety systems are being architected
into unmanned aerial vehicles (UAVs) such that before the
vehicle can endanger people or property, the safety system will
engage and disable the UAV [3], eliminating such risks.

While this is good news, it does not fully realize the benefits
of autonomy. Autonomous vehicles are built for a purpose; call
it a mission. Being able to perform the mission, or part of it,
while experiencing faults (or cyber-attack) should be a factor in
determining the vehicle’s suitability for the mission.

This paper explores the state of the art in achieving
autonomous mission assurance in the context of autonomous
undersea vehicles (AUVs). It identifies gaps in the literature and
proposes a novel plan to address certain gaps, i.e.,

• Protect passengers onboard an AUV.

• Protect vessels in the AUV’s area of operation, along
with the fixed obstacles prior works address.

• Complete the mission, or part of it.

Section II provides an autonomous vehicle overview.
Section III defines the mission assurance problem this paper
addresses. Section IV describes the threat model. Section V
presents related works in improving autonomous vehicle safety.
Section VI proposes to improve mission assurance by adding
mission-essential functionality in a separate (simpler) layer that
lends itself more readily to being formally verified and therefore
more trusted. Section VII identifies known limitations and
suggests future research to address those limitations.

II. AUTONOMOUS VEHICLE OVERVIEW
In layman’s terms, an autonomous vehicle can be viewed as

a set of computers connected to sensors and actuators (motors,
servos, etc.) with which to interact with the physical world. An
autonomous vehicle learns and adapts to dynamic environments
and evolves as the environment around it changes. Compare this
to vehicle automation that typically runs within a well-defined
set of parameters and is very restricted in what tasks it can
perform [6]. A car’s (non-adaptive) cruise control and basic
collision-avoidance system are examples of automation. A self-
driving car, on the other hand, is autonomous.

Consider an abstract autonomous vehicle that consists of an
autonomy engine (AE), which is some combination of
processors, software and possibly external communications
mechanisms, e.g., to a cloud-based compute capability. The AE
is connected to a variety of sensors and actuators, which inform
it about its environment and allow it to take actions in that
environment, respectively. This paper focuses on a fictitious
tourist AUV similar to the crewed T-SUB by Silvercrest
Submarines [8].

An AUV is built with a mission in mind. The mission might
be surveying undersea cables or pipelines, or it may be
something for the military. The mission of this paper’s AUV is
tourism, i.e., taking tourists to see sights like shipwrecks and
geological formations. Each sight is called a point of interest
(POI) and Section III describes the tourism scenario in detail.

While the AUV is performing its mission, software flaws in
the AE or cyber-attacks attempting to disrupt the mission may

244

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Karl Siil. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00056

take place. Manufacturers of autonomous vehicles that transport
passengers must do more to convince users and the public at
large that their products, which are heavily reliant on complex
autonomy software, are safe in these conditions.

III. PROBLEM STATEMENT
Consider a company that operates tours of underwater POIs

(see Fig. 1 for a notional example). The company would like to
replace its crewed submersibles with AUVs. An operational
scenario, including constraints and risks, is described below.

Submersibles are dispatched to visit as many POIs as
possible within a given time period, henceforth called maximum
and minimum tour-time limits. The vessels operate near their
design limits against local currents, and do not venture into deep
water due to the risk of becoming incapacitated and sinking
below their maximum operational depth. The submersibles must
also avoid each other and surface traffic while giving the tours.
All tourist submersibles partner in an acoustic range finding
service that uses trusted fixed stations and provides accurate
absolute and relative positions. Other, non-partner, submersibles
and surface vessels can only be detected by sonar. Surface
vessels must monitor marine radio for broadcasts to clear a given
area to allow a submersible to surface.

The AUV being considered is similar in capacity, endurance,
and performance to crewed submersibles currently in use [8].
Therefore, each AUV would be a one-for-one replacement for a
crewed submersible until, if the plan is successful, all the crewed
vessels are retired. Moreover, because of the similarities
between the crewed and autonomous vessels, the AUV is subject
to the same limitations, e.g., no operations in deep water.

Risks for both crewed vessels and AUVs are running
aground, straying into deep water, or coming too close to (or
colliding with) a POI, pier or other vessel. Replacing the crewed
submersibles with AUVs creates additional risks that would not
exist with, or that would be handled by, a human operator. These
additional risks stem from software failure of or cyber-attack
against the AE, and include not visiting some or all of the POIs,
staying out too long, or returning too quickly. Some of these add
danger, e.g., the AUV could navigate away from the pier and
hover submerged indefinitely. Others are just bad for business.

Given the risks, the tour company would only consider using
AUVs if it can be assured that a level of safety and customer
satisfaction can be achieved.

IV. THREAT MODEL
Assume an adversary has unfettered access to modify the AE

in any way they desire. This could be done via insiders, supply
chain attacks, or exploitation of vulnerabilities in deployed
systems. Whatever the case, this paper is not about defeating
cyber-attack, but how to handle one that has already occurred.
Worst case assumptions are made for all potential actions of a
compromised AE.

In contrast, assume adversaries cannot affect development
facilities, supply chains, etc., used to manufacture the safety
systems proposed below. Furthermore, fielded safety systems
and the vehicles they are on are protected sufficiently that an
adversary cannot get physical access without being detected.

Fig. 1. Notional AUV tourism scenario.

An adversary cannot affect their operation, but sensors,
motors, and other components are subject to wear and tear,
accidental breakages, and other natural phenomena that could
cause them to fail. Such failure cases are out of scope in the
initial research, and will be addressed when the technology
being developed is more mature (see Section VII).

V. RELATED WORKS
Developing high-quality complex software continues to be a

significant challenge. To address the problem differently, the
concept of incorporating simpler more reliable safety systems
has arisen over the years and shows promise. However, as
discussed below, current safety systems are limited. Some are
implemented with limited assurance, particularly against
malicious actors. Very few protect the mission that the vehicle
needs to perform.

Xiao, Li, and Zhang [10] developed a rule-based safety
kernel for unmanned systems. However, the safety kernel is a
user-level process implemented on a main control processor that
contains all the other application software and connects via Wi-
Fi to an external PC. Malicious software introduced into this
processor presumably could circumvent the safety functions.

Safeguard [3] is a totally independent onboard UAV
geofencing system (including independent sensors) with two
discrete outputs – a warning that a geofence violation is
imminent, and a kill signal if the warning does not result in
corrective action. Safeguard only protects against damage by the
vehicle, not damage to the vehicle, which is understandable
because Safeguard was built under the assumption that hull loss
is acceptable for small inexpensive UAVs.

ICAROUS [2] augments Safeguard’s geofencing by adding
detect and avoid capabilities against fixed obstacles and other
vehicles, as well as the ability to compute a conflict-free “return
to mission” path. ICAROUS is being integrated with
Safe2Ditch [5], a computer vision-based landing site selection
system, which should reduce risk to the UAV. However, in the
event of a geofence violation, Safeguard still takes drastic
action.

245

VI. PROPOSAL
Mission assurance for autonomous undersea vehicles (MA-

AUV) proposes to extend what the above related works have
done in the following ways:

• Protect passengers onboard an AUV.

• Protect vessels in the AUV’s area of operation, along
with the fixed obstacles prior works address.

• Complete the mission, or part of it.

MA-AUV focuses on replicating as much mission essential
functionality as possible in less-complicated safety systems that
are realizable with high-quality high-assurance software. MA-
AUV trades reduced autonomous functionality for predictable
responses to on-mission events that lead to deviations, and
completion of the mission, or part of it, despite these deviations.

Some related works [10] address assurance of system
functionality minimally or not at all. Others provide higher
assurance of the system, but limited focus on assured mission
success. Safeguard [3] in its current form kills the UAV motors
during a safety violation, ending the mission, and possibly
damaging the vehicle. The modified Safeguard-like system
proposed as a starting point below could safely stop and surface
an AUV, which minimizes the risks of harm to passengers and
vehicle damage, but still ends the mission outright and probably
requires passenger rescue by some other vessel.

ICAROUS [2] improves mission assurance somewhat, but
its ultimate recourse at present is still Safeguard. When
Safe2Ditch [5] is incorporated the vehicle will be safer, but
ICAROUS cannot take over the mission if other onboard
processors become erratic or unresponsive. The iterative set of
solutions below strive to do that.

A. Resilience Layer
MA-AUV proposes to place a resilience layer (RL) between

a potentially faulty or compromised (collectively termed,
“malfunctioning”) AE and the sensors/actuators (see Fig. 2).
The RL seeks to limit the effects of any potentially dangerous
actions commanded by the AE via the simplest implementation
and highest software assurance possible. In addition, as the
research progresses, the RL’s goal is to maximize protection of
the mission (or a subset of it), as well as the vehicle, its
occupants and bystanders.

Fig. 2. Resilience layer between autonomy engine and physical components.

The proposed implementation has the RL fed by the same
AUV sensors that feed the AE. If the need arises, however,
adding independent sensors would be straightforward.

The RL can generate commands to the AUV’s motors and
other actuators. Under normal conditions, the RL allows the
AE’s commands to pass to the actuators. If the AE is exhibiting
erratic or potentially dangerous behavior, however, the RL can
disable the AE interfaces and send its own commands. These
commands could be modifications of what the AE sent, or
completely different ones, e.g., if a sharp turn in the opposite
direction is required to avoid an obstacle.

The RL functionality described in Section F is based on the
five functions of the NIST Cybersecurity Framework: Identify,
Protect, Detect, Respond, and Recover (IPDRR) [7]. Only the
Recover functions are described in detail in this paper.

B. Research Process
MA-AUV is developing a simulated testbed and AUVs

complete with RLs. RL development is iterative, with each
iteration more capable than the prior one in improving mission
assurance. Testing and scoring of each RL iteration is conducted
in a variety of manually configured and randomly generated test
environments (See Section G).

Our RL development provides assurance beyond just testing
via static source code analysis (SSCA) and formal verification
(FV). SSCA reduces errors and vulnerabilities in code, but does
not guarantee that the code implements the intended
functionality correctly. This is the purpose of FV. None of the
RL software is expected to be too complex for SSCA, but later
iterations may be for FV. In that case, FV constraints could be
relaxed regarding residual errors or unproven functions left in
the code. Alternatively, simplifications could be made to
advanced-iteration RL software to make successful FV possible,
while still retaining functionality that is beyond simpler
iterations. These two approaches will yield either fully
functional but less assured RL software, or high-assurance
software with limited functionality. Either way, they will inform
the state of the art for high assurance in production software
development.

C. Testbed Functionality
MA-AUV implements a simulated AUV testbed where test

environments can be configured and test events executed against
an AUV test article. The simulated testbed is implemented with
the Gazebo robot simulation environment [9] and its Unmanned
Underwater Vehicle Simulator plugins [4]. Each test
environment has seafloor bathymetry, currents, POIs, AUV
piers, surface vessels and other submersibles. See Section E for
how each element is represented in a test environment.

D. Autonomous Undersea Vehicle Mission Functionality
The following tour (i.e., mission) functions are implemented

in the AUV AE (and eventually RL), and tested in the simulated
testbed. Section F describes how the RL monitors the AE and
performs Recover functions when safety is at risk.

A tour starts with the AUV generating a departure tour plan,
which describes the tour legs to be traversed from the pier to the
first POI, between the POIs, and returning to the pier. Estimated
times of arrival (ETAs) at the POIs and the return to the pier are

246

also in the tour plan. Once activated, the departure tour plan
becomes the active tour plan and the AUV executes the tour.

Throughout the tour, which is conducted submerged, the
AUV uses acoustic range finding and sonar to maintain
separation from fixed obstacles and other vessels. If a deviation
is required to maintain separation, the AUV determines whether
the active tour plan is still achievable, i.e., the next POI can be
reached by the ETA. If the active tour plan is no longer
achievable, the AUV generates an enroute tour plan based on its
current position and the remaining unvisited POIs.

The enroute tour plan can re-order or eliminate POI visits. If
no modified tour can be completed within the maximum tour-
time limit, even after all remaining POI visits are eliminated, the
only valid enroute tour plan is to return the AUV directly to a
pier. No further POI visits are permitted.

As with the departure tour plan, once activated the enroute
tour plan becomes the active tour plan and the AUV begins
executing it. This cycle of deviating, determining achievability
and (if necessary) generating/activating additional enroute tour
plans continues until all POIs, if any, on the latest active tour
plan are reached and the AUV has returned to the pier. At that
point, the tour is ended and scored (see Section G). If there is a
safety violation that results in the invocation of Recover
functions, the tour may end before a pier is reached. Scoring still
occurs in that case.

E. Separation
The RL bases its safety-related decisions on maintaining

separation between the AUV, fixed obstacles, and other vessels.
The use of separation in MA-AUV is very similar to its use in
the air-traffic control system [1], where it is intended to keep
aircraft far enough apart such that unexpected maneuvers or loss
of situational awareness by one aircraft doesn’t immediately
endanger other aircraft and gives everyone time to react.

The testbed implements separation by giving each obstacle
a well-defined topology. Land masses, deep water, and the sea
floor look the same as their real-world counterparts. Fixed
obstacles and vessels have simple topologies to reduce testbed
complexity. Tri-axial ellipsoids represent POIs and vessels.
Rectangles represent piers.

Everything in the testbed has a set of three or more nested
boundaries. The boundaries are like those used in Safeguard [3],
and delimit where the state of the AUV’s relationship with a
given object changes. Crossing a boundary causes state changes
in the AUV, which in turn may precipitate actions by the AUV
or other vessels or affect scoring. Only the AUV is affected by
or can react to these boundaries (see Section VII).

The various boundaries and the effects of crossing them are
defined as follows and depicted by the examples in Fig. 3:

• Physical Boundary: This represents the physical
obstacle. Crossing this boundary is considered a
collision, though it’s a bit of a misnomer for deep water.

• Separation Boundary: This represents the minimum
separation (distance) that must be maintained from the
obstacle within the boundary. Crossing this boundary
enters an obstacle’s reduced-separation zone (RSZ).

Fig. 3. Example obstacle and vessel separation boundaries (not to scale).

• Warning Boundary: This represents the range from an
obstacle at which the RL attempts to prevent a safety
issue. Crossing this boundary enters an obstacle’s
warning zone (WZ).

• Visiting Boundary: This only exists for POIs and
represents the maximum distance that is considered
visiting a given POI. Crossing this boundary causes the
POI to be considered visited.

• Docking Boundary: This only exists for AUV piers and
represents the maximum distance that is considered
docking at a pier. Crossing this boundary and reducing
speed over ground to zero causes the AUV to become
docked and ends the test event.

F. Resilience Layer Functionality
The RL Protect functions must grant permission to activate

a tour plan before the AUV can start or modify a tour. Without
an active tour plan, the RL prevents AE-issued commands from
reaching the AUV’s motors or other actuators.

During a tour, the RL Detect functions monitor the AUV’s
position, depth, heading, and speed, as well as the distances to
fixed obstacles and other vessels. These data are used to
compare the AUV’s current situation with what is expected from
the active tour plan. The Detect functions also determine
whether the AUV is overdue at a POI or pier.

Respond functions are invoked when the AUV is in danger
of losing separation. If the AUV enters a WZ, the RL alerts the
AE that it must take corrective action to exit the zone, but the
RL takes no further action of its own. If the AUV enters a RSZ
or collides with an obstacle, Recover functions are invoked.

Recover functions are invoked when the AUV enters a state
where the RL takes permanent control from the AE for the
remainder of the tour. These are mostly cases where the AE has
lost separation. The other case where Recover functions are
invoked is if a new enroute tour plan is required and the AE has
not taken the steps to get one activated. This is not necessarily a
safety risk, but is at least undesirable for the passengers.

The ideal Recover goal is to complete the tour in the AE’s
place with no impact on tour safety or quality. MA-AUV

247

attempts to come as close to this goal as possible by iterating on
the RL implementation. The first Recover iterations implement
Safeguard-like [3] functionality. The RL shuts off propulsion,
drops anchor and surfaces the AUV. This cuts the tour short (i.e.,
fails the mission), but achieves the safety goals.

Successive Recover iterations add the ability for the RL to
return to a pier, activate enroute tours from a pre-generated tour-
plan library, and ultimately incorporate the AE tour-planning
functions. This final iteration replicates a great deal of the AE
autonomy into the RL, and may eliminate the need for an AE, at
least for tour-plan generation and execution. Replicating this
functionality, or a limited version of it, is probably possible. The
challenge is to provide the required assurance.

The pre-generated tour-plan library mentioned above is the
first step in significantly improving mission assurance. The
library is created after the test environment is configured, before
the first test event. Creating the pre-generated tour-plan library
is a trusted function. The tour plans are assumed the best
possible for the algorithms used, unaltered by malicious entities,
and delivered in a trusted manner to the AUV.

The tour-plan library contains a small number of departure
tour plans, and as few as one. Multiple departure tour plans add
variety for the tourists. In terms of MA-AUV, multiple departure
tour plans are generated to measure the effects of the differences
on scoring (see Section G). In addition to departure tour plans, a
set of enroute tour plans is generated for the library. Each pre-
generated enroute tour plan addresses a specific set of initial
conditions and provides a path for completing the given tour.
The initial conditions for each enroute tour plan are the set of
remaining POIs to visit and the current position of the AUV.

The more potential initial conditions covered by pre-
generated enroute tour plans, the higher the expected score.
However, the tour-plan count explodes as the number of POIs
increases. While the numbers become daunting quickly, for a
given test environment many tour plans may be similar and
combinable. Also, in some (perhaps many) cases the visit order
may not matter.

The tour-plan library must factor in the possible current
position of the AUV, which is anywhere, but many positions are
probably alike. For example, all positions within some radius
around a given point might have the same optimal tour plan to
join. Adding feeder legs from such points to join existing tour
legs gives the AUV more options to safely navigate from a post-
deviation position to a valid tour plan path.

Tour-plan library size is dependent on test environment
geography, POI and pier placement. And, there may be
commonalities that can be applied generally, e.g., an algorithm
for reducing tour permutations, or the number of feeder legs and
how to place them, which can lead to manageably sized libraries.
MA-AUV will explore such possibilities. At worst, the approach
shows promise for small numbers of POIs.

G. Testing and Scoring
MA-AUV’s success will be measured by running test events

in simulated test environments representing the scenario
described in Section III. Multiple test environments will be
created, both manually to test the RL’s ability to assure the

mission in specific situations, and randomly to test the RL across
a broad range of situations and uncover any deficiencies caused
by those not foreseen in the manually configured environments.

After each test event, a tour score based on the departure tour
plan requirements defined in Section D is computed to represent
how well the AUV did on the tour. The tour score represents the
tourists’ satisfaction and has the following properties:

• Visiting all the POIs within the tour-time limits with no
loss of separation (LOS) yields a perfect score of 100.

• A collision yields a score of 0, as does passengers
requiring rescue or the AUV being towed back to a pier.

• Given no LOS and the tour runs within the time limits,
the score is based on how many POIs were visited.

While tour satisfaction is an important metric, MA-AUV’s
focus is on improving mission assurance. The question,
therefore, is not just how good the tour was, but how well the
RL did in limiting any negative impacts to the tour of a
malfunctioning AE. To determine this answer, the tour score for
each test event is compared to the best tour score possible for
the given environment, assuming a properly functioning AE,
and factoring in runtime variations in currents and other vessels
encountered. This reduces the effects on the tour score of
variables the RL cannot control. For example, if on a given tour
the AUV encounters so many other vessels that very few POIs
are visited, the RL should not be penalized.

To compute the best tour score, the same departure tour plan
used in the test event is executed, minus any variations in
currents or encounters with other vessels. This establishes an
initial best tour time, TB, along with a POI visit coverage list that
includes all the POIs.

For each deviation in the original tour, a mini-simulation is
executed with the same initial conditions as when the deviation
started. A fully functional AE performs the deviation until the
obstacle has been avoided. The time to perform the deviation is
added to TB and any loss of separation is captured. From the new
AUV position, achievability is computed and an enroute tour
plan generated, if necessary, using only the eligible unvisited
POIs. Any POIs not visited on this enroute tour plan are
removed from the visit coverage list and are ineligible for
inclusion in enroute tour plans required in later deviations.

The formula used to compute the actual tour score is also
used to compute the best one, substituting the best tour time and
LOS values. The actual tour score is divided by the best one and
the RL score is the quotient, ranging from 0 to 100 (after
multiplication by 100 and application of a floor function).

The best tour score has limited realism, because it implicitly
assumes the way a test event played out and the best way it could
have played out encountered the same deviations. It does not
consider fully, for example, that how the AUV reacts to a
deviation depends on how it reacted to previous ones. In fact, if
the AUV had reacted differently to a previous deviation, a
subsequent deviation may not even have occurred. While
limited, the best tour score provides a means to normalize RL
performance against specific test event challenges. The need to
improve the best tour score algorithm is noted in Section VII.

248

H. Anticipated Results
Testbed and AUV development have just started, limiting

any concrete results. It is expected, however, that early RL
iterations will do little for mission success but will greatly
improve passenger safety. The simplest Recover function
requires rescuing passengers with another vessel, or towing the
AUV to a pier. Still, these are improvements over, e.g., the AE
piloting the AUV into an obstacle or deep water.

The Recover functions that return the AUV to a pier will
make partially successful tours possible, as long as one or more
POIs are visited before the Recover function is invoked. Pre-
generated tour-plan libraries will enable the RL to execute
partial and possibly complete tours, further improving mission
assurance. Finally, full tour-planning functionality would make
the RL capable enough that the AE may not be required for the
planning, execution, and deviation handing portions of a tour,
leading to maximal mission assurance.

The best tour-plan generation algorithms, i.e., the ones that
lead to the best tour scores, will be ones that leave as much spare
time as possible to allow for potential deviations. This will
require optimally balancing the use of slower speeds and
loitering at POIs with staying as close to the minimum tour-time
limit as possible, which are conflicting goals. Also, the RL
iterations that implement tour-plan libraries are expected to
require quite a bit of experimentation to determine what enroute
tour plans (and associated feeder legs) produce the best scores.

VII. KNOWN LIMITATIONS
If the tour-plan library functionality is impractical, more

work will be required to determine how the RL can force the AE
to generate better enroute tour plans. Without at least this
functionality, a malfunctioning AE can submit extremely sub-
optimal, but valid, enroute tour plans. The plans could have the
AUV meander all over the test environment and return to the
pier without visiting any more POIs. For now, the only comfort
is that sub-optimal planning is reflected in the scoring.

The best tour score algorithm described in Section VI.G is
limited, because it does not fully account for the actual places
and times of deviations encountered in a test event. As the
research progresses and experimental results are generated,
improvements to this algorithm will be investigated.

The testbed does not capture the consequences of the AUV
forcing other vessels to collide with fixed obstacles or each
other. For example, if separation between the AUV and another
vessel is at risk, both vessels react to prevent LOS. The AUV is
scored on its ability to respond, while the other vessel may
silently lose separation or even collide with one or more other
obstacles. The AUV causing another vessel to suffer LOS or
collision might be considered a safety concern, though it could
be argued that the other vessel shares the blame in getting into
this situation. Still, future versions of the testbed should capture
such indirect safety risks.

The failure of sensors, motors and other components is not
considered, nor are cases of an adversary attempting to deny or
spoof sensors. As the base technology of the RL matures,
additional failure and attack scenarios will be considered.

This paper ignores cost. A real-world engineering solution
would factor in cost along with functionality and assurance. An
organization’s financial resources are limited, and high
assurance may not be economical.

VIII.CONCLUSION
This paper explored the state of the art in autonomous

mission assurance. It identified gaps in the literature and
proposed a novel plan to address certain gaps. It also presented
a plan to implement a resilience layer (RL) to address mission
assurance for autonomous undersea vehicles (AUVs), a.k.a.,
MA-AUV. An iterative development approach was described to
allow functionality to be developed, verified, tested, and to have
its value assessed by objective quantitative scoring. By
developing RL functionality iteratively, MA-AUV provides “off
ramps” such that, if a given level of functionality with the
required amount of assurance is unachievable, useful open-
source artifacts will still have been built during earlier iterations
and can be provided to the autonomous vehicle community.

Other proposed work includes improved scoring algorithms
for better measurement of RL performance, capturing the
second-order effects of a malfunctioning AUV on other vessels,
and factoring in the cost of developing a high-assurance RL.

ACKNOWLEDGMENT
The author is thankful for the contributions of Pete

Dinsmore, Dave Sames, Meghan Warner and Cindy Widick in
making this research possible.

REFERENCES
[1] “Aeronautical Information Manual - AIM - ATC clearances and aircraft

separation,” Federal Aviation Administration. [Online]. Available:
https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap4_sec
tion_4.html.

[2] M. Consiglio, C. Munoz, G. Hagen, A. Narkawicz, and S. Balachandran,
“ICAROUS: Integrated configurable algorithms for reliable operations of
unmanned systems,” 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), 2016.

[3] E. T. Dill, S. D. Young, and K. J. Hayhurst, “SAFEGUARD: An assured
safety net technology for UAS,” 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), 2016.

[4] “Home,” Unmanned Underwater Vehicle Simulator Documentation.
[Online]. Available: https://uuvsimulator.github.io/.

[5] P. C. Lusk, P. C. Glaab, L. J. Glaab, and R. W. Beard, “Safe2Ditch:
Emergency landing for small unmanned aircraft systems,” Journal of
Aerospace Information Systems, vol. 16, no. 8, pp. 327–339, 2019.

[6] S. Matteson, “Autonomous versus automated: What each means and why
it matters,” TechRepublic, 07-Jun-2019. [Online]. Available:
https://www.techrepublic.com/article/autonomous-versus-automated-
what-each-means-and-why-it-matters/.

[7] Nicole.keller@nist.gov, “The five functions,” NIST, 10-Aug-2018.
[Online]. Available: https://www.nist.gov/cyberframework/online-
learning/five-functions. [Accessed: 12-Jan-2020].

[8] Submarines and ROVs for sale and hire by Silvercrest Submarines.
[Online]. Available:
https://www.silvercrestsubmarines.co.uk/mediumtouristsubinfo.html.

[9] “Why Gazebo?,” gazebo. [Online]. Available: http://gazebosim.org/.
[10] Y. Xiao, G. Li, and Y. Zhang, “A rule-based safety kernel for unmanned

system,” INFONA. [Online]. Available:
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-
000006321097. [Accessed: 12-Jan-2020].

249

