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Abstract—We demonstrate how machine-learning-based net-
work intrusion detection models can be validated and developed
by probing models using traffic with specifically controlled
microstructures. We show our methodology by probing two
published state-of-the-art models to find classification flaws
and and understand misbehaviour. These models fail for input
traffic with particular characteristics such as retransmissions or
overly dispersed flow interarrival times. After we make simple
corresponding model corrections, detection rates already improve
between 2−4%. We believe this shows promise for using tailored
data with controllable and labelled characteristics to effectively
improve model development in NID, a practice that helped model
development significantly in several other areas of machine-
learning.

Index Terms—Machine learning, traffic microstructures, net-
work intrusion detection

I. INTRODUCTION

The model development process of machine-learning (ML)
based network intrusion detection (NID) models usually ig-
nores specific traffic characteristics and lacks the ability to
extensively explore model failings. The main reason for this
is likely the lack of precise datasets with specifically curated
characteristics and corresponding information. In this paper,
we demonstrate how the generation of traffic with controllable
and labelled microstructures enables researchers to probe a
model and its reaction to various traffic phenomena to much
greater detail in order to understand and develop the model’s
capabilities.

Machine-learning breakthroughs in other fields have often
been reliant on a precise understanding of data structure and
corresponding descriptive labelling to develop more suitable
models. In automatic speech recognition (ASR), tone and
emotions can alter the meaning of a sentence significantly.
The huge automatically gathered speech datasets however only
contain speech snippets and if possible their plain transcripts.
While modern speech models are in principle able to learn
implicit structures such as emotions without explicit labels, it
is impossible to determine the cause for systematic error when
they are not. Datasets that contain labelled specialised speech
characteristics such as the Ryerson Database of Emotional
Speech and Song (RAVDESS) [9] not only allow researchers
to identify if their model is susceptible to structural mis-
classification through targeted probing, but also inspire new
methods to capture and understand these implicit structures

[5], which in turn leads to design improvements of general
speech recognition models [8].

Prominent network intrusion detection methods as Kitsune
[11] or DeepCorr [12] learn structures in the sizes, flags,
or interarrival times of packets for decision-making. These
traffic microstructures that can be observed when looking
sequences of packets or connections reveal information about
attack behaviour, but are also influenced by a number of
other factors such as network congestion or the transmitted
data. However, no effort has been made so far to monitor
or control these factors to probe these models for specific
microstructures, and researchers often just evaluate a variety
of ML-models on sparsely labelled datasets in the hope of
edging out competitors, without understanding model flaws
and corresponding data structures through targeted probing.

In this work, we aim to demonstrate the usefulness of
the control and information on traffic microstructures for
model validation and development. We show the inspection of
two state-of-the-art network intrusion detection models with
specially generated traffic to identify model flaws, understand
model behaviour better, and subsequently boost corresponding
results. We hope to find new ways to improve model develop-
ment in NID and increase the efficiency with which models
can learn traffic microstructures.

A. Outline

The remainder of the paper is organized as follows. Sec-
tion II discusses the necessity for probing to validate and
understand ML-models, and our methodology of using traffic
microstructure control for model probing. In Sections III and
IV we demonstrate how to perform model probing and im-
plement corresponding design improvements on two network
intrusion detection models. Section V concludes the results
and discusses limitations of our work and directions for future
work.

II. MOTIVATION AND METHODOLOGY

A. Motivation

Scientific machine learning model development requires
both model evaluation, in which the overall predictive quality
of a model is assessed to identify the best model, as well as
model validation, in which the behaviour and limitations of
a model is assessed through targeted model probing. Model



Fig. 1: Comparison between numerical model evaluation and
model probing with specifically controlled data characteristics,
indicated as colours.

validation is essential to understand how particular data struc-
tures are processed, and enables researchers to develop their
models accordingly. The emergence of several perturbative
model analysis tools that give insights into which structures
are important in the decision-making of deep learning methods
underline the importance of proper model validation. Existing
tools such as the What-If tool [18] are however either only
capable of computing perturbations for small data sequences,
or rely on domain-knowledge such as DeepLIFT [15]. In the
case of network traffic models, the lack of ground-truth labels
for individual traffic traces prohibits us to associate patterns in
a packet sequence with specific traffic shaping characteristics
such as activities or congestion.

Recently, machine-learning methods have been trained on
large datasets to classify raw traffic, often using simple ma-
licious/benign labels. These models usually classify traffic
traces as a sequence of packets within a connection (DeepCorr
[12], Kitsune [11]), or as a short sequence of connections
(Radford et al. [13]). Designs vary from models that make
binary decisions by recognising characteristic patterns to mod-
els that identify anomalous traffic by learning generalised
structures for all encountered benign sequences. We want
to demonstrate how model validation can be performed for
such models with the use of specifically generated traffic
traces. We focus in particular on traffic microstructures,
which we define as sequential structures in the packet or
flow metadata stream. For this, we are generating traffic from
different activities and settings in short time-intervals that are

suitable for models that classify individual connections or
short sequences of connections, such as done by many traffic
classifiers and low-volume intrusion detection systems. Models
that depend on long-term or network wide structures, such
as for the detection of botnet, DoS-attacks or fast-spreading
worms do not fall within this scope.

B. Generating controllable traffic microstructures

We use DetGen [2], a tool that generates traffic with a
fine-grained control over traffic shaping factors. In this work,
we look traffic generated from scenarios that include regular
HTTP communication, requests to an SQL-server, multi-host
file-synchronisation, SQL-injection attacks, botnet traffic, as
well as FTP-, SSH-, and SMTP-communication. DetGen offers
control over the following traffic shaping factors:

a) Performed task/application: The task and application
drive the communication and influences characteristics such
as direction and rate of transfer or the number of connections.

b) Application layer implementations: Different imple-
mentations for TLS, HTTP, etc. can yield different channel
prioritisation and can perform different handshakes.

c) Transferred data: The amount and content of trans-
ferred data influences the overall packet number, rate, and size
such as shown by Biernacki [1] for streaming services.

d) Caching/Repetition effects: Tools like cookies, web-
site caching, DNS caching, known hosts in SSH, etc. remove
one or more information retrieval requests, which leads to
altered packet sequences and less established connections [4].

e) Host level load: Computational load (CPU, memory,
I/O) on the host machine can affect the processing speed of
incoming and outgoing traffic.

f) LAN and WAN congestion: Low available bandwith,
long RTTs, or packet loss can have affect on TCP congestion
control mechanisms and influence frame-sizes, IATs, and the
overall temporal characteristic of the sequence.

In this work, we focus mainly on influence from the factors
a), b), f) and partly c), as they have most influence on the
behaviour of the models discussed in Section III and IV. The
completeness of this list as well as the impact of the listed
factors on overall model behaviour goes beyond the scope of
this work and is better discussed by Clausen et al. [3].

Labels that describe the respective setting for each factor
are attached to each traffic sample after generation, thus
enabling us to provide ground-truth information about the
precise generation setting of individual samples. Traffic is
generated in a virtual network along with virtual software
switches, Ethernet links and routers. The communication is
mostly performed in a client-server setting, however some
settings such as multi-host file-synchronisation involve more
hosts.

C. Methodology

Before the probing, we have to identify which types of
characteristics the model should be probed on, and generate
the corresponding data. We then train the model mainly on the
datasets that is used for the general evaluation, but also attach



probing data to make up at least 10% of the particular traffic
type in the training set. This is to ensure that the model is
able to see and learn the structures in the probing data, even
though the overall type of traffic in the probing data should be
similar to the evaluation data to provide a consistent model.

After training and general evaluation, the model probing
is done by feeding the model data samples with the desired
descriptive labels, monitoring the output or behaviours in
dependence of these labels, and comparing them to the ex-
pected output or behaviour. Since each traffic sample contains
multiple descriptive labels, it is possible to monitor the model
response to multiple characteristics in parallel.

III. IMPROVED TRAFFIC SEPARATION FOR A CLASSIFIER
WITH CONGESTION LEVEL INFORMATION

Our first example looks at how descriptive ground truth
information on traffic characteristics can improve a traffic
classification model through the analysis of data separation
in dependence of different traffic features. For this, we use a
Long-Short-Term Memory (LSTM) network, a deep learning
design for sequential data, by Hwang et al. [7], which is
designed to classify attacks in web traffic and has achieved
some of the highest detection rates of packet-based classifiers
in a recent survey [16]. Through probing we will learn that
retransmissions in a packet sequence dramatically deplete the
model’s classification accuracy. We take the following steps:

Step 1: Determine model performance and feed it
suitable probing traffic.
Step 2: Examine the correlation between traffic misclas-
sification scores and the generated traffic microstructure
labels to find a likely cause.
Step 3: Examine at which latency levels specific con-
nections are misclassified.
Step 4: Generate two similar connections, with one
exposed to strong packet latency.
Step 5: Show that by removing retransmission se-
quences in the pre-processing, misclassification is sig-
nificantly reduced.

Step 1: To detect SQL injections, we train the model on
the CICIDS-17 dataset [14] (85% of connections). For the
evaluation, we also include a set of HTTP-activities generated
by DetGen (7.5%) that mirror the characteristics in the training
data. In total, we use 30,000 connections for training and for
evaluating the model, or slightly under 2 million packets. The
initially trained model performs relatively well, with an Area
under curve (AUC)-score of 0.981, or a detection/false positive
rate1 of 96% and 2.7%. However, to enable operational
deployment the false positive rate would need to be several
magnitudes lower [10].

Step 2: Now suppose we want to improve these rates to
both detect more SQL-injections and retain a lower false
positive rate. To start, we explore which type of connections
are misclassified most often. We retrieve the classification
scores for all connections and measure their linear correlation

1tuned for the geometric mean

Fig. 2: Scores for the LSTM-traffic model before and after the
model correction.

to the microstructure labels available for the probing data. The
highest misclassification ratio was measured for one of the
three SQL injection scenarios (19% correlation) and connec-
tions with multiple GET-requests (11% correlation). When not
distinguishing activities, we measured a high misclassification
correlation with simulated packet latency (12%), which we
now examine. More details on this exact procedure can be
found in (citation currently blinded).

Step 3: Fig. 2 depicts classification scores of connections
in the probing data in dependence of the emulated network
latency. The left panel depicts the scores for the initially
trained model, while the right panel depicts scores after the
model correction that we introduce further down. The left
panel shows that classification scores are well separated for
lower congestion, but increased latency in a connection leads
to a narrowing of the classification scores, especially for SQL-
injection traffic. Since there are no classification scores that
reach far in the opposing area, we conclude that congestion
simply makes the model lose predictive certainty. Increased
latency can both increase variation in observed packet interar-
rival times (IATs), and lead to packet out-of-order arrivals and
corresponding retransmission attempts. Both of these factors
can decrease the overall sequential coherence for the model,
i.e. that the LSTM-model loses context too quickly either due
to increased IAT variation or during retransmission sequences.

Step 4: We use DetGen to generate two similar connections,
where one connection is subject to moderate packet latency
and corresponding reordering while the other is not. DetGen’s
ability to shape traffic in a controlled and deterministic manner
allows us to examine the effect of retransmission sequences on
the model output and isolate it from other potential influence
factors. Fig. 3 depicts the evolution of the LSTM-output layer
activation in dependence of difference connection phases for
the connection subject to retransmissions. Depicted are packet
segment streams and their respective sizes in the forward and



Fig. 3: LSTM-output activation in dependence of connection
phases.

backward direction, with different phases in the connection
coloured and labelled. Below is the LSTM-output activation
while processing the packet streams. The red line shows the
output for the connection without retransmissions2 as a com-
parison. Initially the model begins to view the connection as
benign when processing regular traffic, until the SQL-injection
is performed. The model then quickly adjusts and provides a
malicious classification after processing the injection phase
and the subsequent data transfer, just as it is supposed to.

The correct output activation is however quickly depleted
once the model processes a retransmission phase and is
afterwards not able to relate the still ongoing data transfer to
the injection phase and return to the correct output activation.
When we compare this to the connection without retransmis-
sions, depicted as the red line in Fig. 3, we do not encounter
this depletion effect. Instead, the negative activation persists
after the injection phase.

Step 5: Based on this analysis, we try to correct the existing
model with a simple fix by excluding retransmission sequences
at the pre-processing stage. This leads to significantly better
classification results during network latency, as visible in the
right panel of Fig. 2. SQL-injection scores are now far-less
affected by congestion while scores for benign traffic are also
less affected, albeit to a smaller degree. The overall AUC-score
for the model improves to 0.997 while tuned detection rates
improved to 99.1% and false positives to 0.345%, a five-fold
improvement from the previous false positive rate of 2.7%.

IV. REFINING THE NOTION OF BENIGN TRAFFIC FOR
ANOMALY DETECTION

Next, we show how ground-truth traffic information can
help produce more coherent clusters and thus refine the benign
traffic model in anomaly-detection. In particular, we will
examine a simplified version of Kitsune [11], a recent deep
learning anomaly-detection model based on stacked autoen-
coders. Kitsune’s AUC-scores surpassed those of other state-

2scaled temporally to the same connection phases

Label HTTP File-Sync Mirai-C&C
1 Get-req. NGINX,

low lat.
Two hosts,
low lat.

Command 1,
low lat.

Results: 0.14 , 0.45 0.19 , 0.27 0.03 , 0.06

2 Multi-req. NGINX,
low lat.

Four hosts,
low lat.

Command 2,
low lat.

Results: 0.32 , 0.45 0.15 , 0.33 0.03 , 0.04

3 Post-req. Apache,
high lat.

Two hosts,
high lat.

Command 3,
high lat.

Results: 0.17 , 0.28 0.16 , 0.28 0.02 , 0.04

4 Multi-req. Apache,
high lat.

Four hosts,
high lat.

Command 4,
high lat.

Results: 0.53 , 2.51 0.71 , 1.31 0.03 , 0.05

TABLE I: Outline of the traffic settings for examining projec-
tion consistency. The numbers below each setting describe the
measured Mahalanobis-distances (blue:average, red:maximal)
for the corresponding projections.

of-the-art methods for a variety of attacks, including various
types of Botnet traffic and man-in-the-middle attacks.

The model takes connection packet streams as input, which
are pushed through an artificial information bottleneck be-
fore reconstruction, which forces the model to learn and
compress reoccurring traffic structures. The compressed con-
nection representation is essentially a positional projection
into a lower-dimensional vector space, where spatial bound-
aries around benign traffic can be drawn. For demonstra-
tion purposes, we use a widely-used clustering approach for
anomaly-detection rather than Kitsune’s more complex ensem-
ble method. Here, anomalous outliers are detected using the
Mahalanobis-distance of a projected connection from identi-
fied cluster centers. Benign traffic should ideally be distributed
evenly around the cluster centres to allow a tight borders and
good separation from actual abnormal behaviour.

Unstructured datasets such as the CAIDA traffic traces
assumably contain too much abnormal behaviour to train an
anomaly-detection model, which is why we train the model
on benign traffic from the CICIDS-17 [14] intrusion detection
dataset (80%). Again, we add 20% probing traffic consists of
HTTP, FTP, SSH, and SMTP communication, using a wide
spectrum of settings for examination purposes. Attack data
for the evaluation was again provided through the CICIDS-17
dataset, and includes access attacks such as SQL-injections or
Brute-Forcing, as well as Mirai botnet traffic. We train the
model with in total 150,000 connections.

A. Projection coherency evaluation

Like many approaches that generate representations of
benign traffic for anomaly detection, Kitsune projects traffic
events into a vector-space where traffic clusters and similar-
ities become more apparent. In order for the projection to
accurately capture important traffic structures, this projection
should be consistent, i.e. traffic events with similar origins and



characteristics should be projected to similar positions rather
than be dispersed throughout the vector space [6].

To verify the models projection consistency, we generate
traffic from near-identical conditions to provide certainty on
the expected traffic similarities. We generate a small dataset
that consists of HTTP-requests, file-synchronisation, and Bot-
net communication. For each of the three traffic types we fix
four settings that vary in the performed activity and network
latency, with the traffic shaping described in Section II-B being
held constant within each setting except for small variations in
the transmitted message or file. Table I summarises the traffic
for each setting.

We verify if traffic samples within each group are projected
to similar areas by measuring the average and maximum
Mahalanobis-distance to quantify the overall dispersion of the
samples. The results are displayed in Table I and depicted
in Fig. 4. The first thing to notice is that the model projects
samples from each group within the same cluster, thus con-
firming the capture of a coarse traffic structure. When looking
at the traffic dispersion and the corresponding Mahalanobis-
distance measurements, we notice that the multi-request HTTP
traffic as well as the file-synchronisation between mutliple
computers is much further dispersed than in the other settings,
especially when exposed to more latency. We also find that
the corresponding dimension, x3, with the most projected
dispersion seems to be the same for each of the four settings.
This suggests that the cause for the dispersion is the same for
the different traffic types.

We now focus on the influence of input features on the
projected positions exclusively in the x3-direction. Here, we
can again perform a simple correlation analysis between
different the input feature values and the corresponding x3-
value. We observe that the arrival time of packet bears the
most correlation (5.4%) for the selected settings. We also see
that this influence is concentrated primarily on connections
that are opened shortly after a previous connection, with the
temporal separation between these two connections apparently
being the primary cause for the spread on the x3-axis. The
connection interarrival times are naturally an important feature
for Kitsune to detect attacks such as Man-in-the-Middle, which
could explain the weight this feature plays in the projection
process.

B. Investigating individual cluster incoherences

When examining false-positive and corresponding anomaly
scores, we noticed that the model often classifies Brute-Force
Web attacks as benign and some HTTP-traffic as anomalous.
When examining the projected location of the corresponding
connections, we see that most of this HTTP-traffic as well
as the Brute-Force attack traffic lie near a particular cluster,
depicted in Fig. 5. A significant portion of traffic in that cluster
seems to be spread significantly more across the cluster axis
than the rest of the traffic in that cluster, leading to an inflated
radius that partially encompasses Brute-Force traffic.

When cross-examining the traffic in this cluster with the
probing data, we see that HTTP-traffic with the label “Sudden

Fig. 4: Dispersion of projected traffic samples from each
setting, plotted along the two most dispersed axes.

termination” are distributed across the cluster axis in a similar
fashion, also depicted in Fig. 5, suggesting the conclusion that
this type of traffic causes the inflated cluster radius. DetGen
generates traffic with the label “Sudden termination” as half-
open connections which were dropped by the server due to
network failure. One defining characteristic of such connec-
tions are that they are not closed with a termination handshake
using FIN-flags. To better capture this defining characteristics
in the modelling process, we included an additional feature
attached to the end of a packet sequence that indicates a
proper termination with FIN-flags in the modelling process.
The newly trained model now projects “Sudden termination”
connections into a different cluster, which leads to a far better
cluster coherence. The detection rate on Brute-Force attack
traffic could thus be improved from 89.7% to 94.1%.

V. CONCLUSIONS

In this paper, demonstrated the impact of traffic generation
with extensive microstructure control as well as detailed
corresponding documentation on researchers ability to eval-
uate and understand network intrusion detection models. We
implemented and trained two state-of-the art detection models
before extensively probing their behaviour and limitations
when encountering different traffic types.

By using HTTP-traffic with congestion settings, we were
quickly able to identify the inability of an LSTM-based
classifier to handle traffic with significant retransmission rates,
which enabled us to improve the model accordingly and in-
crease detection performance by more than 2%. Similarly, the
examination of projection consistency of a subspace-clustering
method using traffic with artificially similar characteristics



Fig. 5: Scores for the LSTM-traffic classification model in
dependence of simulated network congestion, along with the
classification threshold

revealed a high sensitivity to interarrival times, while cluster-
coherence could be increased significantly by identifying half-
open connections as the source of overly dispersed traffic
projections.

We believe that in combination with strong NID-datasets,
model probing with targeted traffic samples might hold the key
to reduce false positives of detection models to an acceptable
rate and help replicate detection rates in practical settings.
This might furthermore help improve the transfer of learned
structures from one to another dataset by identifying where the
model is failing on the new data, and to compile a suitable
dataset for fine-tuning training.

DetGen, the tool we used to control traffic microstructures
with, is openly accessible on GitHub and is discussed in [2].

A. Difficulties and limitations

Controlling traffic shaping factors artificially can exaggerate
some traffic characteristics in unrealistic ways and thus both
affect the training phase of a model as well as tilt the actual
detection performance of a model in either direction. Addi-
tionally, the artificial randomisation of traffic shaping factors
can currently not generate the traffic diversity encountered in
real-life traffic, something that is however significantly more
pronounced in commonly used network intrusion datasets such
as the CICIDS-17 dataset, where the majority of successful
FTP-transfers download the Wikipedia page for ‘Encryption’.

Refining the ability of classifiers to identify traffic char-
acteristics related to particular activities can lead to privacy

infringements or even discrimination against users or traffic
types. It is therefore important to also investigate how applica-
tions can implement privacy-enhancing measures that conceal
traffic characteristics, such as proposed by Wang et al. [17].
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