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Abstract—The ongoing trend of moving data and computation
to the cloud is met with concerns regarding privacy and pro-
tection of intellectual property. Cloud Service Providers (CSP)
must be fully trusted to not tamper with or disclose processed
data, hampering adoption of cloud services for many sensitive
or critical applications. As a result, CSPs and CPU manufac-
turers are rushing to find solutions for secure and trustworthy
outsourced computation in the Cloud. While enclaves, like Intel
SGX, are strongly limited in terms of throughput and size,
AMD’s Secure Encrypted Virtualization (SEV) offers hardware
support for transparently protecting code and data of entire
VMs, thus removing the performance, memory and software
adaption barriers of enclaves. Through attestation of boot code
integrity and means for securely transferring secrets into an
encrypted VM, CSPs are effectively removed from the list of
trusted entities. There have been several attacks on the security
of SEV, by abusing I/O channels to encrypt and decrypt data,
or by moving encrypted code blocks at runtime. Yet, none of
these attacks have targeted the attestation protocol, the core of
the secure computing environment created by SEV. We show
that the current attestation mechanism of Zen 1 and Zen 2
architectures has a significant flaw, allowing us to manipulate
the loaded code without affecting the attestation outcome. An
attacker may abuse this weakness to inject arbitrary code at
startup—and thus take control over the entire VM execution,
without any indication to the VM’s owner. Our attack primitives
allow the attacker to do extensive modifications to the bootloader
and the operating system, like injecting spy code or extracting
secret data. We present a full end-to-end attack, from the initial
exploit to leaking the key of the encrypted disk image during
boot, giving the attacker unthrottled access to all of the VM’s
persistent data.

I. INTRODUCTION

An increasing number of software applications, from en-
terprise management software to messengers used in nearly
everyone’s daily life, rely on storing information and perform-
ing computations in the cloud. Solutions are moved from local,
trusted environments to the data centers of big cloud service
providers, and are now running in untrusted environments
under control of a third party—in order to save costs, reduce
management effort and to improve scalability.

The loss of trust comes with significant challenges for
services such as banking, private secure messaging or health
services, which require strict isolation and confidentiality to
ensure the safety of their assets and to comply with data
privacy laws: Computing resources in the cloud are often
shared, which in case of broken isolation does allow co-located
users to spy on each other [23, 30, 45]. Another concern is the
security of the cloud service provider’s systems themselves,
where internal or external attackers may leverage elevated
privileges for extracting private data.

In order to deliver isolated, confidential and authenticated
execution and processing of data in an otherwise untrusted
setting, processor vendors added hardware features to build
a root-of-trust and ensure confidential computing in a local
Trusted Execution Environment (TEE). One example is AMD
SEV [4, 5, 27], which allows to run VMs confidentially and
isolated from their hypervisor. AMD added new features to
SEV with every generation of its processor architecture. In
2017, The first generation of EPYC processors (Zen) came
with the initial version of SEV. The second generation (Zen
2) added an encrypted state for context switches with SEV-ES
[26] and was released in 2019. The newest addition, SEV-
SNP [3], will be available on the third generation of EPYC
processors (Zen 3), which are set to be released in early 2021.
Intel TDX [24] aims to provide a similar solution, but is only
available as a concept as of writing this work. With Intel
Software Guard Extensions (SGX) [9, 17, 25], Intel offers
an established TEE which enables software vendors to run
smaller programs in isolated enclaves. All of these solutions
provide memory encryption during execution, and attestation
of the software loaded into the TEE.

Recently, cloud service providers like Microsoft and Google
started to offer confidential computing environments which
isolate the customer’s software using Intel SGX [31] or AMD
SEV [21]. Popular examples, like the secure private messenger
Signal, are already using these technologies to protect the
sensitive data of their customers [38]. Moreover, open source
solutions enable simple development and deployment of soft-
ware for TEEs [10, 11, 19].

A fundamental challenge for TEEs is having to guarantee
their promises against attackers with system level privileges,
resulting in a large variety of attacks [15, 16, 32, 37, 42, 44].
In this work, we extend the arsenal of attacks against TEEs
and in particular against AMD SEV, with an attack targeting
and circumventing its very core of trust, the remote attestation.

Remote attestation allows the owner of a software, which
runs in a confidential or trusted execution environment, to
verify the initial integrity and authenticity of the software
loaded into the TEE, which afterwards is preserved at runtime
by the properties of the TEE. Generally, remote attestation
works by creating a signed measurement, usually a hash, of
the initially loaded application through the trusted hardware
and sending this measurement to the software owner for
verification. In case of AMD SEV, the trusted hardware is an
additional on-chip co-processor called Secure Processor (SP),
which cannot be externally controlled.
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A. Our Contribution

If the attestation process, however, is broken, the isolation
and confidentiality guarantees of AMD SEV are inconse-
quential as the software owner cannot be sure whether their
intended software was loaded or whether an attacker manipu-
lated it during startup.
In this work, we
• show that the measurement used in AMD SEV’s attestation

is block permutation-agnostic, meaning that changing the
order of measured memory blocks does not affect the
attestation outcome, and thus allows the attacker to modify
the execution flow without detection by the VM’s owner;

• construct an universal attack primitive, which reorders the
measured blocks of an initially loaded UEFI and sets up
a Return-oriented Programming (ROP) chain to load and
execute arbitrary code;

• demonstrate a full end-to-end attack which leaks the key
of an encrypted disk image, and gives the attacker full
control over the VM’s operating system;

• propose several countermeasures and discuss why the
underlying problem ultimately cannot be solved under
SEV Encrypted State (SEV-ES).

B. Attack Overview

The attack described in this work targets the measurement
of the initially loaded binary during startup of an SEV-ES-
protected Virtual Machine (VM) (guest). When the VM is
started, the hypervisor instructs the AMD SEV secure pro-
cessor to load the initial binary, e.g. an Open Virtual Machine
Firmware (OVMF) UEFI binary, into encrypted memory and
calculate a measurement of the initial VM content using
the LAUNCH_UPDATE_DATA and LAUNCH_MEASURE com-
mands. We find that the initial binary can be split into blocks
as small as 16 bytes, which we are able to load in an arbitrary
order using LAUNCH_UPDATE_DATA , while still getting the
same measurement when calling LAUNCH_MEASURE. This
allows us to construct our own execution flow, which we use
for redirecting the stack pointer to an unencrypted shared page.
Consequently, we leverage this control over the stack to mount
a ROP attack, allowing us to write arbitrary code and data
into the encrypted VM’s memory. We use the injected code
to leak the protected secret values which have been provided
by the guest owner. As our meddling with the block ordering
does not change the launch measurement, AMD SEV’s remote
attestation will succeed and the guest owner will be unaware
of our changes to their VM’s execution flow.

C. Responsible Disclosure

We responsibly disclosed our findings to AMD via Email
on January 19th, 2021. AMD requested an embargo until May
11, 2021 and provided us with the following statement: “AMD
has assigned CVE-2021-26311 for this issue and provided
mitigations in the SEV-SNP feature available for enablement
3rd Gen AMD EPYC™ processors. AMD appreciates the
coordination efforts made by the research team.”.

II. BACKGROUND

A. AMD SEV

In 2016, AMD introduced their Secure Memory Encryption
(SME) and Secure Encrypted Virtualization (SEV) technolo-
gies [27], which were implemented only in 2017 with the
first generation of EPYC processors (Zen 1). SME offers
hardware-based encryption of RAM content. The memory
encryption key is managed by the SP, an ARM-based co-
processor, and is thus never accessible by system software.
The encryption/decryption takes place directly in the on-die
memory controllers. Each page table entry has a special status
bit, which controls whether the associated page is encrypted
or not. The whitepaper [27] does not explain the mode of
operation in detail, but only states that AES with an 128-bit
key and a physical address-based tweak is used. In [18, 44] it
is shown that early versions use the Xor-Encrypt (XE) or Xor-
Encrypt-Xor (XEX) encryption mode with static, low entropy
tweak values, while later versions use stronger, randomized
tweak values. In addition, none of the encryption modes offer
integrity protection.

While SME uses the same key for all memory pages, SEV
adds the ability to encrypt the memory content of VMs with
different keys, that are only known to the SP but not to the
Hypervisor (HV), preventing a malicious HV from directly
reading the memory content of its guests. However, VMs can
also share pages with the HV. In addition, the SP offers an API
to the HV to manage the SEV-protected VMs. This includes
a mechanism to attest the initially loaded code of the VM and
a mechanism to securely move secrets into the VM.
SEV-ES was introduced by AMD in 2017 and implemented
in 2019 with the second generation of EPYC processors. It
addresses one major remaining attack surface of SEV: The
unencrypted Virtual Machine Control Block (VMCB), a data
structure storing certain configuration bits as well the VM’s
register values on context switches. Certain sensitive parts
of the VMCB were moved to a substructure called Virtual
Machine State Save Area (VMSA) that is encrypted and
integrity protected on context switches to the HV, and thus
prevents an attacker from inferring or modifying a VM’s state
during context switches.

However, there are also several instructions that need in-
teraction with the HV, like cpuid, which previously shared
and received data with/from the HV via the VM’s registers.
To enable this with SEV-ES, AMD introduced a new commu-
nication mechanism between HV and VM, consisting of the
Guest Hypervisor Communication Block (GHCB) and a new
exception called VMM Communication Exception (#VC). The
GHCB is simply a shared page, that gets setup by the VM.
Instructions that require data sharing with the HV cause a
#VC, allowing a VM exception handler to share the data via
the GHCB.
SEV Secure Nested Paging (SEV-SNP) aims to address
several remaining issues, like remapping attacks due to the
HV’s control over the nested page tables, or attacks on the
missing integrity protection. It was announced by AMD in
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January 2020 [3] and will only be available on the 3rd
gen EPYC processors, that are set to be released after the
submission deadline. The most important change is the intro-
duction of an additional page table called Reverse Map Table
(RMP), to which the HV only has mediated access. The RMP
aims to ensure a one-to-one mapping between Guest Physical
Addresses (GPAs) and Host Physical Addresses (HPAs), and
will prevent the HV from writing to VM memory, mitigating
problems arising due to the lacking integrity protection.

B. Booting physical and virtual environments

When booting a physical system, the CPU is in a well-
defined state, but completely unaware of its environment. Its
program counter is set to start execution at a fixed address,
which points to a FLASH or EPROM. Firmware is loaded
from this start position and is responsible for initializing the
memory controller, creating a memory mapping for RAM,
and configuring I/O peripherals. On modern computers, this
firmware usually is UEFI-based, which is platform specific and
performing the aforementioned tasks. The advantage of UEFI
compared to legacy BIOS is its standardization of the platform
initialization procedure [41]. The UEFI is configurable through
variables in a non-volatile memory (e.g. NVRAM), so config-
uration is persisted over restarts. Additionally, it can provide
secure boot, which allows to build up a chain of trust from
the UEFI to the finally loaded kernel of the OS. In this chain,
the UEFI, which contains a set of configurable certificates and
keys, forms the root of trust. Every component of the chain
verifies its successor before handing over the execution [41].

When the UEFI finishes the system configuration, it hands
over the control to an EFI binary [41], which usually is an OS
bootloader, e.g. Grub [20]. The bootloader sets up the stage
for the OS kernel, loads the kernel into memory and calls its
main method. However, an EFI binary does not necessarily
have to be a bootloader.

In case of booting a virtual environment, e.g. with
QEMU [36], the process is similar: When the hypervisor starts
up the virtualization, it launches an UEFI. For virtual environ-
ments, OVMF [40] is a common choice. OVMF performs the
necessary virtual system configuration and hands over control
to a bootloader [12]. The bootloader, which is just a regular
EFI application, can be provided in different ways. Usually it
is expected to be located on a FAT-formatted disk with GUID
partition table [41], thus requiring the guest owner to provide
the hypervisor with a disk image. Another way is to include
the bootloader, i.e. the EFI application, into the UEFI volume
which also contains the UEFI firmware [13].

III. SEV(-ES) GUEST LAUNCH PROCESS

In this section, we describe the typical workflow required
to launch an SEV-secured VM, as described in [5] and
implemented in AMD’s patches to the the Linux kernel [1]
and QEMU [2]. This includes encrypting an initial code image,
proving its integrity to the guest owner, and loading secret data
without leaking it to the HV.

TABLE I. Overview of the VM-specific commands provided by the SP in
different states. For brevity, commands that are not relevant for our work were
omitted.

State Command → New State
UNINIT LAUNCH_START → LUPDATE
LUPDATE LAUNCH_UPDATE_DATA → LUPDATE

LAUNCH_UPDATE_VMSA → LUPDATE
LAUNCH_MEASURE → LSECRET

LSECRET LAUNCH_SECRET → LSECRET
LAUNCH_FINISH → RUNNING

RUNNING (other commands)

A. Prerequisites

There are three parties involved in launching a SEV VM:
The guest owner, the HV and the SP. The guest owner wants
to start a SEV-secured VM. The HV is typically controlled
by the cloud service provider. In order to provide the SEV
functionality, the HV must interact with the API provided by
the SP.

The goal of the launch process is to enable the HV to
prove to the guest owner that the initial content is trustworthy.
Furthermore, it enables the guest owner to send secrets, like
disk encryption or SSH keys, to the VM in a secure manner.
The entire launch process is illustrated in Figure 1.

For each VM, the SP maintains a Guest Context (GCTX)
that, among other values, contains a handle, the VM En-
cryption Key (VEK), the launch digest (LD), and the current
state. The VEK is a VM-specific key used for memory
encryption. The launch digest contains a hash value of the
VM contents loaded during the launch measurement phase.
The state determines which API commands are usable.

Table I shows an overview of the states along with the usable
commands and the resulting state transitions. We omitted
all states and commands related to migrating VMs between
different hosts, as we do not use them in this paper. In addition
to the VM-specific commands, there are several commands
which affect the SP itself. They are used to update its firmware
and to generate or export cryptographic key material.

Before any VM-specific commands are issued, the HV starts
an ECDH key exchange by issuing the PDH_CERT_EXPORT
command, upon which the SP exports a public ECDH key
and some certificates. The latter are part of a public key
infrastructure, that is ultimately rooted at an AMD controlled
key hardcoded into the SP. The HV then sends this data to
the guest owner.

B. UNINIT state

A new VM assumes UNINIT as initial state. In order to start
the launch process, the guest owner verifies the authenticity
of the ECDH key sent by the HV. Then they use their own
ECDH key pair to derive the Transport Encryption Key (TEK),
the Transport Integrity Key (TIK) and some other keys used
for transport security. Afterwards, they send this data together
with a configuration object called POLICY to the HV.

Upon receiving the data from the guest owner, the HV calls
the LAUNCH_START command, which finalizes the ECDH
handshake between guest owner and SP. The SP can now

3



Guest Owner Secure ProcessorHypervisor

PDH_CERT_EXPORT

Load guest

LAUNCH_START

Certificates, Public Key

Session Info, Public Key

LAUNCH_UPDATE_DATA

LAUNCH_UPDATE_VMSA

LAUNCH_MEASURE

Nonce, HMAC

Host Phys. Addr., Length

Host Phys. Addr., Length

Secret Data

LAUNCH_SECRET

LAUNCH_FINISH

VMRUN

UNINIT

LUPDATE

LSECRET

RUNNING

LAUNCH_UPDATE_DATA

Fig. 1. SEV Guest Launch Process. This simplified illustration shows
the various states during VM startup and attestation. First, keys are ex-
changed and a cryptographic session is established. In the LUPDATE state,
the hypervisor loads the guest and then asks the SP to encrypt it via
repeated LAUNCH_UPDATE_* commands. The final LAUNCH_MEASURE
call retrieves a signed hash of the loaded guest data. If the guest owner
approves, various secret data can be safely loaded into the VM during the
LSECRET state. On completion, the hypervisor and the VM transition into
the RUNNING state, and the VM is executed.

derive the shared secret and use it to unwrap/verify the
received data. Next, it initializes the GCTX using the received
guest policy and generates a new VEK.

C. LUPDATE state

In the LUPDATE state, there are three primary commands:
LAUNCH_UPDATE_DATA, LAUNCH_UPDATE_VMSA and
LAUNCH_MEASURE. The LAUNCH_UPDATE_DATA com-
mand allows the HV to specify a guest handle, a 16 byte
aligned HPA PADDR and a multiple of 16 bytes L as a length.
The SP will then in-place encrypt the next L bytes starting

at PADDR with the VEK of the VM denoted by the handle.
In addition, the launch digest field of the GCTX is updated
with the plaintext of the encrypted data (see Section V-A).
The intention of LAUNCH_UPDATE_DATA is to encrypt and
measure the initial content of the VM, such that the HV can no
longer modify it. Encrypting the initial content is mandatory,
since the VM initially assumes that all memory accesses are
encrypted, so it can only execute the initial code if it has been
encrypted beforehand.

The LAUNCH_UPDATE_VMSA command is only ap-
plicable to SEV-ES VMs and works very similar to
LAUNCH_UPDATE_DATA, except that it can only load 4096
bytes, as it is intended to encrypt the VMSA. In addition, it
also initializes the VMCB. While not enforced, this is intended
to be called only once. Again, the launch digest is updated with
the loaded data.

The third and final command, LAUNCH_MEASURE, gen-
erates a launch measurement and transfers the VM to the
LSECRET state. The measurement consists of a 128-bit nonce
MNONCE and a 256-bit HMAC MEASURE, that is calculated
as follows:
1) Replace launch digest (LD) with hash(LD)
2) Calculate

HMAC(0x04 ‖ API MAJOR ‖ API MINOR

‖ BUILD ‖ POLICY ‖ LD
‖ MNONCE, TIK)

MNONCE is generated by the SP, API_MAJOR and
API_MINOR and BUILD specify the version of the firmware
on the SP. POLICY is the configuration structure that was sent
by the guest owner in the UNINIT state.

Next, the HV sends the launch measurement to the guest
owner, in order to prove that it did not manipulate the initial
content. It is assumed that the guest owner and the HV/cloud
service provider negotiated the initial content of the VM,
e.g., that the guest owner stated that they want a specific
UEFI version to be loaded. Thus, the guest owner has all the
information required to compute the HMAC themselves and
compare it to the value they received.

After successfully checking the launch measurement, the
guest owner can be sure that the initial memory content
matches their specification. Since, on startup, the VM treats
any memory as encrypted, it is unlikely that the HV can
achieve any meaningful manipulation of the VM’s code and
data by tampering with its memory. The only possibility for
the HV to encrypt data with the VM’s key is by using the
designated LAUNCH_UPDATE_* commands, but, as already
explained, this has the side effect of updating the launch digest
and thus changing the HMAC sent in the attestation report,
allowing detection by the guest owner. As only the SP and
the guest owner know the TIK used to key the HMAC, the
HV cannot produce valid HMACs itself.

D. LSECRET state
After the VM has transitioned into the LSECRET state,

two commands become available: LAUNCH_SECRET and
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LAUNCH_FINISH. The LAUNCH_SECRET command again
allows to encrypt data with the VM’s VEK. However, contrary
to the previous commands, the data passed to the command
now is encrypted with the TEK and integrity protected by an
HMAC keyed with the TIK. Both keys are only known to
the SP and the guest owner. If the integrity check fails, the
command aborts. The guest owner can use this mechanism to
safely send confidential data (e.g., disk encryption keys) to the
VM, while using the HV as a proxy. The HV could refuse to
relay the data to the SP, but it can neither manipulate the data
nor call the command with self-generated data, as it does not
know the TIK needed to pass the HMAC check.

Finally, the LAUNCH_FINISH command transitions the
VM into the RUNNING state, indicating that the VM is ready
to be started. The LAUNCH_SECRET and LAUNCH_FINISH
commands are disabled afterwards.

IV. ATTACKER MODEL

The attacker model is in line with SEV’s security model:
The attacker controls the hypervisor, and is able to modify
arbitrary physical memory and run or pause the VM according
to their wishes. However, they are not able to read or modify
the current register state and program counter of the VM, as
its state is encrypted using SEV-ES.

They know the initially launched code, since that needs to
be available in plaintext in order to be loaded into the VM. We
assume that the attestation is working in so far that the attacker
has to actually load and attest the supplied initial code image,
and cannot simply replace it with their own. We also assume
that the attestation protocol is carried out correctly, such that
the guest owner is assured that supposedly the correct image
was loaded, and subsequently launches the virtual machine.

The attacker is not able to read or modify encrypted disk
images without knowing the corresponding key. Finally, we
consider the SP itself to be secure.

V. EXPLOITING SEV’S PERMUTATION AGNOSTIC LAUNCH
MEASUREMENT

Given the VM attestation process laid out in Section III, we
show how an attacker can deviate from the intended startup
process in order to make the VM execute arbitrary code, which
corresponds to a full break of confidentiality and integrity.

In a first step, we show that SEV’s launch measurement
can be tricked into producing the same measurement for
any blockwise permutation of the initial VM content. We
illustrate how an attacker can use this flaw to construct an
encryption/decryption/code execution gadget, that runs within
the VM, but does not change its launch measurement and thus
cannot be detected by the guest owner. Finally, in Section VI,
we discuss the implications of our attack for the transition from
initially attested code to code residing on a virtual hard disk,
and demonstrate how we can use our attack to leak secrets.

A. Breaking the Launch Measurement
First, we show how a malicious HV can abuse a flaw in

the launch process to change the semantics of the loaded data
without changing the launch measurement.

A

B

Enc(A)

Enc(B)

LAUNCH_UPDATE_DATA(0x1000, 0x1000)
LAUNCH_UPDATE_DATA(0x2000, 0x1000)

0x
10
00

0x
20
00

GCTX.LD = (empty) GCTX.LD = hash(A, B)

B

A

Enc(B)

Enc(A)

LAUNCH_UPDATE_DATA(0x2000, 0x1000)
LAUNCH_UPDATE_DATA(0x1000, 0x1000)

0x
10
00

0x
20
00

GCTX.LD = (empty) GCTX.LD = hash(A, B)

Sequence 1

Sequence 2

Fig. 2. Two encryption sequences, yielding the same launch measurement
GCTX.LD for different orders of memory blocks. In the first sequence, the
memory pages A (address 0x1000) and B (address 0x2000) are encrypted in
memory order, i.e., LAUNCH_UPDATE_DATA is first called for block A, then
for block B. In the second sequence, the blocks are swapped in memory: A
now resides at address 0x2000, while B is at address 0x1000. By changing
the order of calls to LAUNCH_UPDATE_DATA, we are able to acquire the
same value for GCTX.LD in sequence 2 as for the “correct” ordering in
sequence 1. The guest owner thus has no means for distinguishing which
sequence has been used by the HV.

As described in Section III, the HV uses the
LAUNCH_UPDATE_DATA command to load and encrypt the
initial memory content of the VM. The command takes a
16-byte aligned HPA PADDR and a multiple of 16 bytes
as length L, and then in-place encrypts L bytes starting
at PADDR with the VM’s VEK. In addition, the command
updates the launch digest which is later used in the launch
measurement.

In our experiments, we observed that the content of the
launch digest is neither influenced by the HPAs passed to
LAUNCH_UPDATE_DATA, nor by the used block size and the
resulting varying number of calls to the command. Instead,
the encrypted data is simply “appended” to the launch digest.
While the official documentation is unclear at this point, we
suspect that the launch digest internally manages a SHA-256
hash state, which is updated each time after a certain amount
of data was inserted.

This implies that the HV can change the memory layout
of the loaded data without any impact on the resulting hash
value, as long as it makes sure that the order in which the data
is passed to LAUNCH_UPDATE_DATA matches the original
order. The modified ordering is illustrated in Figure 2.

B. Constructing Malicious Code Gadgets

We can now use our observations to construct malicious
code gadgets, solely by moving around 16-byte blocks and
triggering interaction with the HV.
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The general idea is very similar to the approach presented
in [44], where the authors leverage control over the first and
last bytes of 16-byte blocks to stitch together a sequence of
“payload” instructions and direct jumps, which they subse-
quently use to build an encryption oracle within the VM.
However, we cannot change a block’s content here, as this
would be detected during attestation.

We first scan the binary of the initial VM content, which,
in our case, can be split up into 230’000 16-byte blocks, for
the instructions that we want to execute in our gadgets. For
this, we are not bound to the originally intended decoding
order: As x86 instructions have variable length and are not
prefix-free, starting to decode the binary with different offsets
can lead to different valid instructions. On the downside, this
also means that decoding may fail because it encounters an
invalid instruction encoding. To address this, we only look for
“payload” instructions which reside at the end of a block or
are followed by a direct jump, such that we can proceed to
the next block.

Finally, we analyze the control flow of the original program
to find a location where we can place our gadget, so it is
executed at some point during the startup of the VM. We
also make sure that our changes to the block ordering do not
destroy the code needed to boot up the VM to the point where
our gadget is entered.

C. Encryption/Execution Gadget

We can now use this block chaining technique to build a
code gadget that enables the HV to encrypt (and decrypt)
arbitrary data with the VEK and inject it into the VM.

For this, we assume that the VM is started with the default
OVMF UEFI provided by AMD as initial memory content.
Note that the ideas presented here are also applicable to other
UEFI implementations that support SEV.

The encryption/execution gadget is constructed in two
stages:
1) Permute the initial VM content, creating a gadget that

maps the stack to an unencrypted shared memory page;
2) Use the control over the stack to construct a ROP gadget

that copies data from the unencrypted shared page to
encrypted memory and execute it as code. This code may
later copy decrypted memory back to the shared page, or
can be used to conduct other, more complex attacks.

Stage 1 In the first stage, we want to set the VM’s stack (i.e.,
its rsp register) to an unencrypted memory page, to allow
manipulation by the HV. Until reaching either long mode or
legacy Physical Address Extension (PAE) mode, the VM’s
memory accesses are unconditionally treated as encrypted.
Afterwards, the C bit in the page table controls whether a
page is accessed in encrypted or unencrypted mode. The only
exception are page table walks and instruction fetches, which
are always treated as encrypted [4, Sec 15.43.4,15.34.5].

After startup, OVMF quickly progresses to long mode.
While constructing its long mode page tables, OVMF also sets
up a shared page for the GHCB protocol [6], which, under

0d

44

23

eb

c6eb 1c da 7c 00 6b 01 19 6c 0e 6e 55 98 ec 77

10 fc 04 c0 9e 53 c4 db bd 69 66 7a c1 0f a2

12 80 fb ea ea 88 78 54 39 f1 24 ca 48

3a 08 f9 bd 54 48 ec 92 72 c3 1d a0 ad 89 cc

c3 dc ad d9 9d 34 65 e0 c2 56 c4 99 dd 07 f6

jmp 0x1e

cpuid

jmp 0x1e

eb 1c

mov esp, ecx

ret

Execution

Fig. 3. Sequence of 16-byte blocks for setting the stack pointer to a HV-
controlled address. The shown 16-byte blocks were taken from various places
in the initial code image and moved to an address which is reached by the
execution flow. The jmp instructions allow us to chain several blocks and skip
potential junk bytes in between. After the stack pointer has been changed, the
ret statement reads its return address from HV-controlled memory and thus
triggers a ROP chain.

SEV-ES, is required to handle the emulation of instructions
that need to share data with and/or receive data from the HV
(c.f. Section II-A).

To load the address of the shared GHCB page into the
rsp register, we opted for the following payload instruction
sequence:

• cpuid
Fills the eax, ebx, ecx and edx registers with processor
feature information. As shown in previous work [44], one
can abuse that this instruction is emulated by the HV and
fill the ecx register with the virtual address of the shared
GHCB page.

• mov esp, ecx
Updates the stack pointer with the address of the shared
page. Note the usage of 32-bit registers: This has the
advantage of having a shorter instruction encoding than the
64-bit equivalent, while still being sufficient, as in OVMF
the virtual address of the shared page is hardcoded to a
small constant.

• ret
Starts the ROP chain. As the stack pointer now points to
the unencrypted shared page, the HV can place arbitrary
return addresses (and other values) on the stack, which
allows to conduct a classic ROP attack.

The resulting block chain is illustrated in Figure 3. To ensure
the right timing for sending the manipulated cpuid register
values, the HV simply counts the number of emulated cpuid
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(1) 0x00000000fffd1ad0    pop rax
                          pop rbx
                          ret

(2) 0x00000000fffcef21    pop rdx
                          ret

(3) 0x00000000fffcfde6    mov qword ptr [rax], rdx
                          xor eax, eax
                          pop rbx
                          pop rbp
                          pop r12
                          ret

Fig. 4. ROP chain for writing data to VM memory. The ROP chain consists
of three gadgets. Each gadget begins with a payload instruction (highlighted
blue) and ends with a return statement, potentially with a few other instructions
in between. Gadget (1) loads an unencrypted 8-byte address from the stack
and writes it into rax. Gadget (2) loads an unencrypted 8-byte value from the
stack and writes it into rdx. Finally, gadget (3) stores the value from rdx at
the address pointed to by rax. The memory write in (3) triggers encryption
of the data stored in rdx, as the address in rax points to encrypted memory.

instructions, which is deterministic in the executed OVMF
code.

Stage 2 Coming from Stage 1, we now have full ROP
capabilities.

In order to load additional data into the VM and execute
it as code, we need to construct a ROP chain that copies
data from the unencrypted stack to a memory location that
is marked as encrypted. Then, we jump to that address using
a ret instruction. This indirect approach of encrypting the
code before execution is necessary, since, as mentioned in
Stage 1, instruction fetches always assume that the underlying
memory is encrypted. We abuse that, at the time of gadget
injection, OVMF’s page tables have all pages marked as
readable/writable, without having a ”no execute” bit. This
simplifies our attack, since we do not have to build a ROP
chain for modifying the page tables first.

Our resulting ROP chain is illustrated in Figure 4. It only
needs three gadgets, and allows us to write 8 bytes to an
arbitrary 64-bit address. We can then reuse the chain to write
complex new code into the VM. In Section VI, we show how
this code can be used to leak disk encryption keys.

In summary, we have seen that SEV’s launch measurement
mechanism is flawed, as it only attests that an arbitrary 16-byte
granular permutation of the initial data has been loaded. Next,
we have demonstrated the creation of malicious code gadgets
just by swapping around 16-byte blocks. We have shown an
instantiation of such a gadget, that maps the VM’s stack to
a shared page and employs a ROP attack to write additional
data and execute it as code.

VI. ATTACK CASE STUDY

With our encryption and code execution gadget from Sec-
tion V-B, the attacker gains control over the initially executed
code, and is able to insert their own. In the following, we
highlight critical moments in the startup of a SEV-secured
VM, and show how we can use our attack to take it over.

A. Experimental Setup

Our experiments are performed on a second generation
AMD EPYC Processor 7232P. The firmware of the SP is
version 24 build 0a [8] (most recent at time of writing). On
the HV side, we use Linux Kernel 5.6 from the official AMD
repository [1] (extended with our attack code) and QEMU [35]
to start the VM. QEMU was extended with AMD’s SEV-ES
patches [2] and the proposed patches for the secret injection
mechanism from [14] (see Section VI-C). Inside the SEV-ES
victim VM, we run OVMF [39] and Grub [20]. Both were ex-
tended with the secret injection mechanism patches from [14].
We provide our proof-of-concept code alongside with the used
software at https://github.com/UzL-ITS/undeserved-trust.

B. Trust Gap

For simplicity and scalability, only a small part of the VM’s
code is attested. In most cases, it suffices to attest a tiny initial
code image, which takes owner-supplied secrets to load and
decrypt a much larger encrypted disk image, which in turn
contains the operating system and the processed data. The
operating system can be considered trusted, as the attacker
should not be able to modify the encrypted disk image without
being in possession of the key.

The primary challenge is bridging the trust gap between
the attested initial code image, which is available in plaintext,
and the encrypted operating system: The guest owner needs
to be able to supply secret information for decrypting the disk
image, without an attacker being able to learn those secrets.

If an attacker gains access to a disk encryption key, they also
gain unthrottled read/write access to all of the VM’s data, even
after the VM was shut down. They can abuse this access to
extract secret data or manipulate the operating system.

C. Securely Injecting Secrets

To address this challenge, SEV offers the
LAUNCH_SECRET command, which allows the guest
owner to inject arbitrary secret values into the VM.

Since there is not yet a standardized toolchain, we focus
on the proposed launch flow from [14], which has some
of its patches already merged into the respective upstream
repositories. Note that any other possible launch process will
also need to bridge the aforementioned trust gap, and will thus
be quite similar to the launch flow discussed here.

The proposed launch flow works as follows: The initial
attested code image consists of both the OVMF UEFI binary
and the Grub bootloader, which thus cannot be modified by a
malicious HV. The UEFI performs the initial startup, and then
transfers control to the bootloader, which in turn unlocks an
encrypted disk image and boots the contained Linux kernel.

Both OVMF and Grub have been adjusted to respect the
secret injection mechanism: At build time, OVMF includes
a configuration table, which specifies the GPA where the
HV (QEMU) should inject the secret. While preparing the
VM startup, the HV scans the OVMF binary, locates the
configuration table and subsequently injects the secret at the
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5e pop rsi ; source address
5f pop rdi ; destination address
59 pop rcx ; n
f3 a4 rep movsb ; copy n bytes
f4 hlt ; halt VM

Fig. 5. Code gadget for copying data. The register values are passed via the
stack, to minimize the size of our injected code: By using the string copy
instruction rep movsb, we can fit the entire gadget into 6 bytes, so we only
need a single execution of the ROP chain from Figure 4. Since we only leak
the secret, we halt the VM after copying the data; however, if we wanted to
copy more data, we could replace the hlt instruction by a ret instruction
and execute the gadget multiple times with different parameters.

indicated address. OVMF then passes the secret to the Grub
bootloader, which uses it to unlock the disk.

D. Leaking the Disk Encryption Key

Given our attack primitives from Section V, leaking the
disk encryption key is quite straightforward. We already know
the length of the secret data, since the HV is responsible
for receiving the encrypted secret from the guest owner and
forwarding it to the SP via LAUNCH_SECRET, which expects
a public length parameter. In addition, we know the GPA of
the secret from OVMF’s configuration table. Using our ROP
chain, we can now inject a small code gadget which loops
over the secret data and copies it into shared memory. The
code gadget is shown in VI-D.

We halt the VM after extracting the secret; however, to avoid
detection by the guest owner, we could also use our copy
gadget to repair the code which we damaged by our block
moving approach. Then, potentially after injecting further spy
code into the previously encrypted disk image, we resume the
boot process.

VII. MITIGATIONS

Our attacks severely undermine the validity of AMD SEV’s
remote attestation. Unfortunately, it is not possible to fully
mitigate our attack with the current capabilities of SEV-ES,
due to the lack of page remapping protection, which will
only be available with SEV-SNP on upcoming 3rd generation
EPYC processors. Nonetheless, we discuss changes that could
be applied to systems limited to SEV-ES, to make exploitation
harder.

A. Increasing the Block Size

A simple countermeasure, which renders creating an exploit
by reordering code blocks much harder, is to increase the
minimal size of each measured block.

Given, e.g., our OVMF binary of 3.5 MB, a block size of 16
bytes yields around 230’000 blocks; for a block size of 4 kB,
this number shrinks to merely around 900, greatly reducing a
malicious HV’s ability to find a block ordering that produces
meaningful code, although it does not completely mitigate
it. Note that LAUNCH_UPDATE_DATA already supports large
block sizes: To improve performance, the corresponding kernel

code tries to process contiguous physical memory blocks,
which are chosen as large as possible.

Currently the protocol does not support specifying a certain
block size or including it in the launch digest. However, it
would be possible to implement a fixed block size without any
changes to the protocol, by hardcoding a size of 4 kB (page)
or even 2 MB (huge page) directly in the SP firmware. This
way, the guest owner just needs to require the corresponding
firmware version during attestation. Since the version check
is already included in the protocol and the HV only has to
update the SP firmware, this countermeasure is rather cheap.
Only the SP firmware and client applications which verify the
launch digest have to be changed.

B. Potential Changes to the Attestation Protocol

In order to further increase the power of the proposed
countermeasure or even fully close the vulnerability, one may
also include the physical addresses in the measurement and
attestation, or increase the size of the measured blocks and
add the block size to the measurement hash. This could be
achieved by computing

hi = hash(hi−1 ‖HPAi ‖ datai) or

hi = hash(hi−1 ‖ block sizei ‖ datai)

on each call i to LAUNCH_UPDATE_DATA, for a total of n
calls, and submitting the list of addresses or block sizes along
the measurement hn. Both of these changes require changing
the protocol of the remote attestation, since the address list or
list of block sizes must be sent along the measurement itself.

However, both approaches are intrinsically limited by the
underlying hardware assumptions and address mappings which
are in place during virtualization. The HV can still legally
reorder physically contiguous 4 kB pages, since it controls the
mapping of host physical to guest physical memory addresses
through its control over the Nested Page Table (NPT). I.e., the
hypervisor is capable of performing page remapping attacks,
as already exploited by Morbitzer et al. [34]. Thus, both
approaches are limited to assure the correct order within
and for the size of one memory page, which can already
be achieved with fixing the block size to 4 kB (2 MB) as
described in the previous section. The only advantage of
including the physical addresses in the measurement is that we
can ensure the order inside a 4 kB page, while still allowing
16 byte blocks as the smallest block size.

In conclusion, the attestation process is in need of fixing the
loaded binary to addresses within the guest’s address space:
Adding the guest physical address, instead of the host physical
address, to the measurement, and assuring that a remapping
between guest physical address and host physical address after
the initial allocation will be detected by the secure processor,
would completely close the vulnerability described in this
work. However, SEV-ES does not allow to detect a page
remapping and thus only allows for a partial mitigation.
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C. Changes in SEV-SNP

AMD SEV-SNP [3] is an upcoming extension to SEV-
ES, which is only supported on the third generation of
EPYC processors. As those only become available after the
submission deadline, the following is solely based on the
documentation [3, 4, 7].

One of the major changes in SEV-SNP is the introduction
of the Reverse Map Table (RMP). The RMP is an additional
page table, indexed by the HPA of a page. It adds several new
attributes, mostly for distinguishing VM and HV pages, such
that the HV cannot write to guest pages. In addition, the RMP
contains the GPA of VM pages and can be used to ensure
a one-to-one mapping between GPA and HPA to prevent
remapping attacks. In contrast to traditional page tables, the
HV does not have full control over the RMP, as it must use
hardware- and firmware-mediated ways to access it.

While the general flow of the launch process does not
appear to have changed, there are two essential changes to the
LAUNCH_UPDATE_DATA command, preventing our attack.
The first one implements the idea that we also proposed in
Section VII-A: The HV must either pass a 4 kB or a 2 MB
page to the command (however, 2MB pages are internally
treated as multiple 4 kB pages). The second change is the
calculation of the launch digest. The hash is now finalized after
each call to the launch command and calculated as follows:

hi = hash(hi−1 ‖ hash(datai) ‖ block sizei ‖ . . . ‖GPAi),

where “. . . ” represent additional fields that we omitted for
brevity. Due to hash finalization after each call, the launch di-
gest hn now reflects the amount of LAUNCH_UPDATE_DATA
calls used to load the data. In addition, the GPA field is of
special interest, because it includes the memory layout, as it
is observed by the guest, in the measurement. According to
the documentation, the GPA value is computed by the SP and
also stored in the RMP. Furthermore, the page is marked as a
guest page. The GPA value is enforced, because the hardware
page table walker checks that the GPA to HPA mapping in the
NPT matches the one in the RMP.

VIII. RELATED WORK

Since the initial release of AMD’s memory encryption
technology, first SME and later SEV, there has been a wide
range of attacks against its security guarantees. Hetzelt et
al. [22] exploited the unencrypted register state of the first
version of SEV to construct simple encryption/decryption
oracles. In addition they explored memory replay attacks.

Du et al. [18] unveiled the encryption mode, tweak values
and the resulting lack of integrity protection of SME on
Ryzen processors, which is closely related to SEV on EPYC
processors. They used this knowledge in addition with a
network service inside the VM to create an encryption oracle
on a simulated version of SEV, which was not yet available.

Li et al. [28] used the lack of integrity protection combined
with the knowledge of the tweak values to construct encryption
as well as decryption oracles. For this, they exploited the fact

that Direct Memory Access (DMA) operations issued by the
VM are mediated by the HV through shared memory pages.

Wilke et al. [44] extended the analysis of the encryp-
tion mode and the tweak values to first generation EPYC
and EPYC-embedded CPUs, unveiling an updated encryption
mode. They showed how to abuse the missing integrity protec-
tion combined with knowledge of the tweak values, to boot-
strap an encryption oracle from malicious code gadgets, solely
by moving around ciphertext blocks in memory. However,
the attack does not work on second generation EPYC CPUs,
as these feature an enhanced randomization of tweak values.
While our attack follows a similar approach of reordering
memory blocks, it does not rely on the encryption mode at
all, and is therefore also applicable to the currently available
second generation EPYC CPUs.

Morbitzer et al. [34] leveraged the HV’s control over the
NPT as well as the page fault side channel to construct a
decryption oracle. Similar to Du et al. [18], they require a
service running in the VM. In their follow-up paper [33], they
showed how to locate pages containing secrets, like OpenSSH
keys, in the VM.

Werner et al. [43] showed that it is possible to use the
unencrypted register values in the first SEV version to recon-
struct the code executed in the VM. Furthermore, they showed
how to use Instruction Based Sampling, a performance counter
subsystem, to fingerprint code executed in SEV-ES VMs.

Radev et al. [37] described multiple attacks, exploiting
insufficient value sanitization at the HV to VM boundary.
For example, they showed how to trick the VM into treating
arbitrary memory accesses as Memory Mapped I/O (MMIO),
as well as into using malicious virtualized cryptographic ac-
celerators provided by the HV. In addition, they demonstrated
how faking cpuid results can be used to corrupt the VM
page tables to mark all pages as unencrypted. They then used
the unencrypted stack to launch a ROP attack, similar to our
stage 2 gadget. However, in contrast to our attack, the page
table manipulation used by them can be detected by a simple
software countermeasure, as described in their paper.

Li et al. [29] demonstrated that the “security by crash”
philosophy behind AMD’s use of the Address Space Identifier
(ASID) for mapping VMs to their memory encryption keys is
flawed, as a malicious HV can swap the ASIDs of an attacker
VM and the victim VM to leak limited amounts of data.

Buhren et al. [15] explored another attack vector by an-
alyzing the firmware loading mechanism of the SP. They
discovered a bug allowing them to load customized firmware
on the SP, breaking the hardware root of trust.

IX. CONCLUSION

In this work, we have shown that the current attestation
mechanism of SEV has a significant flaw, as it allows the
HV to reorder blocks of the initially loaded image without
influencing the launch measurement, leaving the guest owner
unaware of our attack. We have been able to use this vulner-
ability to redirect execution and inject arbitrary code into the
encrypted VM, giving us full control over its execution flow.
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Moreover, we have shown how this vulnerability in the remote
attestation allows us to extract secret data and conduct other
attacks, like manipulating the booted operating system.

The attack described in this work undermines the validity
of AMD SEV’s remote attestation and thus its trustworthi-
ness as a trusted execution environment. Especially, when
authenticated and confidential execution in otherwise untrusted
environments are required, additional means for verifying the
authenticity of the loaded and executed software should be
taken into consideration, until the vulnerability is fixed.

We have described possible changes to the firmware of the
secure processor, allowing for a simple and reasonably secure
mitigation which could be rolled out by means of a firmware
update to existing EPYC processors of the first and second
generation. However, as argued in Section VII, we do not
think that it is possible to completely close this vulnerability
with the capabilities of SEV-ES. If the information provided
in the SEV-SNP white paper holds, full protection should only
become available with the third generation EPYC processors.

ACKNOWLEDGMENTS

This work was partially supported by the DFG grants
439797619 and 427774779.

REFERENCES
[1] Advanced Micro Devices, “Github - AMDESE/linux,” https://

github.com/AMDESE/linux, on branch ”sev-es-5.6-v3” at commit
”d0d7b0f09359da7316aee077bac92ec21a1a047b”.

[2] ——, “Github - AMDESE/qemu,” https://github.com/
AMDESE/qemu.git, branch ”sev-es-v12”, commit
”1cfb0be5fdad55948f42f9056dfc16dc435099cf”.

[3] ——, “AMD SEV-SNP: Strenghtening VM Isolation with Integrity
Protection and More,” https://www.amd.com/system/files/TechDocs/
SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf, Advanced Micro Devices, Tech. Rep., Jan 2020.

[4] ——, “AMD64 Architecture Programmer’s Manual Volume 2: System
Programming,” https://www.amd.com/system/files/TechDocs/24593.pdf,
October 2020, rev. 3.36.

[5] ——, “Secure Encrypted Virtualization API,” https://www.amd.com/
system/files/TechDocs/55766 SEV-KM API Specification.pdf, April
2020, rev. 3.24.

[6] ——, “SEV-ES Guest-Hypervisor Communication Block Standardiza-
tion,” https://developer.amd.com/wp-content/resources/56421.pdf, 2020.

[7] ——, “SEV Secure Nested Paging Firmware ABI Specification,” https://
www.amd.com/system/files/TechDocs/56860.pdf, August 2020, rev. 0.8.

[8] ——, “SEV firmware for Rome,” https://developer.amd.com/wordpress/
media/2013/12/amd sev fam17h model3xh 0.24b0A.tar.gz, 2021, ver-
sion 0.24b0A.

[9] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13. ACM, 2013.

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “SCONE:
Secure Linux Containers with Intel SGX,” in OSDI. USENIX Associ-
ation, 2016, pp. 689–703.

[11] Asylo Project, https://github.com/google/asylo, accessed: 2021-01-26.
[12] A. Bennée, “Anatomy of a boot, a qemu perspective,” https://www.qemu.

org/2020/07/03/anatomy-of-a-boot/, accessed: 2021-01-29.
[13] J. Bottomley, “[edk2-devel] [patch v3 0/6] sev encrypted boot

for ovmf,” https://www.redhat.com/archives/edk2-devel-archive/2020-
November/msg01247.html.

[14] ——, “Deploying encrypted images for confidential computing,”
https://blog.hansenpartnership.com/deploying-encrypted-images-for-
confidential-computing, December 2020, accessed: 2021-01-22.

[15] R. Buhren, C. Werling, and J.-P. Seifert, “Insecure Until Proven Updated:
Analyzing AMD SEV’s Remote Attestation,” in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19. ACM, 2019.

[16] J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI: hijacking transient
execution through microarchitectural load value injection,” in IEEE
Symposium on Security and Privacy. IEEE, 2020, pp. 54–72.

[17] V. Costan and S. Devadas, “Intel SGX Explained,” https://eprint.iacr.org/
2016/086.pdf, 2016.

[18] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang, “Secure
encrypted virtualization is unsecure,” arXiv preprint arXiv:1712.05090,
2017.

[19] Enarx Project, https://github.com/enarx/enarx, accessed: 2021-01-26.
[20] GNU Project, “Gnu grub,” https://www.gnu.org/software/grub/, ac-

cessed: 2021-01-22.
[21] Google, “Google cloud confidential computing / confidential vms,”

https://cloud.google.com/compute/confidential-vm/docs/about-cvm, ac-
cessed: 2021-01-26.

[22] F. Hetzelt and R. Buhren, “Security Analysis of Encrypted Virtual
Machines,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser.
VEE ’17. ACM, 2017, pp. 129–142. [Online]. Available: http:
//doi.acm.org/10.1145/3050748.3050763
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