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Abstract—Autonomous vehicles are all but inevitable, and 

assurance that they will behave safely with respect to passengers, 
as well as bystanders incidentally exposed to them, is moving 
forward, albeit slowly. The state of the art often involves stopping 
the vehicle, perhaps after diverting it to a nearby safe place. While 
this is good news, it does not fully realize the benefits of autonomy. 
Autonomous vehicles are built for a purpose; call it a mission. 
Being able to perform the mission, or part of it, while experiencing 
faults (or cyber-attack) should be a factor in determining the 
vehicle’s suitability for the mission. This paper explores the state 
of the art in achieving autonomous mission assurance in the 
context of autonomous undersea vehicles (AUVs). It identifies gaps 
in the literature and proposes a novel plan to address certain gaps. 

Keywords—assurance, autonomy, mission, resilience, safety, 
vehicle 

I. INTRODUCTION 
Autonomous vehicles are all but inevitable, and assurance 

that they will behave safely with respect to passengers, as well 
as bystanders incidentally exposed to them, is moving forward, 
albeit slowly. For example, safety systems are being architected 
into unmanned aerial vehicles (UAVs) such that before the 
vehicle can endanger people or property, the safety system will 
engage and disable the UAV [3], eliminating such risks. 

While this is good news, it does not fully realize the benefits 
of autonomy. Autonomous vehicles are built for a purpose; call 
it a mission. Being able to perform the mission, or part of it, 
while experiencing faults (or cyber-attack) should be a factor in 
determining the vehicle’s suitability for the mission. 

This paper explores the state of the art in achieving 
autonomous mission assurance in the context of autonomous 
undersea vehicles (AUVs). It identifies gaps in the literature and 
proposes a novel plan to address certain gaps, i.e., 

• Protect passengers onboard an AUV. 

• Protect vessels in the AUV’s area of operation, along 
with the fixed obstacles prior works address. 

• Complete the mission, or part of it. 

Section II provides an autonomous vehicle overview. 
Section III defines the mission assurance problem this paper 
addresses. Section IV describes the threat model. Section V 
presents related works in improving autonomous vehicle safety. 
Section VI proposes to improve mission assurance by adding 
mission-essential functionality in a separate (simpler) layer that 
lends itself more readily to being formally verified and therefore 
more trusted. Section VII identifies known limitations and 
suggests future research to address those limitations. 

II. AUTONOMOUS VEHICLE OVERVIEW 
In layman’s terms, an autonomous vehicle can be viewed as 

a set of computers connected to sensors and actuators (motors, 
servos, etc.) with which to interact with the physical world. An 
autonomous vehicle learns and adapts to dynamic environments 
and evolves as the environment around it changes. Compare this 
to vehicle automation that typically runs within a well-defined 
set of parameters and is very restricted in what tasks it can 
perform [6]. A car’s (non-adaptive) cruise control and basic 
collision-avoidance system are examples of automation. A self-
driving car, on the other hand, is autonomous. 

Consider an abstract autonomous vehicle that consists of an 
autonomy engine (AE), which is some combination of 
processors, software and possibly external communications 
mechanisms, e.g., to a cloud-based compute capability. The AE 
is connected to a variety of sensors and actuators, which inform 
it about its environment and allow it to take actions in that 
environment, respectively. This paper focuses on a fictitious 
tourist AUV similar to the crewed T-SUB by Silvercrest 
Submarines [8]. 

An AUV is built with a mission in mind. The mission might 
be surveying undersea cables or pipelines, or it may be 
something for the military. The mission of this paper’s AUV is 
tourism, i.e., taking tourists to see sights like shipwrecks and 
geological formations. Each sight is called a point of interest 
(POI) and Section III describes the tourism scenario in detail. 

While the AUV is performing its mission, software flaws in 
the AE or cyber-attacks attempting to disrupt the mission may 
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take place. Manufacturers of autonomous vehicles that transport 
passengers must do more to convince users and the public at 
large that their products, which are heavily reliant on complex 
autonomy software, are safe in these conditions. 

III. PROBLEM STATEMENT 
Consider a company that operates tours of underwater POIs 

(see Fig. 1 for a notional example). The company would like to 
replace its crewed submersibles with AUVs. An operational 
scenario, including constraints and risks, is described below. 

Submersibles are dispatched to visit as many POIs as 
possible within a given time period, henceforth called maximum 
and minimum tour-time limits. The vessels operate near their 
design limits against local currents, and do not venture into deep 
water due to the risk of becoming incapacitated and sinking 
below their maximum operational depth. The submersibles must 
also avoid each other and surface traffic while giving the tours. 
All tourist submersibles partner in an acoustic range finding 
service that uses trusted fixed stations and provides accurate 
absolute and relative positions. Other, non-partner, submersibles 
and surface vessels can only be detected by sonar. Surface 
vessels must monitor marine radio for broadcasts to clear a given 
area to allow a submersible to surface. 

The AUV being considered is similar in capacity, endurance, 
and performance to crewed submersibles currently in use [8]. 
Therefore, each AUV would be a one-for-one replacement for a 
crewed submersible until, if the plan is successful, all the crewed 
vessels are retired. Moreover, because of the similarities 
between the crewed and autonomous vessels, the AUV is subject 
to the same limitations, e.g., no operations in deep water. 

Risks for both crewed vessels and AUVs are running 
aground, straying into deep water, or coming too close to (or 
colliding with) a POI, pier or other vessel. Replacing the crewed 
submersibles with AUVs creates additional risks that would not 
exist with, or that would be handled by, a human operator. These 
additional risks stem from software failure of or cyber-attack 
against the AE, and include not visiting some or all of the POIs, 
staying out too long, or returning too quickly. Some of these add 
danger, e.g., the AUV could navigate away from the pier and 
hover submerged indefinitely. Others are just bad for business. 

Given the risks, the tour company would only consider using 
AUVs if it can be assured that a level of safety and customer 
satisfaction can be achieved. 

IV. THREAT MODEL 
Assume an adversary has unfettered access to modify the AE 

in any way they desire. This could be done via insiders, supply 
chain attacks, or exploitation of vulnerabilities in deployed 
systems. Whatever the case, this paper is not about defeating 
cyber-attack, but how to handle one that has already occurred. 
Worst case assumptions are made for all potential actions of a 
compromised AE. 

In contrast, assume adversaries cannot affect development 
facilities, supply chains, etc., used to manufacture the safety 
systems proposed below. Furthermore, fielded safety systems 
and the vehicles they are on are protected sufficiently that an 
adversary cannot get physical access without being detected. 

 
Fig. 1. Notional AUV tourism scenario. 

An adversary cannot affect their operation, but sensors, 
motors, and other components are subject to wear and tear, 
accidental breakages, and other natural phenomena that could 
cause them to fail. Such failure cases are out of scope in the 
initial research, and will be addressed when the technology 
being developed is more mature (see Section VII). 

V. RELATED WORKS 
Developing high-quality complex software continues to be a 

significant challenge. To address the problem differently, the 
concept of incorporating simpler more reliable safety systems 
has arisen over the years and shows promise. However, as 
discussed below, current safety systems are limited. Some are 
implemented with limited assurance, particularly against 
malicious actors. Very few protect the mission that the vehicle 
needs to perform. 

Xiao, Li, and Zhang [10] developed a rule-based safety 
kernel for unmanned systems. However, the safety kernel is a 
user-level process implemented on a main control processor that 
contains all the other application software and connects via Wi-
Fi to an external PC. Malicious software introduced into this 
processor presumably could circumvent the safety functions. 

Safeguard [3] is a totally independent onboard UAV 
geofencing system (including independent sensors) with two 
discrete outputs – a warning that a geofence violation is 
imminent, and a kill signal if the warning does not result in 
corrective action. Safeguard only protects against damage by the 
vehicle, not damage to the vehicle, which is understandable 
because Safeguard was built under the assumption that hull loss 
is acceptable for small inexpensive UAVs. 

ICAROUS [2] augments Safeguard’s geofencing by adding 
detect and avoid capabilities against fixed obstacles and other 
vehicles, as well as the ability to compute a conflict-free “return 
to mission” path. ICAROUS is being integrated with 
Safe2Ditch [5], a computer vision-based landing site selection 
system, which should reduce risk to the UAV. However, in the 
event of a geofence violation, Safeguard still takes drastic 
action. 
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VI. PROPOSAL 
Mission assurance for autonomous undersea vehicles (MA-

AUV) proposes to extend what the above related works have 
done in the following ways: 

• Protect passengers onboard an AUV. 

• Protect vessels in the AUV’s area of operation, along 
with the fixed obstacles prior works address. 

• Complete the mission, or part of it. 

MA-AUV focuses on replicating as much mission essential 
functionality as possible in less-complicated safety systems that 
are realizable with high-quality high-assurance software. MA-
AUV trades reduced autonomous functionality for predictable 
responses to on-mission events that lead to deviations, and 
completion of the mission, or part of it, despite these deviations. 

Some related works [10] address assurance of system 
functionality minimally or not at all. Others provide higher 
assurance of the system, but limited focus on assured mission 
success. Safeguard [3] in its current form kills the UAV motors 
during a safety violation, ending the mission, and possibly 
damaging the vehicle. The modified Safeguard-like system 
proposed as a starting point below could safely stop and surface 
an AUV, which minimizes the risks of harm to passengers and 
vehicle damage, but still ends the mission outright and probably 
requires passenger rescue by some other vessel. 

ICAROUS [2] improves mission assurance somewhat, but 
its ultimate recourse at present is still Safeguard. When 
Safe2Ditch [5] is incorporated the vehicle will be safer, but 
ICAROUS cannot take over the mission if other onboard 
processors become erratic or unresponsive. The iterative set of 
solutions below strive to do that. 

A. Resilience Layer 
MA-AUV proposes to place a resilience layer (RL) between 

a potentially faulty or compromised (collectively termed, 
“malfunctioning”) AE and the sensors/actuators (see Fig. 2). 
The RL seeks to limit the effects of any potentially dangerous 
actions commanded by the AE via the simplest implementation 
and highest software assurance possible. In addition, as the 
research progresses, the RL’s goal is to maximize protection of 
the mission (or a subset of it), as well as the vehicle, its 
occupants and bystanders. 

 

 
Fig. 2. Resilience layer between autonomy engine and physical components. 

The proposed implementation has the RL fed by the same 
AUV sensors that feed the AE. If the need arises, however, 
adding independent sensors would be straightforward. 

The RL can generate commands to the AUV’s motors and 
other actuators. Under normal conditions, the RL allows the 
AE’s commands to pass to the actuators. If the AE is exhibiting 
erratic or potentially dangerous behavior, however, the RL can 
disable the AE interfaces and send its own commands. These 
commands could be modifications of what the AE sent, or 
completely different ones, e.g., if a sharp turn in the opposite 
direction is required to avoid an obstacle. 

The RL functionality described in Section F is based on the 
five functions of the NIST Cybersecurity Framework: Identify, 
Protect, Detect, Respond, and Recover (IPDRR) [7]. Only the 
Recover functions are described in detail in this paper. 

B. Research Process 
MA-AUV is developing a simulated testbed and AUVs 

complete with RLs. RL development is iterative, with each 
iteration more capable than the prior one in improving mission 
assurance. Testing and scoring of each RL iteration is conducted 
in a variety of manually configured and randomly generated test 
environments (See Section G). 

Our RL development provides assurance beyond just testing 
via static source code analysis (SSCA) and formal verification 
(FV). SSCA reduces errors and vulnerabilities in code, but does 
not guarantee that the code implements the intended 
functionality correctly. This is the purpose of FV. None of the 
RL software is expected to be too complex for SSCA, but later 
iterations may be for FV. In that case, FV constraints could be 
relaxed regarding residual errors or unproven functions left in 
the code. Alternatively, simplifications could be made to 
advanced-iteration RL software to make successful FV possible, 
while still retaining functionality that is beyond simpler 
iterations. These two approaches will yield either fully 
functional but less assured RL software, or high-assurance 
software with limited functionality. Either way, they will inform 
the state of the art for high assurance in production software 
development. 

C. Testbed Functionality 
MA-AUV implements a simulated AUV testbed where test 

environments can be configured and test events executed against 
an AUV test article. The simulated testbed is implemented with 
the Gazebo robot simulation environment [9] and its Unmanned 
Underwater Vehicle Simulator plugins [4]. Each test 
environment has seafloor bathymetry, currents, POIs, AUV 
piers, surface vessels and other submersibles. See Section E for 
how each element is represented in a test environment. 

D. Autonomous Undersea Vehicle Mission Functionality 
The following tour (i.e., mission) functions are implemented 

in the AUV AE (and eventually RL), and tested in the simulated 
testbed. Section F describes how the RL monitors the AE and 
performs Recover functions when safety is at risk. 

A tour starts with the AUV generating a departure tour plan, 
which describes the tour legs to be traversed from the pier to the 
first POI, between the POIs, and returning to the pier. Estimated 
times of arrival (ETAs) at the POIs and the return to the pier are 
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also in the tour plan. Once activated, the departure tour plan 
becomes the active tour plan and the AUV executes the tour. 

Throughout the tour, which is conducted submerged, the 
AUV uses acoustic range finding and sonar to maintain 
separation from fixed obstacles and other vessels. If a deviation 
is required to maintain separation, the AUV determines whether 
the active tour plan is still achievable, i.e., the next POI can be 
reached by the ETA. If the active tour plan is no longer 
achievable, the AUV generates an enroute tour plan based on its 
current position and the remaining unvisited POIs. 

The enroute tour plan can re-order or eliminate POI visits. If 
no modified tour can be completed within the maximum tour-
time limit, even after all remaining POI visits are eliminated, the 
only valid enroute tour plan is to return the AUV directly to a 
pier. No further POI visits are permitted. 

As with the departure tour plan, once activated the enroute 
tour plan becomes the active tour plan and the AUV begins 
executing it. This cycle of deviating, determining achievability 
and (if necessary) generating/activating additional enroute tour 
plans continues until all POIs, if any, on the latest active tour 
plan are reached and the AUV has returned to the pier. At that 
point, the tour is ended and scored (see Section G). If there is a 
safety violation that results in the invocation of Recover 
functions, the tour may end before a pier is reached. Scoring still 
occurs in that case. 

E. Separation 
The RL bases its safety-related decisions on maintaining 

separation between the AUV, fixed obstacles, and other vessels. 
The use of separation in MA-AUV is very similar to its use in 
the air-traffic control system [1], where it is intended to keep 
aircraft far enough apart such that unexpected maneuvers or loss 
of situational awareness by one aircraft doesn’t immediately 
endanger other aircraft and gives everyone time to react. 

The testbed implements separation by giving each obstacle 
a well-defined topology. Land masses, deep water, and the sea 
floor look the same as their real-world counterparts. Fixed 
obstacles and vessels have simple topologies to reduce testbed 
complexity. Tri-axial ellipsoids represent POIs and vessels. 
Rectangles represent piers. 

Everything in the testbed has a set of three or more nested 
boundaries. The boundaries are like those used in Safeguard [3], 
and delimit where the state of the AUV’s relationship with a 
given object changes. Crossing a boundary causes state changes 
in the AUV, which in turn may precipitate actions by the AUV 
or other vessels or affect scoring. Only the AUV is affected by 
or can react to these boundaries (see Section VII). 

The various boundaries and the effects of crossing them are 
defined as follows and depicted by the examples in Fig. 3: 

• Physical Boundary: This represents the physical 
obstacle. Crossing this boundary is considered a 
collision, though it’s a bit of a misnomer for deep water. 

• Separation Boundary: This represents the minimum 
separation (distance) that must be maintained from the 
obstacle within the boundary. Crossing this boundary 
enters an obstacle’s reduced-separation zone (RSZ). 

 
Fig. 3. Example obstacle and vessel separation boundaries (not to scale). 

• Warning Boundary: This represents the range from an 
obstacle at which the RL attempts to prevent a safety 
issue. Crossing this boundary enters an obstacle’s 
warning zone (WZ). 

• Visiting Boundary: This only exists for POIs and 
represents the maximum distance that is considered 
visiting a given POI. Crossing this boundary causes the 
POI to be considered visited. 

• Docking Boundary: This only exists for AUV piers and 
represents the maximum distance that is considered 
docking at a pier. Crossing this boundary and reducing 
speed over ground to zero causes the AUV to become 
docked and ends the test event. 

F. Resilience Layer Functionality 
The RL Protect functions must grant permission to activate 

a tour plan before the AUV can start or modify a tour. Without 
an active tour plan, the RL prevents AE-issued commands from 
reaching the AUV’s motors or other actuators. 

During a tour, the RL Detect functions monitor the AUV’s 
position, depth, heading, and speed, as well as the distances to 
fixed obstacles and other vessels. These data are used to 
compare the AUV’s current situation with what is expected from 
the active tour plan. The Detect functions also determine 
whether the AUV is overdue at a POI or pier. 

Respond functions are invoked when the AUV is in danger 
of losing separation. If the AUV enters a WZ, the RL alerts the 
AE that it must take corrective action to exit the zone, but the 
RL takes no further action of its own. If the AUV enters a RSZ 
or collides with an obstacle, Recover functions are invoked. 

Recover functions are invoked when the AUV enters a state 
where the RL takes permanent control from the AE for the 
remainder of the tour. These are mostly cases where the AE has 
lost separation. The other case where Recover functions are 
invoked is if a new enroute tour plan is required and the AE has 
not taken the steps to get one activated. This is not necessarily a 
safety risk, but is at least undesirable for the passengers. 

The ideal Recover goal is to complete the tour in the AE’s 
place with no impact on tour safety or quality. MA-AUV 
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attempts to come as close to this goal as possible by iterating on 
the RL implementation. The first Recover iterations implement 
Safeguard-like [3] functionality. The RL shuts off propulsion, 
drops anchor and surfaces the AUV. This cuts the tour short (i.e., 
fails the mission), but achieves the safety goals. 

Successive Recover iterations add the ability for the RL to 
return to a pier, activate enroute tours from a pre-generated tour-
plan library, and ultimately incorporate the AE tour-planning 
functions. This final iteration replicates a great deal of the AE 
autonomy into the RL, and may eliminate the need for an AE, at 
least for tour-plan generation and execution. Replicating this 
functionality, or a limited version of it, is probably possible. The 
challenge is to provide the required assurance. 

The pre-generated tour-plan library mentioned above is the 
first step in significantly improving mission assurance. The 
library is created after the test environment is configured, before 
the first test event. Creating the pre-generated tour-plan library 
is a trusted function. The tour plans are assumed the best 
possible for the algorithms used, unaltered by malicious entities, 
and delivered in a trusted manner to the AUV. 

The tour-plan library contains a small number of departure 
tour plans, and as few as one. Multiple departure tour plans add 
variety for the tourists. In terms of MA-AUV, multiple departure 
tour plans are generated to measure the effects of the differences 
on scoring (see Section G). In addition to departure tour plans, a 
set of enroute tour plans is generated for the library. Each pre-
generated enroute tour plan addresses a specific set of initial 
conditions and provides a path for completing the given tour. 
The initial conditions for each enroute tour plan are the set of 
remaining POIs to visit and the current position of the AUV. 

The more potential initial conditions covered by pre-
generated enroute tour plans, the higher the expected score. 
However, the tour-plan count explodes as the number of POIs 
increases. While the numbers become daunting quickly, for a 
given test environment many tour plans may be similar and 
combinable. Also, in some (perhaps many) cases the visit order 
may not matter. 

The tour-plan library must factor in the possible current 
position of the AUV, which is anywhere, but many positions are 
probably alike. For example, all positions within some radius 
around a given point might have the same optimal tour plan to 
join. Adding feeder legs from such points to join existing tour 
legs gives the AUV more options to safely navigate from a post-
deviation position to a valid tour plan path. 

Tour-plan library size is dependent on test environment 
geography, POI and pier placement. And, there may be 
commonalities that can be applied generally, e.g., an algorithm 
for reducing tour permutations, or the number of feeder legs and 
how to place them, which can lead to manageably sized libraries. 
MA-AUV will explore such possibilities. At worst, the approach 
shows promise for small numbers of POIs. 

G. Testing and Scoring 
MA-AUV’s success will be measured by running test events 

in simulated test environments representing the scenario 
described in Section III. Multiple test environments will be 
created, both manually to test the RL’s ability to assure the 

mission in specific situations, and randomly to test the RL across 
a broad range of situations and uncover any deficiencies caused 
by those not foreseen in the manually configured environments. 

After each test event, a tour score based on the departure tour 
plan requirements defined in Section D is computed to represent 
how well the AUV did on the tour. The tour score represents the 
tourists’ satisfaction and has the following properties: 

• Visiting all the POIs within the tour-time limits with no 
loss of separation (LOS) yields a perfect score of 100. 

• A collision yields a score of 0, as does passengers 
requiring rescue or the AUV being towed back to a pier. 

• Given no LOS and the tour runs within the time limits, 
the score is based on how many POIs were visited. 

While tour satisfaction is an important metric, MA-AUV’s 
focus is on improving mission assurance. The question, 
therefore, is not just how good the tour was, but how well the 
RL did in limiting any negative impacts to the tour of a 
malfunctioning AE. To determine this answer, the tour score for 
each test event is compared to the best tour score possible for 
the given environment, assuming a properly functioning AE, 
and factoring in runtime variations in currents and other vessels 
encountered. This reduces the effects on the tour score of 
variables the RL cannot control. For example, if on a given tour 
the AUV encounters so many other vessels that very few POIs 
are visited, the RL should not be penalized. 

To compute the best tour score, the same departure tour plan 
used in the test event is executed, minus any variations in 
currents or encounters with other vessels. This establishes an 
initial best tour time, TB, along with a POI visit coverage list that 
includes all the POIs. 

For each deviation in the original tour, a mini-simulation is 
executed with the same initial conditions as when the deviation 
started. A fully functional AE performs the deviation until the 
obstacle has been avoided. The time to perform the deviation is 
added to TB and any loss of separation is captured. From the new 
AUV position, achievability is computed and an enroute tour 
plan generated, if necessary, using only the eligible unvisited 
POIs. Any POIs not visited on this enroute tour plan are 
removed from the visit coverage list and are ineligible for 
inclusion in enroute tour plans required in later deviations. 

The formula used to compute the actual tour score is also 
used to compute the best one, substituting the best tour time and 
LOS values. The actual tour score is divided by the best one and 
the RL score is the quotient, ranging from 0 to 100 (after 
multiplication by 100 and application of a floor function). 

The best tour score has limited realism, because it implicitly 
assumes the way a test event played out and the best way it could 
have played out encountered the same deviations. It does not 
consider fully, for example, that how the AUV reacts to a 
deviation depends on how it reacted to previous ones. In fact, if 
the AUV had reacted differently to a previous deviation, a 
subsequent deviation may not even have occurred. While 
limited, the best tour score provides a means to normalize RL 
performance against specific test event challenges. The need to 
improve the best tour score algorithm is noted in Section VII. 
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H. Anticipated Results 
Testbed and AUV development have just started, limiting 

any concrete results. It is expected, however, that early RL 
iterations will do little for mission success but will greatly 
improve passenger safety. The simplest Recover function 
requires rescuing passengers with another vessel, or towing the 
AUV to a pier. Still, these are improvements over, e.g., the AE 
piloting the AUV into an obstacle or deep water. 

The Recover functions that return the AUV to a pier will 
make partially successful tours possible, as long as one or more 
POIs are visited before the Recover function is invoked. Pre-
generated tour-plan libraries will enable the RL to execute 
partial and possibly complete tours, further improving mission 
assurance. Finally, full tour-planning functionality would make 
the RL capable enough that the AE may not be required for the 
planning, execution, and deviation handing portions of a tour, 
leading to maximal mission assurance. 

The best tour-plan generation algorithms, i.e., the ones that 
lead to the best tour scores, will be ones that leave as much spare 
time as possible to allow for potential deviations. This will 
require optimally balancing the use of slower speeds and 
loitering at POIs with staying as close to the minimum tour-time 
limit as possible, which are conflicting goals. Also, the RL 
iterations that implement tour-plan libraries are expected to 
require quite a bit of experimentation to determine what enroute 
tour plans (and associated feeder legs) produce the best scores. 

VII. KNOWN LIMITATIONS  
If the tour-plan library functionality is impractical, more 

work will be required to determine how the RL can force the AE 
to generate better enroute tour plans. Without at least this 
functionality, a malfunctioning AE can submit extremely sub-
optimal, but valid, enroute tour plans. The plans could have the 
AUV meander all over the test environment and return to the 
pier without visiting any more POIs. For now, the only comfort 
is that sub-optimal planning is reflected in the scoring. 

The best tour score algorithm described in Section VI.G is 
limited, because it does not fully account for the actual places 
and times of deviations encountered in a test event. As the 
research progresses and experimental results are generated, 
improvements to this algorithm will be investigated. 

The testbed does not capture the consequences of the AUV 
forcing other vessels to collide with fixed obstacles or each 
other. For example, if separation between the AUV and another 
vessel is at risk, both vessels react to prevent LOS. The AUV is 
scored on its ability to respond, while the other vessel may 
silently lose separation or even collide with one or more other 
obstacles. The AUV causing another vessel to suffer LOS or 
collision might be considered a safety concern, though it could 
be argued that the other vessel shares the blame in getting into 
this situation. Still, future versions of the testbed should capture 
such indirect safety risks. 

The failure of sensors, motors and other components is not 
considered, nor are cases of an adversary attempting to deny or 
spoof sensors. As the base technology of the RL matures, 
additional failure and attack scenarios will be considered. 

This paper ignores cost. A real-world engineering solution 
would factor in cost along with functionality and assurance. An 
organization’s financial resources are limited, and high 
assurance may not be economical. 

VIII.CONCLUSION 
This paper explored the state of the art in autonomous 

mission assurance. It identified gaps in the literature and 
proposed a novel plan to address certain gaps. It also presented 
a plan to implement a resilience layer (RL) to address mission 
assurance for autonomous undersea vehicles (AUVs), a.k.a., 
MA-AUV. An iterative development approach was described to 
allow functionality to be developed, verified, tested, and to have 
its value assessed by objective quantitative scoring. By 
developing RL functionality iteratively, MA-AUV provides “off 
ramps” such that, if a given level of functionality with the 
required amount of assurance is unachievable, useful open-
source artifacts will still have been built during earlier iterations 
and can be provided to the autonomous vehicle community. 

Other proposed work includes improved scoring algorithms 
for better measurement of RL performance, capturing the 
second-order effects of a malfunctioning AUV on other vessels, 
and factoring in the cost of developing a high-assurance RL. 
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