
Research Report: The Parsley Data Format Definition Language

Prashanth Mundkur
Linda Briesemeister
Natarajan Shankar

SRI International
Menlo Park, CA 94025

Prashant Anantharaman
Sameed Ali

Zephyr Lucas
Sean Smith

Dartmouth College
Hanover, NH 03755

Abstract—Any program that reads formatted input relies on
parsing software to check the input for validity and transform
it into a representation suitable for further processing. Many
security vulnerabilities can be attributed to poorly defined
grammars, incorrect parsing, and sloppy input validation.
In contrast to programming languages, grammars for even
common data formats such as ELF and PDF are typically
context-sensitive and heterogenous. However, as in program-
ming languages, a standard notation or language to express
these data format grammars can address poor or ambigu-
ous definitions, and the automated generation of correct-by-
construction parsers from such grammar specifications can
yield correct and type- and memory-safe data parsing routines.
We present our ongoing work on developing such a data format
description language. Parsley is a declarative data format
definition language that combines grammars and constraints
in a modular way. We show how it can be used to capture data
formats such as MAVLink, PDF and ELF. We briefly describe
the processing pipeline we are designing to generate verified
parsers from these specifications.

1. Introduction

Parsers serve as a firewall between any possibly ad-
versarial input received by a program, and the rest of the
program. Since such data can, maliciously or inadvertently,
trigger vulnerabilities in a program, the data and any oper-
ations on it need to be validated before the data is copied
or processed in any way. Quite often, programmers design
their own communication protocols and data formats and
implement ad hoc parsers for them in low-level languages
such as C and Rust. But with imprecisely specified data
formats and parsers written without adequate thought given
to malicious data, applications are susceptible to attacks via
their parsing modules. Some data definition languages have
been developed (e.g., DFDL [1], PADS [2]) to address these
issues of specification and parser implementation, but com-
mon data and document formats such as PDF and ELF [3]
contain constructs that are not easily expressed in them.

Grammars and their parsing techniques have long been
well established components of the toolbox used for spec-
ifying and implementing programming languages and their

parsers. However, the language-processing toolbox is less
developed when it comes to data, document and network
protocol formats. Unlike the grammar of a programming
language, the grammatical specifications of many data for-
mats often show context sensitivity and constrained data-
dependency (e.g. the value of the checksum field in a TCP
packet depends on the packet contents with possible zero-
padding). As a result, applications that handle document and
network data use substantially different processing pipelines
than those used for programming languages. For example,
the actions of a parser for the packets in a network protocol
can be driven by a global protocol session state. Similarly,
document formats and streaming formats can have container
structures within which content is described by independent
data formats (e.g. image data within a document). Auto-
matically generated parsers for such data formats, and the
techniques involved in the generation of such parsers, are
therefore different from those for programming languages.

We describe in §2 our current design of Parsley, an
expressive, declarative, modular, data format definition lan-
guage for data-dependent formats, that is intended to alle-
viate many of the above problems in data processing. The
language has the following design goals:

• A useful foundational set of parser primitives and
combinators,

• A capacity to capture context-sensitivity and data-
dependency via a constraint system, and

• A module system that enables nested grammars and
composes with the constraint system, and

• A formalizable static and dynamic semantics for
parsing.

The language is not intended to explicitly support as-
pects not directly related to parsing, such as specifying
protocol state machines for network protocols, or rendering
state for document formats.

A format specification in the Parsley language is pro-
cessed by the Parsley compiler, which performs seman-
tic checks to detect the presence of unsafe or ambiguous
constructions, and generates a safe verified parser. This is
described in §3. We give examples of the use of Parsley to
specify data formats in §4. We compare the Parsley approach
to earlier and related work in §5.

300

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Prashanth Mundkur. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00064

2. Language Design

We now explain how the above goals motivate our
language design choices.

• The core structure of a Parsley specification is pro-
vided by a parsing expression grammar (PEG) [4],
concretely specified in notation similar to extended
BNF (EBNF) for grammar productions. Although
context-free grammars (CFGs) also use the EBNF
notation, there are critical differences in its adapta-
tion for PEGs: (a) the choice combinator in PEGs is
ordered, as opposed to non-deterministic in CFGs,
and (b) the PEG notation includes syntactic predi-
cates that do not occur in CFGs. The choice of a
PEG core provides us our base set of primitives
and combinators. This choice is motivated by its
deterministic execution and amenability to formal-
ization [5] [6].

• Context management is provided by a fairly tradi-
tional attribute-grammar system, with a fully spec-
ified expression language for attribute computa-
tions. In Parsley, non-terminals have user-defined
attributes, while terminals have a default attribute
value of type byte or byte-string. This system pro-
vides Parsley with a mechanism to capture context-
sensitivity.

• Additional context-sensitivity is provided by a con-
straint system that guards further processing within
a non-terminal production. The constraint language
uses the attribute system to perform context-sensitive
checks, and employs primitives in the constraint
expression language to perform data-dependent pars-
ing. This constraint system is motivated by the in-
adequacy of the standard PEG constructs for data-
dependent context sensitive parsing (e.g. detecting
cyclic relationships when parsing the objects in a
PDF file.)

• Parsley includes a module system to enable the
composition of independent grammars. This is de-
signed to allow the integration of various different
packet formats into a single networking stack, and
various different image and font formats into a single
document format (such as PDF).

These choices have resulted in two sublanguages con-
stituting Parsley: an expression sublanguage and a grammar
sublanguage. The expression sublanguage used in attribute
updates and constraints is a strongly typed polymorphic
functional language supporting user-defined types and func-
tions. It includes a standard library of common types and
utility functions. The expression and data type sublanguage
is a total language by construction, that ensures that re-
cursive and iterative computations always terminate. The
grammar sublanguage contains the parsing primitives and
combinators, and the attribute system. A fragment of the
abstract syntax of Parsley is shown in Figure 1.

Paths p ::= x | p.x
Constants c ::= 0,1,. . . | ‘A’, ‘B’, . . . | . . .
Constructors C ::= Ci

Attributes l ::= li | ls
Base types ν ::= unit | uint8 | int32 | . . .
Monotypes τ ::= α | ν | (τi) | τ → τ | ∑i Ciτi

| {li : τi} | typeof(N)
Types σ ::= τ | ∀α.σ | σ → σ
Expressions e ::= p | c | Ce | (ei) | e e | e op e

| (e : τ) | e.l | case e {ρi, ei}
| let x = e in e | e ∼ C | f e

Patterns ρ ::= x | (ρi) | Cρ
Functions f ::= f := (xi : σi) → σ{e}
Statements s ::= p = e

Constraints φ ::= e
Actions a ::= {si}
Rules r ::= ε | c | scan(c) | scanR(c)

| (x =)?N{li = ei}
| φ r | r r | r/r | r∗e? |!r | a

Productions P ::= N{li : τi} := r
Format F ::= {τi, N{li : τi}, Pi}

Figure 1. Abstract syntax of the Parsley specification language

Expression sublanguage

In Figure 1, x ranges over identifiers, l over inherited li

and synthesized ls attributes, α ranges over type variables, c
over constants, and op over standard arithmetic and boolean
operators. Paths p are used to access identifiers across
modules. As discussed below, attributed non-terminals are
represented as records, and we denote record fields as well
as attributes using l. C ranges over the constructors used
for values of sum types.

The type system is a conventional polymorphic type
system with records. It is equipped with a set of standard
base types ν, type constructors like tuples (τi), functions
τ → τ , sums

∑
i Ciτi, records {li : τi} and polymorphic

type schemes ∀α.τ . The Parsley library defines standard data
types such as polymorphic lists, sets, and maps.

The expression language is also standard, with tuples
(ei), sums Ciei, function application e e, attribute or record
field selection e.l, type constraints (e : τ), and let bindings
and case expressions that bind patterns within expressions.
The e ∼ C is a boolean expression that tests if e is a
sum with the C constructor; this is a useful primitive within
grammar constraints.

Parsley supports user-defined higher-ranked polymor-
phic functions f , where the function arguments have poly-
morphic types.

Statements are the only imperative constructs, and con-
sist of assignments to (synthesized) attributes.

Grammar sublanguage

We now come to the grammatical constructions: pro-
ductions, rules, and actions. These are based on parsing

301

expression grammars (PEGs) [4], but extended with an at-
tribute system and constraints to capture context sensitivity.
A grammar production defines the parsing expression for
a non-terminal N . Each N is typed as a record, named
typeof(N), with its attributes as the record fields. Rules
r are elemental parsing expressions and are combined with
parsing combinators. Actions a are used to update the
parsing state during parsing, and consist of a sequence of
statements where synthesized attributes are assigned. The
primitive rules are ε, which successfully matches without
consuming any input, and literals c, which match if the
input has a c prefix, upon which that prefix is consumed.
The N{li = ei} rule matches if its production matches an
input prefix provided its inherited attributes li are initialized
with expressions ei evaluated within the parsing context at
that point. The x = N construct names the matched value
(of type typeof(N)), and enables access to the values
of its attributes as x.l in expressions appearing within any
subsequent constraints, actions, or attribute initializations.

These primitive rules can be combined with combina-
tors, as in PEG, but with some extensions. r r denotes the
PEG sequence operator, while r / r is the PEG ordered
choice. The !r construct is the not syntactic predicate in
PEG. r∗e? denotes the Kleene star, but with an optional
bound e that is context sensitive. If the bound e is present,
it is an integer valued expression that limits the number of
times that r is matched.

A parsing rule r can be guarded with a constraint
expression φ, written as φ r: the boolean expression φ is
evaluated before deciding to proceed parsing with rule r.
This is a Parsley extension of PEG, and could be thought of
as a contextual predicate: φ can check the current parsing
state, using the attribute values of syntactic elements in its
context. If this guard fails, parsing backtracks to the most
recent choice point, and continues with the next alternative.

Parsley is equipped with a module system that enables
splitting a specification into multiple files, and allows data
specifications to be re-used in different contexts. Paths
support the module system (not shown) by enabling cross-
module use of types and syntax elements.

Extensions under development

The Parsley language is a work-in-progress. It is being
adapted as we attempt to use it to capture more data formats,
in order to gauge the extent to which existing data formats
can be specified in our current formalism or extensions to
it. We also intend to use it to define the data formats needed
for our other research projects.

We are also considering extending Parsley with primi-
tives to capture manipulations of the current parsing offset
by actions such as seeking. Such offset manipulation could
either derive declaratively from the format specification, or
procedurally under the control of the application driving
the parser. A design challenge is to ensure both types of
manipulations are supported and compose well. In addition,
this is one of the most security-critical aspects of parsing:

ensuring that offsets derived from untrusted data are used
in valid ways.

Declarative offset manipulation is required for capturing
formats such as PDF, where parsing a PDF file involves
seeking to the end of the file (or a specific marker) and
searching backwards for a syntactic element. This motivated
the scan(c) and scanR(c) constructs, which scan forwards
or backwards for a literal c, and when successful adjust the
current parsing offset to the match point. The scans are not
explicitly bounded1, though it should be straightforward to
introduce bounded scans if required.

3. The Parsley Processing Pipeline

The typical use of a Parsley specification is via the work-
flow illustrated in Figure 2. The Parsley compiler performs
type and semantic checks on a given Parsley specification.
The type checks correspond to standard polymorphic type
checking [7] [8], with additional typing rules to handle
grammar productions. In addition, attribute usage checks are
performed, such as for L-attributedness (see below).

The compiler generates prover definitions that are used
to perform safety checks: for example, data-dependent val-
ues are used as indices into structures such as arrays pro-
vided they are suitably constrained. We are developing the
safety properties that can be used by a theorem prover (PVS
in our case) to verify that the Parsley specification is a ‘safe’
grammar. The compiler also flags the use of constructs such
as scan(c), which can create the potential for polyglot
formats [9].

We are also defining the parsing automaton that will
be generated by the compiler. This automaton needs to
interleave constraint and attribute computation with parsing
actions that construct the internal data representation and
manipulate the parsing buffer. When used for efficiently
parsing data, especially network protocols, attribute compu-
tations have to be done on partially constructed parse trees
(unlike the typical use of attribute grammars in program-
ming languages, where the entire parse tree of a program
can be available before processing). In our experience of
using Parsley to define data formats, the computations in
constraints and attribute updates require access to a pars-
ing context (via inherited attributes) that is best handled
by L-attributed grammars, which are compatible with the
top-down processing of the “core” PEG specification. L-
attributed grammars are attribute grammars where attributes
in the nodes in the parse tree to the left of the current
node have been assigned their final values. This eases the
implementation of PEG backtracking, as individual attribute
values do not need to be unwound. The generated automaton
is compiled into a library that can be linked into application
code. We plan to use a Rust code generator to ensure that
the library is type and memory safe, and can be linked into
C applications, and is compatible with other languages using
the appropriate wrappers.

1. They are implicitly bounded by the runtime system which knows the
size of the parsing buffer.

302

format.ply
in Parsley DDL

Parsley CompilerPVS ProverSafety

format-parser.so
generated parser

format.info
generated properties

app.exe
Application

code

Untrusted
data

Parsed Representation

Independent
Verifier

Validity

Figure 2. Parsley in context.

The data representation constructed by the automaton
contains a proof of parse. We are building on the approach
used in [5], which formalized PEG parsing and the genera-
tion of PEG parsers. These parsers annotate the constructed
data representation with grammar metadata that can be used
to verify that the representation is a valid parse of the
given input data for the given Parsley specification. This
verification is done in a generic (i.e. grammar-independent)
verifier, which is simple enough to include in the application
itself. In addition to ensuring parser correctness, the verifier
provides tamper-resistance for the parse tree, e.g. across
serialize-deserialize operations.

Unresolved issues

The API between the application and the parsing library
will dictate crucial implementation choices, and hence im-
pact the code generation pipeline. This API might differ
across applications parsing the same format, and these types
of API often differ across different types of formats (e.g.
streaming network formats versus document formats).

A crucial requirement is to ensure that the computa-
tion performed by the parsing automaton is bounded and
well-characterized; e.g. arbitrary input data cannot cause
unrestricted computation within the parsing library. We are
attempting to provide formal guarantees that this will be the
case.

Our language definition and processing infrastructure
has focused more on the parsing problem, and less on the
encoding or serialization aspect. We have left this for later
investigation.

4. Case Studies with Parsley

We have found the language design above has allowed
the succinct specification of several data formats as well as
packet formats in a few network protocols. We show below

snippets of the packet formats in the MAVLinknetwork
protocol and fragments of the ELF and PDF data formats.

4.1. MAVLink

The Micro Air Vehicle link (MAVLink) protocol is an
open source standard for unmanned aerial vehicles. The
packet payload lengths can span from 0 bytes to 255 bytes
that can use one of 18 different message types and one of
the 91 MAVLink commands [10]. As shown in Figure 3, the
packets include two integrity mechanisms, with a third op-
tional mechanism. First, the packets include a length field—
that shows the total length of the rest of the packet. Second,
the packets include a 2-byte checksum after the payload.
The packet has an optional trailing 13-byte signature.

Listing 1 shows the Parsley syntax corresponding to
the format in Figure 3. The mavLinkPkt non-terminal is
represented by a record with typed synthesized attributes
corresponding to the packet fields of interest. The production
for this non-terminal first checks for the literal magic bytes
\xfd identifying a MAVLink packet. It then extracts the
payload length into the pll local variable using the definition
Int8 of an 8-bit integer interpretation of a byte from the
Parsley standard library. The following scalar fields are
similarly extracted into variables, which are used in the
terminating action to assign the values of the corresponding
synthesized attributes. The extraction of the payload bytes
into pld uses a byte array specified by the bounded Kleene
star combinator, whose data-dependent length is computed
from pll using a standard library function $int of byte. After
the checksum field crc is extracted, the following constraint
uses a user-defined function compute checksum to ensure
that the extracted checksum is valid. A similar sequence
of parsing and constraint rules is used to verify the packet
signature. Parsley allows this sequence to be wrapped in the
optional construct ?, which returns a value in the option
type defined in the standard library.

303

PayloadSequence
numberLengthFixed

start

0-255 bytes

System
ID

Comp.
ID

Message
ID Checksum

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 2 bytes

Comp.
Flags

Incomp.
Flags

1 byte 1 byte

Signature

13 bytes

Figure 3. MAVLink packet structure.

1 type option (’a) = Some of ’a | None
2

3 mavLinkPkt mvl {
4 { magic : u8,
5 payloadLength : u8,
6 incompatibilityFlags : u8,
7 compatibilityFlags : u8,
8 packetSequenceNumber : u8,
9 systemID : u8,

10 componentID : u8,
11 messageID : u32,
12 payload : [u8],
13 crc : u16,
14 sig : option<[u8]> }
15 :=
16 "\xfd"
17 pll = Int8 icf = Int8
18 cf = Int8 ps = Int8
19 sid = Int8 cid = Int8
20 mid = Int32
21

22 pld = [Byte * $int_of_byte(pll)]
23

24 crc = Int16
25 [crc == compute_checksum(pld)]
26

27 sig = ([Int8 * 13]
28 [verify_sig(sig)])?
29

30 { mvl.magic = "\xfd";
31 mvl.payloadLength = pll;
32 ...
33 mvl.payload = pld;
34 mvl.crc = crc;
35 mvl.sig = sig }

Listing 1. MAVLink Syntax in Parsley.

This shows how Parsley interleaves computation and
parsing using the the expression and grammar sublanguages
to declaratively define the MAVLink packet format.

4.2. ELF

The Executable Linkable Format (ELF) is used by
GNU/Linux systems to describe executable binaries and
shared libraries. It is designed to be generic with respect
to machine architectures. As a result, the widths and endi-
anness of the fields of various ELF structures in the ELF
file are determined only after some initial parsing of the
ELF header. In particular, the ELF file header contains fields
whose widths are data-dependent. We illustrate how this can
be captured in a Parsley format specification.

The ELF header starts with 16 byte identification block
called an ident. The ident block contains the architec-
ture independent fields which control how the respect of the

1 type endianness = Big | Little;
2 type wordsize = ELF32 | ELF64;
3

4 type elf_ctxt = {
5 endian : endian,
6 wordsize : wordsize
7 }
8

9 elfIdent eident {
10 magic : [u8],
11 version : u8,
12 osabi : u8,
13 abiversion : u8,
14 ctxt : elf_ctxt
15 } :=
16 "\x7FELF"
17 c = Int8 d = Int8
18 v = Int8 o = Int8
19 a = Int8 p = [Int8 * 7]
20

21 [c == 1 || c == 2]
22 [d == 1 || d == 2]
23 [v == 1]
24 [o >= 0x00 && o <= 0x11]
25

26 { eident.magic = "\x7FELF";
27 eident.class = c;
28 eident.ctxt =
29 { wordsize = (case c of
30 | 1 -> ELF32
31 | 2 -> ELF64),
32 endian = (case d of
33 | 1 -> Little
34 | 2 -> Big) };
35 eident.version = v;
36 eident.osabi = o;
37 eident.abiversion = a;
38 }

Listing 2. ELF ident parser

header is parsed. The ident block is specified in listing 2,
and starts with the \x7FELF magic bytes, followed by
a byte each for wordsize class, data endianness, an ELF
format version identifier, an OSABI type, and an OSABI
version. The block terminates with padding bytes. Since the
endianness and wordsize control subsequent parsing, their
values are stored in the ctxt attribute as a record of a user-
defined type elf ctxt. The parsing of the ident block is
fairly straightforward, with some constraints to ensure that
the field values conform to the standard.

The common architecture-dependent field types are
specified in listing 3. ELFInteger16 and ELFInteger32 de-
fine fields that are always 2 bytes or 4 bytes in width,
respectively, but differ in endianness. ELFWord similarly
defines a field that can differ in both width and endianness.

304

1 ELFInteger16 i (ctxt : elf_ctxt)
2 { val : u16 }
3 :=
4 [i.ctxt.endianness == Little]
5 j=Int16LE { i.val = j }
6 / [i.ctxt.endianness == Big]
7 j=Int16BE { i.val = j }
8

9 ELFInteger32 i (ctxt : elf_ctxt)
10 { val : u32 }
11 :=
12 [i.ctxt.endianness == Little]
13 j=Int32LE { i.val = j }
14 / [i.ctxt.endiannness == Big]
15 j=Int32BE { i.val = j }
16

17 ELFWord w (ctxt : elf_ctxt)
18 { val : int }
19 :=
20 [w.ctxt.endianness == Little &&
21 w.ctxt.wordsize == ELF32]
22 i=Int32LE { w.val = i }
23 / [w.ctxt.endianness == Little &&
24 w.ctxt.wordsize == ELF64]
25 i=Int64LE { w.val = i }
26 / [w.ctxt.endianness == Big &&
27 w.ctxt.wordsize == ELF32]
28 i=Int32BE { w.val = i }
29 / [w.ctxt.endianness == Big &&
30 w.ctxt.wordsize == ELF64]
31 i=Int64BE { w.val = i }

Listing 3. Parsley specification of ELF integers.

Ordered choice and constraints are employed in their def-
initions in an idiom similar to a switch statement, where
the constraints use inherited attributes to perform context-
sensitive parsing decisions. For instance, ELFInteger16 is
defined with an inherited attribute ctxt that contains the
relevant architecture context. It uses the context endianness
to first check whether a little-endian integer parse of 2 bytes
is appropriate; if not, it proceeds with a big-endian parse.
The parsed integer value is stored in the val synthesized
attribute. Int16LE and Int16BE are parsers defined in the
standard library. ELFInteger32 and ELFWord are defined
similarly.

These definitions now allow us to parse the architecture
dependent fields in the rest of the ELF file header, as shown
in listing 4. The elfHeader is provided the architecture
context in the ctxt inherited attribute, which it relays to the
architecture specific parsers of each field. The new syntax
in the listing shows how the inherited attributes of a non-
terminal are initialized in a production.

4.3. PDF

We have specified the core PDF object syntax in Parsley.
The snippet in Listing 5 illustrates the use of attributes and
constraints in specifying the syntax of indirect objects in
PDF.2

2. For brevity, we have elided the specification of whitespace handling.

1 elfHeader h (ctxt : elf_ctxt) {
2 typ : u16,
3 machine : u16,
4 version : u32,
5 entry : int,
6 phoff : int,
7 shoff : int,
8 flags : u32,
9 ehsize : u16,

10 phentsize : u16,
11 phnum : u16,
12 shentsize : u16,
13 shnum : u16,
14 shstrindx : u16
15 }
16 :=
17 ty = ELFInteger16 <ctxt = h.ctxt>
18 mc = ELFInteger16 <ctxt = h.ctxt>
19 vr = ELFInteger32 <ctxt = h.ctxt>
20 ent = ELFWord <ctxt = h.ctxt>
21 pho = ELFWord <ctxt = h.ctxt>
22 sho = ELFWord <ctxt = h.ctxt>
23 flg = ELFInteger32 <ctxt = h.ctxt>
24 esz = ELFInteger16 <ctxt = h.ctxt>
25 phsz = ELFInteger16 <ctxt = h.ctxt>
26 phnm = ELFInteger16 <ctxt = h.ctxt>
27 shsz = ELFInteger16 <ctxt = h.ctxt>
28 shnm = ELFInteger16 <ctxt = h.ctxt>
29 shix = ELFInteger16 <ctxt = h.ctxt>
30

31 [ty.val >=0 && ty.val <= 4
32 || ty.val == 0xFE00
33 || ty.val == 0xFEFF
34 || typ.val == 0xFF00
35 || typ.val == 0xFFFF]
36 [mc.val >= 0 && mc.val <= 100]
37 [vr.val == 0 || vr.val == 1]
38 [ehsz.val >=
39 (case h.ctxt.wordsize of
40 | ELF32 -> 52
41 | ELF64 -> 64)]
42 { h.typ = ty.val
43 h.machine = mc.val
44 h.version = vr.val
45 ...
46 h.shnum = shnm.val
47 h.shstrindx = shix.val
48 }

Listing 4. The ELF Header parser

An indirect object, specified as IndirectObj, has one
inherited attribute ctxt and four synthesized attributes, id,
gen, val, and updated context in ctxt updt. ctxt contains a
context of user-defined type obj ctxt that maps pairs of inte-
gers representing object identifiers to the type representing
the PDFObj non-terminal, named as i for convenience. val
contains the PDF object defined by the indirect object, and
is of type typeof(PDFObj), which is the type representing
the non-terminal PDFObj.

The production rule for IndirectObj first parses its iden-
tifier into a local variable n, using a parser IntObj for PDF
integer objects defined elsewhere. The definition of IntObj
is trivial and is omitted, but has an attribute val containing
its numerical value. The subsequent constraint expression
ensures that the parsed numerical value is positive, as man-

305

1 type obj_ctxt =
2 map<(int, int), typeof(PDFObj)>
3

4 IndirectObj i (ctxt: obj_ctxt)
5 { id: int, gen: int,
6 val: typeof(PDFObj),
7 ctxt_updt: obj_ctxt }
8 :=
9 n=IntObj [n.val >= 0]

10 g=IntObj [g.val >= 0 &&
11 !i.ctxt.contains((n.val, g.val))]
12 ’obj’ o=PDFObj<ctxt=i.ctxt> ’endobj’
13 { i.id := n.val;
14 i.gen := g.val;
15 i.val := o;
16 i.ctxt_updt[(n.val, g.val)] := i
17 }
18

19 PDFObj o (ctxt : obj_ctxt) {} :=
20 DictObj <ctxt = o.ctxt>
21 / ArrayObj <ctxt = o.ctxt>
22 / IndirectObj <ctxt = o.ctxt>
23 / ...

Listing 5. The PDF indirect object in Parsley.

dated by the PDF specification. If the constraint is not sat-
isfied, the parse of the production fails. Similarly, g expects
another positive integer object, representing the generation
of the indirect object. The PDF specification mandates that
an indirect object is uniquely identified by its identifier and
generation. The constraint following g ensures that this pair
has not been defined yet in the context, using the contains
method of the map datatype in the Parsley standard library.
Once the literal obj is parsed, the rule expects to parse a
PDFObj (whose inherited ctxt is initialized), followed by
the literal endobj. On success, the terminating action sets
the values of the synthesized attributes of i, and collects
the updates to the context in ctxt updt, which include the
identity of the newly parsed indirect object.

The definition of a general PDFObj is specified as an
ordered choice among the various types of PDF objects.

5. Related Work

We build on the core PEG ideas developed in [4], and
the attribute grammar approach initiated in [11]. The Parsley
contextual predicates, or constraints, are very similar to the
semantic predicates discussed in [12] and implemented in
ANTLR, although their context is LL(k) grammars. L-
attributed grammars [13] were motivated by their support
for one-pass translation; in the Parsley context, they are
also compatible with the backtracking requirements of PEG
combinators. We are considering the approach to modularity
in [14] in our design of the Parsley module system.

In complex formats such as PDF, parsing involves the
construction of a representation of the input data, along
with the use and enforcement of non-local constraints on
the parsed objects; e.g., the page tree object in a document
should not have cycles. The data description languages
considered below do not address such data constraints.

Nail [15] implements a description format that sup-
ports dependent grammars and dependent fields. However,
it does not support a rich constraint system, which requires
a constraint expression language. Nail takes an interesting
approach to nested formats using its notions of streams
and transformations; we intend to address format nesting
using our attribute and module system to perform the re-
quired parameter passing and handling of shared state. The
Data Format Description Language (DFDL [1], pronounced
as Daffodil), is an XML-based system for data descrip-
tion schemas, with limited support for user-specifiable con-
straints.

PADS [16] is an expressive strongly-typed data de-
scription language with support for data-dependent parsing
and user-specified data constraints. However, we consider
inherited attributes to provide a more convenient and mod-
ular access to distant parsing context than the let-binding
constructs in PADS. The Yakker system [17] allows user-
defined attributes to contain context to be used for later
parsing, or attribute-directed parsing. But they do not in-
clude this attribute system in their abstract syntax, leaving
it unclear if all such attributes are inherited, with no upward
communication via synthesized attributes.

Narcissus [18] is a parser combinator framework for
specifying encoders and decoders embedded in Coq that
is able to handle a wide range of network packet formats,
including support for typical constructs such as checksums
and constrained packet fields. It ensures that the encoders
and decoders for a format are inverses of each other by
relying on the format specifier to provide suitable proof
derivation rules in Coq. The Parsley framework attempts
to provide a more user-friendly and flexible format specifi-
cation environment, but does not currently address format
serialization and its correspondence to parsing.

Our Parsley formalization builds on the PEG formal-
ization in [5], including the use of an embedded proof-of-
parse that can be used for independent verification of a parse
result.

Acknowledgments

This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. HR001119C0075. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA).

References

[1] M. J. Beckerle, S. M. Hanson, and A. W. Powell, “Data format
description language (DFDL) v1.0 specification,” Apache, 2014.
[Online]. Available: https://daffodil.apache.org/docs/dfdl

[2] K. Fisher and R. Gruber, “PADS: A Domain-Specific Language
for Processing Ad Hoc Data,” SIGPLAN Not., vol. 40, no. 6,
p. 295–304, Jun. 2005. [Online]. Available: https://doi.org/10.1145/
1064978.1065046

306

[3] M. Dunckley and S. Rankin, “The use of file description languages
for file format identification and validation,” in Proc. PV 2007 Con-
ference: Ensuring the Long-Term Preservation and Value Adding to
Scientific and Technical Data, 2007.

[4] B. Ford, “Parsing Expression Grammars: A Recognition-Based
Syntactic Foundation,” SIGPLAN Not., vol. 39, no. 1, p. 111–122, Jan.
2004. [Online]. Available: https://doi.org/10.1145/982962.964011

[5] C. Blaudeau and N. Shankar, “A verified packrat parser interpreter for
parsing expression grammars,” Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, Jan 2020.
[Online]. Available: http://dx.doi.org/10.1145/3372885.3373836

[6] A. Koprowski and H. Binsztok, “TRX: A formally verified parser
interpreter,” Logical Methods in Computer Science, vol. 7, no. 2, pp.
1–26, 2011. [Online]. Available: https://doi.org/10.2168/LMCS-7(2:
18)2011

[7] J. Dunfield and N. R. Krishnaswami, “Complete and easy bidi-
rectional typechecking for higher-rank polymorphism,” in Interna-
tional Conference on Functional Programming (ICFP), Sep. 2013,
arXiv:1306.6032[cs.PL].

[8] J. Zhao, B. C. d. S. Oliveira, and T. Schrijvers, “A mechanical
formalization of higher-ranked polymorphic type inference,” Proc.
ACM Program. Lang., vol. 3, no. ICFP, Jul. 2019. [Online].
Available: https://doi.org/10.1145/3341716

[9] J. Magazinius, B. K. Rios, and A. Sabelfeld, “Polyglots: Crossing
origins by crossing formats,” in Proceedings of the Conference on
Computer and Communications Security (CCS), 2013, p. 753–764.

[10] Y. Kwon, J. Yu, B. Cho, Y. Eun, and K. Park, “Empirical analy-
sis of mavlink protocol vulnerability for attacking unmanned aerial
vehicles,” IEEE Access, vol. 6, pp. 43 203–43 212, 2018.

[11] D. E. Knuth, “Semantics of context-free languages,” in In Mathemat-
ical Systems Theory, 1968, pp. 127–145.

[12] T. Parr and R. Quong, “Adding semantic and syntactic predicates to
ll(k): pred-ll(k),” in International Conference on Compiler Construc-
tion, vol. 786. Springer, 05 1994, pp. 263–277.

[13] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, “Attributed
translations,” Journal of Computer and System Sciences, vol. 9, 1974.

[14] H. Zhang, H. Li, and B. C. d. S. Oliveira, “Type-safe modular
parsing,” in Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
2–13. [Online]. Available: https://doi.org/10.1145/3136014.3136016

[15] J. Bangert and N. Zeldovich, “Nail: A practical tool for
parsing and generating data formats,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, Oct. 2014, pp. 615–
628. [Online]. Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/bangert

[16] M. Daly, Y. Mandelbaum, D. Walker, M. Fernández, K. Fisher,
R. Gruber, and X. Zheng, “PADS: An end-to-end system for
processing ad hoc data,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
’06. New York, NY, USA: ACM, 2006, pp. 727–729. [Online].
Available: http://doi.acm.org/10.1145/1142473.1142568

[17] T. Jim, Y. Mandelbaum, and D. Walker, “Semantics and algorithms
for data-dependent grammars,” in Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’10. ACM, 2010, pp. 417–430.

[18] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and A. Chlipala,
“Narcissus: Correct-by-construction derivation of decoders and
encoders from binary formats,” Proc. ACM Program. Lang., vol. 3,
no. ICFP, Jul. 2019. [Online]. Available: https://doi.org/10.1145/
3341686

307

