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Abstract—Traditionally robots have been stand-alone systems.
In recent years, however, they have increasingly been connected
to external knowledge resources through the Internet of Things
(IoT). These robots are thus becoming part of IoT and can real-
istically allocate Internet of Robotic Things (IoRT) technologies.
IoRT can facilitate Human-Robot Interaction (HRI) at functional
(commanding and programming) and social levels, as well as a
means for remote-interaction. IoRT-HRI can cause privacy issues
for humans, in part because robots can collect data using IoT
and move in the real world, partly because robots can learn
to read human social cues and adapt or correct their behavior
accordingly. In this paper, we address the topic of privacy-
preserving for IoRT-HRI applications. The objective is to design
a data release framework called a Privacy Filter (PF) that can
prevent an adversary from private mining information from the
released data while keeping utility data. In the experiments, we
test our framework on two accessible datasets: MNIST (hand-
written digits) and UCI-HAR (activity recognition from motion).
Our experimental results on these datasets show that PF is highly
effective in removing private information from the dataset while
allowing utility data to be mined effectively.

Index Terms—Privacy-preserving, probabilistic model, IoRT,
variational mutual information, deep learning.

I. INTRODUCTION

The Internet of Things (IoT) is a network of Internet-

enabled devices that can sense, communicate, and react to

changes in their environment. There are various highly inte-

grated goals so far pushing the IoT and robotics communities;

the first focuses on supporting information services for remote

sensing, tracking, and widespread monitoring; the latter in

work production, interaction, and independent behavior. For

this reason, it is increasingly demanded that the creation

of an Internet of Robotic Things (IoRT) that combines the

outcomes of the two communities will bring significant added

value. [1] [2]. Human-Robot Interaction (HRI) is a field of

study assigned to the understanding, design, and evaluation of

automated systems for use by or with humans. HRI could then

be implemented into a robot used for assisted living in a care

home, senior houses, etc.. The arrival of IoT and, in particular,

IoRT implies that HRI should now consider the countless

complex interaction scenarios that stem from new intercon-

nected systems such as robots, sensors, and humans. In the

era of IoRT-HRI, customers are expected to be continuously

monitored by a large number of robots, and the leak of raw

robot data to an adversarial entity can significantly undermine

the privacy of customers, primarily due to the intimate nature

of the data [3].

There has been a recent rise in high profile cyber-attacks

able to shut down or corrupt the actions of IoT devices that

control equipment or interact in some other way with the

physical world. The information leaks remind those IoRT

applications, without a proper defense mechanism, they can be

subject to similar attacks; the privacy concern needs to be ade-

quately addressed before the deployment of IoRT applications.

The majority of solution techniques to secure privacy are based

on cryptography via the use of secret keys [4] [5]. However, in

IoT applications, it is challenging to design a secure, efficient,

and reliable mechanism for key exchange/distribution among

the vast network of heterogeneous devices [6].

We introduce a novel practical framework, the Privacy

Filter (PF), that removes sensitive information to improve

privacy protection without significantly decreasing utility in

IoRT-HRI applications. To address this issue, we consider a

formulation to learn an autoencoder as PF, through adversarial

training against adversaries classifiers that is simultaneously

training to succeed at recovering the private information from

disclosed data. The autoencoder, in turn, trains to prevent

these inferences, while also maintaining non-private data from

disclosing to gain some utility. Our work is based on a

proposed concept called the ”privacy funnel” [7] to represent

the trade-off between data utility and data privacy. In this

work, we introduce a simple but efficient variational approach

that relies on adversarial training. Our empirical results show

that our approach is stable and outperforms in terms of both

accuracy and mutual information estimation.

Main Contributions: The contributions of this paper are as

follows.

• We present a novel supervised learning algorithm of

privacy-preserving for privacy funnel using deep convo-

lution neural networks.

• We introduce a general framework to capture the prob-

lems of privacy-utility trade-off, which is given in terms

of mutual information. We explicitly formulate the issue

in a novel way that we feel deserves further study.

• Our approach helps in understanding and interpreting the

relation between deep networks and information theory,

and we hope it contributes to a foundation for such

knowledge.

• This paper presents the privacy-preserving issue as a

Bayesian Network (BN) model.

• We demonstrate through experimental analysis using real-

word datasets that our proposed solutions, for a privacy-

preserving, outperform in terms of accuracy.

II. RELATED WORK

The IoT is a novel paradigm in the scenario of modern

wireless telecommunications that incorporates billions of de-

vices that are owned by different organizations and people who
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are deploying and using them for their purposes. However,

it raises serious concerns over individual privacy in the new

environment of smart things [8]. Anonymization of data is

the process of removing specific information that may lead

to personal identification so that the persons/objects described

in this data remain anonymous. Numerous attempts have been

made to provide anonymization and image clarity mechanisms

for IoT applications, especially for images and videos [9].

Encryption is based on complex algorithms called ciphers. The

primary purpose of any encryption method is to keep sensitive

information secret from others by processing readable data into

a long series of random or pseudo-random ciphers. Many IoT

devices currently use the encryption protocol to protect their

dada, e.g., the health-care industry [10].

Within the private preserving framework, there exist

privacy-preserving data mining (PPDM) techniques in the

database community [11] [12] [13] whose goal is to prevent

association of any instance in a database to a person. In

addition to PPDM, many privacy-preserving machine learning

(PPML) techniques [14],[15], [16], [17], [18], [19] have been

proposed to deal with data beyond those in the traditional

databases. Most existing PPML literature focuses on ensuring

that private data can not be mined and make no premise about

the non-private data. On the other hand, our work assumes

pre-specified sets of private and non-private data. Such a

formulation not only makes the proposed data sanitization

more effective, but also provides a a flexible trade-off between

privacy and the ability to mine non-private information from

the sanitized data.

Within the private preserving framework, there exist

privacy-preserving data mining (PPDM) techniques in the

database community [11] [12]. In [20], describes many def-

initions and models for privacy-preserving computation, and

compares several different approaches. The most prominent,

however, is given by differential privacy (DP) [21]. This

guarantee requires that algorithms operating on data sets

consisting of nearly the same individuals should yield similar

results with a high probability. In this case, the dependency

of the algorithm’s output on a particular individual is low and

does not leak information. To protect against record linkage

attacks, Samarati and Sweeney [22] proposed k-anonymity.

This privacy model states that every record in the published

data table must be indistinguishable from at least k−1 other

records over the as quasi-identifiers attributes.

Several studies investigate feature selection as a tool for

obtaining privacy for sensitive data [23] [24]. The idea is not

to release the entire information in the data, but only selected

features. Unlike these studies in [25] consider the privacy of

information that can be extracted from a single feature vector

by zeroing out feature components in the approximate null

space of the linear operator. The framework proposed in [26]

transforms the data in a way that the covariance between

the data and the desired information is increased, while the

covariance between the data and confidential information is

decreased.

Privacy-preserving has been addressed from an information

theoretic viewpoint in [7] [27] [28] [29] [30] where both utility

and privacy are measured in terms of information-theoretic

quantities.

III. PRELIMINARIES

In this section, we first give some background knowledge of

the cross-entropy (CE) loss function. Then, we introduce some

concepts of information theory, that are used in the design of

our approach.

A. Cross-entropy Loss Function

Cross-entropy (CE) loss function measures the performance

of a model whose output is a probability value between 0 and

1. It is defined as, CE(ŷ,y) = Ey[−log(ŷ)] where ŷ ∈ {0,1}
is the predicted probability (a.k.a. data), and y ∈ {0,1} is

the class label (a.k.a. model). CE is also called negative log-

likelihood.

B. Information Theory

We adopt the same notation for information theoretic quan-

tities used in [31]. Specifically, the symbol H will denote

entropy, I mutual information, and KL Kullback-Leibler di-

vergence. We briefly recall those concepts that we will use in

this paper.

• The entropy of a discrete random variable X with prob-

ability mass function P is a

H(X) = EX [−logP(X)]

• Let P(X) and Q(X) be two probability distributions over

the same alphabet. The KL divergence KL(P||Q) is a

measure of their discrepancy. It can be defined as

KL(P||Q) = EP
[
log

P(X)

Q(X)

]
• The mutual information I(X ;Y ) of two random variables

X and Y is a measure of the amount of information that

one random variable contains about the other, satisfying

I(X ;Y ) ≥ 0, with equality if and only if, X and Y are

mutually independent. It is defined as the KL divergence

between the joint distribution P(X ,Y ) and the indepen-

dent distribution P(X)P(Y ) generated by the marginal

ones

I(X ;Y ) = KL(P(X ,Y )||P(X)P(Y ))

= EX ,Y
[
log

P(X ,Y )
P(X)P(Y )

]
= H(X)−H(X |Y ) = H(Y )−H(Y |X)

IV. SETTING

A. Problem Statement

Assuming data X ∈ R
n is Random Variable (RV) of con-

tinuous high-dimensional raw data, and it has private label

S = (s1,s2, ...,sm) where si represents the ith private task for

an adversary, e.g., gender or race. The private label can be can

be discrete, continuous, and/or high-dimensional vector. Let

PX̂ |X PF, which is a probabilistic privacy mapping converting
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X into X̂ ∈ R
n, a disclosed data. In a privacy preserving

data release, the goal is to find a probabilistic mapping

PX̂ |X such that releasing X̂ will not violate the privacy of

individuals. Without privacy in mind, we could think of this

as features transformation. This framework is specified by

joint probability function PX ,X̂ ,S = PX PX̂ |X PS|X̂ ,X . For privacy-

preserving we want S to be independent of X for a given X̂ .

So that the joint probability of our approach can be factorized

into PX ,X̂ ,S = PX PX̂ |X PS|X̂ , where PX is a raw data, PX̂ |X is PF

inference, and PS|X̂ is an adversary inference, which form a

Bayesian network as shown in Figure 1.

Fig. 1. An illustration of Bayesian network

Our approach depends on privacy funnel concept to obtain

privacy-preserving mapping PX̂ |X . Briefly, the privacy funnel

assumes that the original data X is transformed into X̂ before

disclosing and the log loss is used for both privacy and utility

metric. Then the problem can be modeled as finding a mapping

X → X̂ that maximizes mutual information between X and X̂
subject to a constraint that the mutual information between X̂
and private data S is smaller than a predefined threshold ε .

B. Threat Model

There are several situations where IoRT-HRI privacy-

preserving is an issue. We introduce the problem through

the practical scenario shown in Figure 1. In a remote health

monitoring system, patients are continuously monitored by

robots in their residential space, and the system object is to be

able to detect indicators or symptoms of medical conditions

based on sensor measurements. The robot collects the data

and sends them to the specialists through the Local Area

Network (LAN) or the internet. While the robot provides

information about patients’ medical conditions, it may also

convey sensitive information that they do not want to share.

For example, motion sensor data might disclose the weight

or gender of a user or enable their re-identification. Also,

these robots present a video record and chat interface with

the addition of a mobile base so the remote operator can

look around and even drive from place to place. It seems

clear that robot in a remote health monitoring system, cause

concerns about privacy [32] [33] [34]. The proposed PF can

be potentially applied to the robot’s sensors to filter out

information about private data while guaranteeing that the

disclosed data, can be used to detect medical events with high

accuracy.

V. THE PROPOSED APPROACH

Let us consider we pass X through a probabilistic mapping

PX̂ |X to reveal X̂ to the public. The purpose of this mapping

Fig. 2. Attack model: Remote health monitoring system

is to make X̂ informative about X and uninformative about S.

In other words, we want to design PF PX̂ |X to maximize the

amount of information I(X ; X̂) that the user discloses about

the public information, X , while minimizing the collateral

information about the private variable S measured by I(S; X̂).
The trade-off between disclosure and privacy in the design of

PF is represented by the following optimization

PX̂ |X = argmin
PX̂ |X∈P

I(S; X̂)

s.t. I(X , X̂)≥ R
(1)

where R is the disclosure level, and P is the set of all possible

probabilistic mapping for PF. The constraint in (1) can be

written as H(X̂)−H(X̂ |X) ≥ R. So that (1) can be rewritten

as

PX̂ |X = argmin
PX̂ |X∈P

I(S; X̂)

s.t. H(X̂ |X)≤ D
(2)

where D = H(X̂)−R. By introducing a Lagrange multiplier

β > 0, we can express (2) as the variational minimization

problem of finding

PX̂ |X = argmin
PX̂ |X∈P

(I(S; X̂)+βH(X̂ |X))
(3)

As we cannot practically search over all possible probabilistic

mapping P, we consider a transform Tθ (X) : X → X̂ , where θ is

the parameter set, is a type of Artificial Neural Network (ANN)

to approximate the required PX̂ |X and look for the optimal

parameter set through training. The network optimizer finds

the optimal parameter set θ ∗ by searching the space of all the

possible parameter set, Θ, as

θ ∗ = argmin
θ∈Θ

(I(S; X̂)+βH(X̂ |X)) (4)

First term of (4): Let’s find a variational lower bound of

mutual information between X̂ and S
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I(S; X̂) = H(S)−H(S|X̂) (5)

I(S; X̂) = H(S)+EX̂ES|X̂ [logP(S|X̂)] (6)

In practice, the mutual information term I(S; X̂) is hard

to minimize directly as it requires access to the posterior

P(S|X̂) = P(S,X̂)∫
S P(S,X̂)ds

. The marginalization over S to calculate

P(X̂) in the denominator is typically intractable because this

integral is unavailable in closed form. Fortunately, we can

obtain a lower bound of I(S; X̂) by defining a parametric

probability distribution Qφ (S|X̂) to approximate P(S|X̂). We

define Qφ (S|X̂) as an ANN having weights and biases both

are represented by φ .

I(S; X̂) = H(S)+EX̂ES|X̂

[
log

Qφ (S|X̂)P(S|X̂)

Qφ (S|X̂)

]
(7)

I(S; X̂) = H(S)+EX̂ES|X̂ [logQφ (S|X̂)]

+EX̂ES|X̂

[
log

P(S|X̂)

Qφ (S|X̂)

]
(8)

I(S; X̂) = H(S)+ES,X̂ [logQφ (S|X̂)]

+EX̂ KL[P(S|X̂)||Qφ (S|X̂)]
(9)

The KL divergence is a non-negative value that indicates how

close two probability distributions are, therefore the lower

bound to hold is

I(S; X̂)≥ H(S)+ES,X̂ [logQφ (S|X̂)] (10)

If P(S|X̂) = Qφ (S|X̂), the KL divergence is zero and the

bound is tight. So, with the constant H(S) term dropped, we

can write this lower bound alternatively in the following way

I(S; X̂) = max
φ∈Φ

ES,X̂ [logQφ (S|X̂)] (11)

The max problem in equation (11) is the objective function of

the adversary.

Second term of (4): The conditional entropy of X̂ given X
can be written as

H(X̂ |X) = EX̂ ,X [−logQθ (X̂ |X)] (12)

sub (11) and (12) in (4) we can find the multi-objective loss

function of our approach as

θ ∗ = argmin
θ∈Θ

max
φ∈Φ

ES,X̂ [logQφ (S|X̂)]

+βEX̂ ,X [−logQθ (X̂ |X)]
(13)

We obtain θ ∗ using backpropagation with stochastic gradient

descent (SGD) and the multi-objective loss function. Our

minimax formulation in (13) is similar to a Generative Ad-

versarial Network (GAN) [35] objective function. It can be

interpreted as PF wants to minimize the privacy loss, while the

adversary is trying to maximize privacy loss. This optimization

problem can be practically addressed via the training of two

neural networks: PF as an autoencoder, and an adversary

Qφ (S|Tθ (X)) as classifier. To make the notations simple, we

define PF as Tθ (X), which is equal to X̂ , and adversary

classifier Qφ (S|X̂) as Prφ (Tθ (X)). The equation (13) can be

rewritten with help of the CE loss function as

min
θ

(βCE(X ,Tθ (X))−∑m
i=1 min

φi
CE(si,Prφi(Tθ (X)))

(14)

which is the objective function of our approach. The objective

function is close to to a adversary task for small β � 1 and

for large β � 1 is close to utility task. The solution to (14)

will refer to as PF and is define as optimal filter for privacy-

utility tradeoffs in term of autoencoder as PF and adversary

classifiers. The architecture of PF framework is illustrated in

Figure 3. The algorithmic approach that we use to solve the

optimization in (14) are detailed in algorithm 1.

Fig. 3. Schematic diagram of the proposed PF framework. Training alternates
between optimizing the weights of adversaries classifiers keeping PF fixed and
vice-versa.

VI. EXPERIMENTS

To evaluate our work, we use two datasets: MNIST (hand-

written digits) dataset [36] and UCI Human Activity Recogni-

tion (UCI-HAR) dataset [37]. The networks were trained using

the Pytorch deep learning platform using the Adam optimizer

with a learning rate of 0.0001. We set β equal to 1 and 0.5
for MNIST and UCI-HARA respectively and b = 64 for both

datasets. We use k = 2 for MNIST while k = 3 for UCI-HAR.

To evaluate a trained PF, we implement utility and adversary

classifiers as ANNs that are trained separately using the

disclosed training instances. Presumably, these classifiers act

as ideal classifiers for detecting utility and private information.

Therefore, the performance of PF can be characterized by the

area under the ROC curves (AUC) resulting from these utility

and adversary classifiers. A better PF would have a larger AUC

for the Utility classifier and a smaller AUC for the adversary

classifier.

MNIST dataset The original MNIST dataset is a hand-

written digit dataset consisting of 60,000 training examples

and 10,000 testing examples. Each sample is a 28 × 28

grayscale image. We create a new synthetic dataset where

each synthetic image is a two-digit image (ranging from 70 to

265



Algorithm 1 PF training procedure for privacy funnel.

Require: Require: α , learning rate. b, the bach size. k, a

hyperparameter to be used for updating φ(1,..,m) in each

iteration. β , Lagrange multiplier.

1: Tθ (X),Prφ(1,..,m)
(Tθ (X)))← Random initialization

2: while θ has not converged do
3: for k steps do
4: Sample

{
xi,si

}b
i=1

a bach from the real data.

5:
{

x̂i
}b

i=1
← Tθ (

{
xi
}

b
i=1)

6: Perform SGD-updates for φ(1,..,m)

7: for j = 1 : m do

8: gφ j ←∇φ j

1

b

b

∑
i=1

CE(si
j,Prφ j(x̂

i))

9: φ j ←φ j - α . AdamOptimizer(φ j,gφ j)
10: end for
11: end for
12: Sample

{
xi,si

}b
i=1

a bach from the real data.

13:
{

x̂i
}b

i=1
← Tθ (

{
xi
}

b
i=1)

14: Perform SGD-updates for θ

15: gθ ←∇θ
1

b

b

∑
i=1

{
βCE(xi, x̂i))−

v

∑
j=1

CE(si
j,Prφ j(x̂

i))

}
16: θ ←θ - α . AdamOptimizer(θ ,gθ )
17: end while

89) generated by concatenating two handwritten images into

one with 56×56 pixels. We use 40,000 synthetic images for

training, and 5,000 were used for testing. A private data is

defined as the two-digit number in the synthetic image that is

greater than or equal to 80, i.e., we want to hide the first digit

so that an adversary can not guess if it is eight or seven. For the

testing phase, the utility information is defined, whether as the

two-digit number in the image is odd. In Figure 4, we visualize

outputs for various images from our learned PF. On the top are

original images and in the bottom reconstructed images, where

the first digit is private information that we want to hide. The

perturbation of the first digit is cause misclassification for an

adversary classifier and does not determine if it is a seven or

an eight. To evaluate the effectiveness of the proposed PF to

retain the data features that allow for accurate classification,

Figure 5 shows the ROC curves for the utility and adversary

classifiers trained based on the output of a trained PF. As seen,

the AUC is close to 1 for the utility classifier and near 0.5 for

the adversary classifier. That indicates PF produces sanitized

features that allow the utility data to be mined effectively. In

contrast, private data cannot be inferred, i.e., the adversary

classifier performs like a random guess.

UCI-HAR Dataset: The data was collected from 30 sub-

jects aged between 19 and 48 years old performing one of

six standard activities (Walking, Walking Upstairs, Walking

Downstairs, Sitting Standing, Laying) while wearing a waist-

mounted smartphone that recorded the movement data. The

result was a 561 element vector of features and 10929 in-

stances. We split the dataset into 70% for training and 30%

for testing. The utility part is activity recognition, and the

Fig. 4. MNIST experiment: The first four rows show the original images, and
the remaining rows visualize outputs for original images from our learned PF.

Fig. 5. MNIST experiment: ROC curves for utility and adversary classifiers.

Fig. 6. UCI-HAR experiment: ROC curves for utility and adversary classifiers.

sensitive information is the identities of the users, i.e., m = 30.

We average utility and adversary accuracy for all classifiers
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output to get one plot. As seen in Figure. 6, the ROC for

the utility classifiers is quite good, while the ROC for the

adversary classifiers is slightly better than that of a random

guess.

VII. CONCLUSION

In this paper, we have designed, implemented, and evaluated

a novel PF framework that is resilient against adversarial

attacks in IoRT-HRI applications. Correctly, PF is assessed

in the context problem encountered by users who want to

disclose some data to gain utility in real-time while preserving

their private information. Individually, we consider the setting

in which the data is continuous and high-dimensional, and

private labels can be high dimensional vector. The experi-

mental results on two datasets MNIST and UCI-HAR show

that PF framework is highly effective and achieves the highest

classification accuracy.
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