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Abstract—This paper introduces a new approach for labeling
the semantic purpose of the functions in a parser. An input file
with a known syntax tree is passed to a copy of the target parser
that has been instrumented for universal taint tracking. A novel
algorithm is used to merge that syntax tree ground truth with
the observed taint and control-flow information from the parser’s
execution, producing a mapping from types in the file format to
the set of functions most specialized in operating on that type.
The resulting mapping has applications in mutational fuzzing,
reverse engineering, differential analysis, as well as automated
grammar extraction. We demonstrate that even a single execution
of an instrumented parser with a single input file can lead to a
mapping that a human would identify as intuitively correct. We
hope that this approach will lead to both safer subsets of file
formats and safer parsers.

Index Terms—dynamic tainting, input formats, grammar syn-
thesis, lexical analysis

I. INTRODUCTION

Almost all modern programs interact with third-party data

represented in a variety of formats. For example, modern

web browsers must parse HTML, JavaScript, CSS, XML,

and a multitude of other document formats. Most document

formats such as DOCX and PDF are actually containers that

can store binary blobs of arbitrary formats and encodings.

Some document formats are neatly described with formalisms

like context-free grammars and ASN.1 encoding. However,

the majority of widely used document formats are specified

either through a reference implementation (such as older Mi-

crosoft Office binary formats), a complex and often ambiguous

human-readable specification (such as PDF 2.0), or are not

formalized at all (such as CSV). This makes it challenging

to precisely characterize the set of input documents that a

web browser (and more generally, an arbitrary program) will

process without error. In practice, this devolves to a task of

reasoning about parser implementations.

Parsers of complex file formats are difficult to implement

correctly, particularly when they are not derived from a formal

grammar, or when they are written largely by hand rather than

by tools like parser generators. This creates the possibility of

several types of implementation defects and software vulner-

abilities, such as mishandling of well-formed documents, be-

havioral differences between alternative implementations (so-

called schizophrenia [1]), accidental Turing-completeness [2],

steganographically hidden payloads, and data exfiltration.

Our goal is to identify safer subsets of file formats devoid

of misfeatures and ambiguities that lead to the aforementioned

defects. We hypothesize that the “unsafe” portions of a file

format exist in the symmetric difference of the grammars

accepted by its various parser implementations. The portions

of the file format to keep are the ones accepted and interpreted

equivalently across all implementations. For this, we need a

technique for automatically extracting the grammar specifying

the inputs accepted by a parser. This paper describes the

first step toward this goal: a novel algorithm for labeling the

semantic purpose of each functional component in a parser

implementation.
We are developing a collection of tools that expose a

parser’s processing dependencies on its input document. In

this paper:

• We extend the DataflowSanitizer [3], [4] in LLVM for

low-overhead dynamic taint tracking of individual input

bytes in C and C++ programs (and eventually any pro-

gram represented in LLVM/IR).

• We introduce a tool that maps an abstract syntax tree

generated from an instrumented, permissive parser to

the bytes of an input file. By “permissive”, we mean a

parser that is maximally resilient to malformations and

deviations from the specification.

• We present a novel matching algorithm to combine the

output of these two tools to annotate the functions within

a black-box parser with their semantic purpose.

• We present a case study on PDF and JPEG parsers.

Several areas could benefit from these tools, including auto-

mated grammar recovery, high-quality input synthesis for fuzz

testing, and augmentation of reverse engineering capabilities.

II. THE APPROACH

There are three steps to semantically labeling a parser:

1) Label the ground truth semantic hierarchy of an input

file.

2) Instrument the parser for universal taint tracking.

3) Merge and refine the output of steps 1 and 2 to produce

a labeling that maps types within the input file to the

function or set of functions within the parser that are

most specialized for processing that type.

Each step can be executed automatically. While elements of

steps 1 and 2 are novel, the primary contribution of this paper
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is the merging algorithm of step 3, as well as the novelty of

the overall approach toward grammar extraction.

The following three sections discuss the steps, respectively.

A. Labeling the Type Composition Hierarchy of an Input
Stream

Ground truth for the semantics of an input file can be

obtained manually by labeling the semantic meaning of the

bytes within the file. However, ground truth can also be

obtained automatically by modifying an existing parser or

parser-generator to retain lexical context throughout the parse.

Then the abstract syntax tree or parse tree emitted by the parser

can be annotated with the original byte offset of each node’s

token. Thus, a semantic meaning—effectively a composed

type—can be assigned to each byte in the input file.

We have released an open-source tool, PolyFile, that can

automatically and efficiently perform semantic labeling of

files [5]. PolyFile supports a variety of formats, including

notoriously hard-to-parse formats like PDF and HTML, as well

as any format specified in a Kaitai Struct grammar [6]. It is

available at https://github.com/trailofbits/polyfile.

B. Precise Taint Tracking from an Input Stream

We propose to gather ground-truth information about parsers

by performing universal taint analysis. Universal taint analysis

is a program analysis technique that tracks each input byte

throughout the execution of a program. Each byte is assigned

a unique identifier known as a taint label. As these tainted

bytes are processed, new labels are created that denote the

combination of two pre-existing labels in a hierarchical struc-

ture. This hierarchical structure represents the provenance of

the bytes and, more abstractly, can be thought of as a forest

of unions between related types. This structure provides the

capability to reason about how different combinations of bytes

influence each other throughout a program’s execution, and

should theoretically embed a notion of the grammar accepted

by the parser.

There are challenges when performing universal taint anal-

ysis on real-world software. When the cyclomatic complexity

of a program is large, the amount of new taint labels generated

from even a small input is enormous. As an example, many

document formats such as PDF use compression to keep

document sizes small. When PDF parsers decompress the data,

not only do we need to track the original bytes, but we need to

create a new taint label for every combination of bytes and the

newly decompressed data. This phenomenon is known as taint
explosion, which generally occurs when a function performs

a large number of combinatorial operations on input data.

Another challenge with universal taint analysis is implicit

control flow. There are scenarios in which an input byte will be

used in a comparison, resulting in a new operation on another

variable. Technically, the tracked byte never directly touches

the new variable, but the byte does influence the variable’s

value. In such a case, we choose to create new labels only

when two existing labels are directly operated on. That is,

we intentionally ignore some control flow, resulting in what

char b u f f [ 3 ] ;
. . .
i n t num bytes = r e a d ( fd , bu f f , s i z e o f ( b u f f ) ) ;
i f ( s t r cmp ( bu f f , ”PNG” ) == 0) {

/ / y w i l l o n l y be i s t a i n t e d when o v e r t a i n t i n g
i n t y = 1 0 ;

}

Fig. 1: An example of undertainting versus overtainting. The

variable y’s value is constant and therefore not affected by

input bytes. However, the control flow that will cause y to be

instantiated is dependent on the string buff, which is tainted

by user input. Therefore, the existence of y is predicated on

tainted data. If we consider y to be tainted, this is so-called

“overtainting”.

is referred to in other work as undertainting [7]. This is in

contrast to overtainting, where new labels are created based

on the implicit control flow; Figure 1 shows the difference

between the two. In the analysis of large codebases, overtaint-

ing quickly causes taint explosion. Furthermore, creating new

labels based on control flow might mean the data collected

will be less than ground truth.

Beyond undertainting, to help reduce taint explosion and

increase accuracy further, we have implemented an exponential

decay system for taint labels. The decay system is imple-

mented by assigning every taint label a strength. As new labels

are created from interactions with each other, the strength

of each interacting label is reduced. When a label’s strength

becomes zero, the label decays to nothing. With this approach,

taint explosion is avoided, and some completeness is sacrificed

for more accurate data. This allows us to continue tracking as

many bytes as possible even in the presence of functions with

high cyclomatic complexity.

There are several existing projects that achieve universal

taint tracking, using various methods. The best maintained

and easiest to use are AUTOGRAM [8] and TaintGrind [9].

However, the former is limited to analysis within the Java vir-

tual machine and the latter suffers from unacceptable runtime

overhead when tracking as few as several bytes at a time. For

example, we ran mutool, a utility in the muPDF project,

using TaintGrind over a corpus of medium sized PDFs, and

in every case the tool had to be halted after over twenty-

four hours of execution for operations that would normally

complete in milliseconds without instrumentation.

The LLVM DataflowSanitizer (dfsan) [3], [4] can instrument

a program at compile time to perform universal taint tracking

at runtime. However, its design severely limits the number of

input bytes it can track to only about sixty-five thousand taint

unions during execution. We developed a novel data structure

capable of exploiting the inherent sparsity in taint unions

to increase this amount to billions, enabling universal taint

tracking with marginal runtime overhead. This has resulted

in an open-source tool, PolyTracker, that can automatically

instrument software represented in the LLVM intermediate

representation with this universal taint tracking approach [5].

It is available at https://github.com/trailofbits/polytracker.
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C. Associative Labeling

The third and final step of the approach is to merge the

results to label the functions of the parser by their semantic

purpose. Recall that universal taint tracking provides a list

of offsets from input bytes used by each function during

execution. We must first map those byte offsets to elements in

the ground truth semantic labeling from Step 1 of our approach

(described above in §II-A). This mapping can be performed

efficiently in linear time using an interval tree data structure

to represent the ground-truth semantic hierarchy (lines 2–5 of

Algorithm 1).

Let T = {PDF-OBJECT, PDF-DICTIONARY, PDF-

DICTIONARY-KEY, JFIF-HEADER, . . .} be the set of seman-

tic types and let E = {e0, e1, . . .} be a sequence of semantic

elements where each ei = 〈offset, length, t ∈ T 〉 corresponds

to the ground-truth labeling of the input file. Let F be the

set of parser functions recorded by the instrumentation (from

Step 2, described above in §II-B). The interval tree, therefore,

gives a mapping, M : E → 2F , from the semantic elements

to their corresponding set of functions.

In this raw mapping, the majority of types will map to

generic utility functions used for operations like string copying

and decoding. For example, PDF object streams are typically

compressed, so every PDF object stream element in the input

file will be mapped to whichever function in the parser is re-

sponsible for LZSS decompression [10]. As another example,

the ZIP file format contains many dependently typed elements

(e.g., dynamically sized strings), which will all likely map

to generic utility functions like strncpy. Therefore, we ulti-

mately want to refine this mapping to contain only the function

or functions most specialized in operating on a specific type.

We want to avoid associating generic utility functions that

may operate on every instance of an input element of a given

type, but are not specialized for operating on that type. Note

that such a mapping is not necessarily injective; one parser

might have a single, monolithic function to operate on a set

of semantic types, while another implementation might split

those operations into several functions.

We use information entropy to measure function specializa-

tion. For each type t ∈ T , collect the set of functions that

operate on that type (Algorithm 1 lines 6–15):

Ft =
⋃
e∈E

{
M(e) if e.t = t,

∅ otherwise.

Next, calculate the probability of a specific type occurring

within a function, P : T × F → [0, 1]. If f /∈ Ft, then

P (t, f) �→ 0. Otherwise, if f ∈ Ft:

P (t ∈ T, f ∈ Ft) �→ |{e ∈ E : e.t = t ∧ f ∈M(e)}|
|{e ∈ E : f ∈M(e)}| .

This can be used to calculate the “genericism” of a function,

G : F → R, via its Shannon entropy (Algorithm 1 line 20):

G(f ∈ F ) �→ −
∑
t∈T

P (t, f) log2 P (t, f).

A value with lower entropy—or genericism—indicates a func-

tion that is specialized to process its associated type elements.

Higher entropy, on the other hand, indicates a more common

utility function, like character decoding or decompression. The

less generic a function, the more specialized it is at processing

its associated type elements.

We use G to sort the functions associated with a type,

discarding all but the smallest (most specialized) standard

deviation (Algorithm 1 lines 22 and 23). This produces a

succinct mapping, M ′ : T → 2F , from types to the functions

most specialized for operating on that type. Standard deviation

is used here as a threshold to maintain multiple functions in

the event that they are almost equally specialized; it has proven

to work well in our experiments, and further investigation into

the sensitivity of the algorithm to this threshold is planned.

A parser’s functional implementation will rarely be isomor-

phic to the type hierarchy or syntax tree of the input file

and, therefore, M ′ will rarely be a perfect bijection between

the types and functions. For example, a parser might have

multiple functions that are collectively responsible for parsing

a given type, and are therefore equally specialized in that

type. Conversely, an insufficiently modularized parser might

have a single function responsible for parsing a multitude of

types. We therefore introduce two refinements to the mapping

to address these cases.

First, we address the case of multiple functions special-

izing on a single type. If those functions are always called

sequentially in the course of execution, then we ideally only

want to identify the single function that initiates the sequence.

To accomplish this, we first calculate the dominator tree [11]

of the runtime control-flow graph (Algorithm 1 line 16). For

each type t ∈ T , we remove any functions in M ′(t) that

have an ancestor in the dominator tree that is also in M ′(t)
(Algorithm 1 line 23).

Finally, we perform the dual of this operation to address

the case in which a single function is specialized for multiple

types. Up to this point, only the frequency of types in the input

file has been utilized. We can make one final optimization

to the mapping by extracting the type composition hierarchy

of the input file. For example, a file of type PDF can be

decomposed into a hierarchy like that pictured in Figure 2.

Similar to the prior refinement, we calculate the dominator tree

of the type composition hierarchy, as in Figure 3 (Algorithm 1

lines 25 and 26). Then we remove a function from the mapping

for a type, M ′(t) \ {f}, if there exists an ancestor of t in the

type hierarchy dominator tree that also maps to f (Algorithm 1

lines 27–33). In the event that this refinement would cause the

mapping of a type to become empty, M ′(t) �→ ∅, we only

include the functions shared with the deepest ancestor in the

dominator tree with which there is overlap.

III. INITIAL RESULTS

We have applied this approach to a number of parsers

that implement the PDF file format. PolyFile is used to

semantically label the bytes of an input file, and PolyTracker

is used to instrument the parsers at compile time for taint
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Algorithm 1 Semantic labeling.

1: procedure MAP-TYPES-TO-FUNCTIONS(T, F,E,F , G)

Require: T is the set of types, F is the set of parser functions, E = {e0, e1, . . .} is the sequence of semantic elements

ei = 〈offset, length, t ∈ T 〉 of the input file, F : F → 2N maps each function to the set of byte offsets on which it

operated, and G is the runtime control-flow graph of the parser.

Ensure: M : T → 2F is the resulting mapping. /* Figure 4 */
/* record the bounds of every semantic element within the input file */

2: R← INTERVAL-TREE()
3: for all e ∈ E do
4: R.ADD([e.offset, e.offset + e.length), e)
5: end for

/* construct mappings between elements, functions, and types */
6: Let L : F → 2E be a dictionary mapping functions to sets of semantic elements, initialized s.t. ∀f ∈ F : L[f ] �→ ∅.
7: Let Y : T → 2F be a dictionary mapping types to sets of functions, initialized s.t. ∀t ∈ T : Y [t] �→ ∅.
8: for all f ∈ F do
9: for all b ∈ F(f) do /* for each byte sequence on which function f operated */

10: for all e ∈ R.INTERSECT(b) do /* for each semantic element operated on by function f */
11: L[f ]← L[f ] ∪ {e}
12: Y [e.t]← Y [e.t] ∪ {f}
13: end for
14: end for
15: end for

/* prune the mapping by selecting only the most specialized functions */
16: D ← DOMINATOR-TREE(G)
17: for all t ∈ T do
18: Let S : F → R be a dictionary mapping functions to their entropy

19: for all f ∈ Y [t] do
20: S[f ]← SHANNON-ENTROPY(e.t : e ∈ L[f ])
21: end for
22: σ ← STANDARD-DEVIATION(S[f ] : f ∈ Y [t])
23: M [t]← {f : S[f ] ≤ σ} \ {f ∈ Y [t] : f has an ancestor in D that is also in Y [t]}
24: end for

/* further prune the mapping by selecting the functions that operate on the shallowest types in the type hierarchy */
25: GT ← the type hierarchy graph constructed with one node for each t ∈ T and a directed edge from ti to tj if

∃ei, ej ∈ E : ei.t = ti ∧ ej .t = tj ∧ [ei.offset, ei.offset + ei.length) ⊃ [ej .offset, ej .offset + ej .length) /* Figure 2 */
26: DT ← DOMINATOR-TREE(GT ) /* Figure 3 */
27: for all t ∈ T do
28: for all f ∈M [t] do
29: if ∃f ′ ∈M [t] : f ′ dominates f in DT then
30: M [t]←M [t] \ f
31: end if
32: end for
33: end for
34: end procedure

tracking. The instrumentation overhead is negligible, on the

order of seconds of execution for a typical PDF and parser.

A single PDF input file alone is sufficient to produce a map-

ping from the type hierarchy to implementation functions. For

example, the mapping produced for the popular MuPDF reader

is in Figure 4. This is the result of a single 4.4 kilobyte PDF—

specifically, file 000021 from the GovDocs corpus [12]—that

was rendered through an instrumented copy of mutool. Since

the instrumented parser was compiled with symbols, it is clear

to a human from the well-named functions in MuPDF that

the mapping is intuitively correct. For example, the mapping

correctly identifies the pdf_read_start_xref function as

being responsible for parsing the PDF Start XRef type

of the PDF specification. The method is agnostic to function

names; it is based solely on the structure of the parser and the

observed data-flow and control-flow. As such, the approach

will work on any instrumented black-box binary, even in the

absence of symbols. On a 2019 MacBook Pro, automatic

279



PDF

PDF Header

PDF File Magic

PDF Version

Non-Printable Comment

PDF Body

PDF Object

PDF Object Header

Object ID

Object Version

PDF Dictionary

Key Value Pair

Key

Value
.
.
.

PDF Object Stream
.
.
.

.

.

.

Fig. 2: Composite type hierarchy (or syntax tree) of a typical

PDF file, generated from an instrumented parser (e.g., Poly-

File). Arrows denote “has-a” relationships: A PDF is com-

prised of a Header, followed by a Body, followed by a

Trailer, &c., each of which can be decomposed into sub-

objects denoted by the arrows.

PDF

PDF Trailer PDF Start XRef PDF XRefPDF ObjectPDF Comment

PDF DictionaryPDF Object VersionPDF Object ID PDF Object Content

Key Value Pair

Key Value

Fig. 3: Dominator tree of the simplified type composition

(i.e., the syntax tree of Figure 2) for a small PDF. This is

calculated in Algorithm 1 lines 25 and 26.

ground-truth labeling of the PDF using PolyFile (step 1)

required 1.2 seconds of CPU time, rendering the PDF with

instrumented MuPDF (step 2) required 0.2 seconds of CPU

time, and merging the results (step 3) required 95.2 seconds

of CPU time—in total, less than 100 seconds of CPU time.

Despite running an order of magnitude longer than the first

two steps, the merging algorithm of step 3 does in fact run

in polynomial time; the apparently large runtime is an artifact

of constant factors. To see this, observe that the interval tree

will have |E| nodes, where E is the set of semantic elements

in the input file. Let n be the number of bytes in the input

file, and observe that |E| ≤ n. Therefore, the interval tree can

be constructed in O(n log n) time. Lookup for a single byte

offset to the set of intervals in which it exists takes O(log n)
time, so mapping all functions to the set of elements on which

they operated will require worst-case O(|F |n log |E|) time,

where F is the set of all parser functions instrumented in

the program. Since the number of bytes in the input file will

almost always be greater than the number of functions in the

execution, n� |F |, the entropy calculation and dominator tree

refinements will run in linear time. Therefore, the worst-case

runtime of the merger algorithm of step 3 is O(|F |n log |E|).
As another example, Figure 5 is the mapping resulting

from parsing a single JPEG through an instrumented ver-

sion of the ubiquitous libjpeg library. While having more

defined types than PDF, it too produces an intuitive map-

ping. For example, the jpeg_make_d_derived_tbl is

correctly identified as being responsible for processing the

huffman_table type in the JPEG specification. Likewise,

the latch_quant_tables function is identified as special-

izing in operating on the quantization_table_id type

of JPEG segment components.

IV. RELATED WORK

This is not the first effort toward discovering the relationship

between a format and its parser. The work of Lin, Jiang, Xu,

and Zhang [13], [14] has demonstrated that a hybrid approach

like ours, utilizing both static and dynamic analysis, is viable.

A format analyzer, afl-analyze [15], is built on the popular

fuzzer AFL [16]. It uses AFL to individually mutate bytes

in an input stream to observe how changes to these bytes

affect control flow. When an input byte changes control flow,

afl-analyze attempts to classify the byte’s type based on how

it is used throughout the program’s execution. For example,

in an image parser, bytes that represent pixel data do not

alter control flow, and so they can be classified as “data”

bytes, whereas bytes that do change control flow might be

classified as length fields, magic numbers, headers, &c. Unlike

our work, afl-analyze appears to work best with mostly static,

binary, non-recursive, and non-dependently typed formats.

Also, afl-analyze does not take advantage of any ground-

truth knowledge about the input file; it is designed to reverse

engineer a file format given a parser, whereas we desire to

reverse engineer a parser given knowledge of the file format.

ProFuzzer is another fuzzer that attempts to learn more

about an input [17]. ProFuzzer, like afl-analyze, monitors
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the fuzzing process to see how mutations affect program

execution. Unlike afl-analyze, ProFuzzer avoids mutating data

segments and attempts to focus on discovering input fields

that are important to fuzzing. For example, if ProFuzzer’s type

probing identifies bytes that represent an input size, ProFuzzer

will mutate at the field level instead of the byte level. By

avoiding mutations on data segments, and by mutating entire

fields instead of individual bytes, ProFuzzer greatly reduces

the number of unproductive mutations. Overall, ProFuzzer’s

mutation strategy provides 60% more code coverage than afl-

analyze, and less false positives for inferred fields.

ProFuzzer [17] and related fuzzers including Gri-

moire [18], NEUZZ [19], Learn&Fuzz [20], GLADE [21],

and REINAM [22] use what they learn about the input to

make better mutations. Each fuzzer has their own internal

representation of the input, and that representation is not

exported, reusable, or human readable.

AUTOGRAM [8] uses dynamic taint tracking, a grammar

inference algorithm based on interval trees, and program in-

strumentation to take a parser implemented in Java and derive

a human-readable context-free grammar describing the inputs

accepted by the parser. In experiments, the AUTOGRAM

system is able to infer context-free grammars for simple JSON,

CSV, and INI configuration format parsers, with varying

degrees of accuracy and completeness (i.e., measures of how

much the inferred grammar overgeneralizes and overspecial-
izes). AUTOGRAM does make a few assumptions about parser

implementations, necessitating heuristics and concessions such

as ignoring data flow induced by parser lookahead. This

limits AUTOGRAM’s applicability to a certain class of parser

implementations, as well as a certain class of grammars.

Mimid [23] generalizes the approach used in AUTOGRAM,

eliminating several assumptions about parser implementation

patterns, and eliminating parser-specific heuristics. Unlike AU-

TOGRAM, which operates on Java parser implementations,

Mimid operates on Python parser implementations. Also un-

like AUTOGRAM, instead of using dataflow-based taint track-

ing, Mimid analyzes the dynamic control flow of the parser im-

plementation to infer a context-free grammar. In experiments,

Mimid has better measures of both accuracy and completeness

compared to AUTOGRAM, and supports a wider class of

parser implementations, such as PEG parsers [24].

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have introduced two research prototypes for

collecting ground truth information about file formats and their

associated parsers. We presented a new and novel algorithm for

mapping semantic hierarchies to a parser’s control-flow graph.

This work is the first step in combining a data-flow analysis

similar to AUTOGRAM with the control-flow analysis of

Mimid, and extending it by incorporating compositional type

information from labeled ground truth input. This additional

semantic context will aid automated grammar extraction in

handling traditionally challenging language features like de-

pendent types. Ultimately, we hope that this will lead to

support for more complex, non-context-free file formats like

PDF and HTML. PolyFile and PolyTracker, like Mimid, are

designed to be interoperable with other tools. Currently, we are

able to automatically generate a semantic function labeling,

and are in the process of extending this to produce a grammar

that can be consumed by other tools and algorithms.

For complex formats like PDF, each parser effectively im-

plements its own dialect of the format, e.g., due to ambiguity in

the specification. The next phase of this research will focus on

extracting grammars from multiple parsers implementing the

same file format. This will allow us to intersect the grammars

to obtain a subset of the file format that is mutually intelli-

gible to all implementations. This grammar is the canonical

grammar for the format, a minimal grammar specifying the

inputs which are accepted by all parsers in a test corpus. This

will lead to a simpler—and, we posit, safer—subset of the file

format that can be used to generate verified parsers.

Performing our semantic labeling across multiple parser

implementations of the same file format can also provide a

means for differential analysis. If we have semantic mappings

extracted from two different parsers (like the one pictured

in Figure 2), a many-to-many graph matching algorithm can

be used to map the functions of each parser to each other,

immediately identifying feature differences between the im-

plementations. For example, we would expect Adobe Acrobat

to have a set of functions specialized in operating on JavaScript

in XFA Forms that would not map to any functions in Poppler,

which does not support JavaScript. Likewise, two different

releases of the same parser could be compared to each other

to determine what features were added or removed between

the versions, and which functions were affected.

Similar to applying the method across multiple parser im-

plementations, we can also benefit from combining the output

of multiple files across a single parser. Using a single file is

limiting because the code coverage of the parser will be limited

to the features implemented in that file. For example, a JPEG

that does not include any EXIF metadata will not exercise

any of the metadata parsing functions within a JPEG parser.

Therefore, we plan to extend the approach from operating on

single files to instead operate on a corpus of files, merging the

output.

In the event that there does not exist a ground truth labeling

for the input file (e.g., if the input file format is unknown), we

will investigate treating each byte in the input file as its own

unique type. We can then exploit the forest of taint unions

produced by the instrumentation to learn the type composition

hierarchy. This can also be augmented through introspection

of how the bytes are stored in the data structures employed

by the parser implementation.

There is also opportunity for research into the algorithm’s

sensitivity to its sole parameter: the standard deviation thresh-

old (line 22 of Algorithm 1). We also plan to investigate

increasing the resolution of the program instrumentation from

the function level to basic blocks. We expect basic blocks to

produce a more nuanced mapping from semantic types to code,

and potentially address the problem of parsers implemented

with monolithic functions.
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In this paper, we have introduced a general approach for

semantically labeling the functions of a parser by combining

both static and dynamic analysis, as well as by automatically

producing ground truth from the input. This is the first step in

implementing automated grammar extraction from arbitrary,

non-context-free parsers. We demonstrated that this approach

is both computationally efficient and produces results that are

intelligible to a human. A single execution of a parser is suffi-

cient to produce a viable mapping. We hope that this algorithm

will lead to further interest in automated grammar extraction,

and ultimately produce safer file formats and parsers.
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