
1

Statistical detection of format dialects using the
weighted Dowker complex

Michael Robinson
Department of Mathematics and Statistics

American University
Washington, DC

Email: michaelr@american.edu

Letitia W. Li
BAE Systems FAST Labs

Arlington, VA
Email: letitia.li@baesystems.com

Cory Anderson
BAE Systems FAST Labs

Arlington, VA
Email: cory.s.anderson@baesystems.com

Steve Huntsman
Arlington, VA

Email: sch213@nyu.edu

Abstract—This paper provides an experimentally validated,
probabilistic model of file behavior when consumed by a set
of pre-existing parsers. File behavior is measured by way of a
standardized set of Boolean “messages” produced as the files
are read. By thresholding the posterior probability that a file
exhibiting a particular set of messages is from a particular
dialect, our model yields a practical classification algorithm for
two dialects. We demonstrate that this thresholding algorithm for
two dialects can be bootstrapped from a training set consisting
primarily of one dialect. Both the (parametric) theoretical and
the (non-parametric) empirical distributions of file behaviors for
one dialect yield good classification performance, and outperform
classification based on simply counting messages.

Our theoretical framework relies on statistical independence
of messages within each dialect. Violations of this assumption are
detectable and allow a format analyst to identify “boundaries”
between dialects. A format analyst can therefore greatly reduce
the number of files they need to consider when crafting new
criteria for dialect detection, since they need only consider the
files that exhibit ambiguous message patterns.

I. INTRODUCTION

This paper provides an experimentally validated, proba-
bilistic model of file behavior on a set of Boolean features
(“messages”). By thresholding the posterior probability that a
file exhibiting a particular set of messages is from a particular
dialect, our model yields a practical classification algorithm for
two dialects. We demonstrate that this thresholding algorithm
for two dialects can be bootstrapped from a training set
consisting primarily of one dialect. Both the (parametric)
theoretical and the (non-parametric) empirical distributions of
file behaviors for one dialect yield good classification perfor-
mance. Furthermore, although message count may correlate
with one dialect over another, we show that our approach
yields a substantially better classifier because it correctly
dispositions the files that do not follow this trend.

Although our theoretical framework relies on statistical
independence of messages within each dialect, violations of

this assumption are detectable and allow a format analyst
to identify “boundaries” between dialects. The key payoff
of this approach is that we can tell which message patterns
are easy to disposition as one dialect or another, and we
can also identify which message patterns are ambiguous. This
information allows an analyst to pinpoint specific features that
account for the files on which two (or more) parsers disagree.

A. Application context

File format specifications are dynamic entities, and are
often ambiguous. A given clause in a specification may have
several distinct but self-consistent interpretations, and these
interpretations may impact the interpretations of other, related
clauses. As a result, files from different dialects of a format
tend to exhibit divergent behavior at multiple, independent
points within a parser’s code base. Our methodology exploits
this independence structure to discriminate between dialects.

When standards organizations attempt to resolve an am-
biguity in the specification, stakeholders bring example files
that exhibit specific behaviors. One may suspect that these
files are not unbiased samples from a statistical perspective!
Presently, there appears to be no unbiased way to query the
corpus of files “in the wild” to find examples of files whose
behavior is ambiguous. Our methodology provides an even-
handed, systematic way to use an existing set of parsers and a
large corpus of files to identify specific parser message patterns
that are either easy (or difficult) to disposition as one dialect
or another. Filtering for these message patterns can enable an
expert user to identify a sample of files that are representative
of the dominant dialects with different interpretations of the
specification.

B. Background

Beyond what our team has previously published in the past
year or so, there appears to be very little work in analyzing file
behavior using statistical tools [1], [2]. In contrast, nearly all

Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.

ar
X

iv
:2

20
1.

08
26

7v
1 

 [
cs

.C
E

] 
 2

0 
Ja

n 
20

22



2

existing file format analysis uses the structure of file contents
rather than the responses of parsers to those contents (for
instance, see [3]–[7]).

Most relevant to our work, [8] notes that 39 valid dialects
for CSV exist, which makes parsing any given CSV file
challenging. Dialects all contain their own set of quotation
marks, escape characters, delimiters, headers, comment text,
etc. Their approach identifies the dialect of a file by using
consistency measures that are expected to score higher if
the dialect is identified. When the dialect and its associated
delimiters are used correctly in a parse, the number of cells in
a row should all be the same, and the types of cells in a single
column should all be identical. The PADS project aids users by
generating a formal language description of an ad hoc format,
including a inference algorithm that uses statistical histograms
of tokens to identify if tokens should be combined into arrays
or structures [9].

Statistical analysis of files has also been used for malicious
file detection or analysis of collected drives as digital forensic
evidence. The DIRIM tool detects suspicious files or drives
based on file metadata [10]. It uses PCA and k-means to
cluster files and determine features more likely indicative of
files of interest, such as those attempting to conceal their
file type with a misleading file extension. Statistical features
based upon file actions has also been used to identify certain
malicious behaviors [11]. Although they start with data that
are formatted similarly to ours, their ultimate goal is simply
classification rather than dialect identification.

In other applications, clustering has been used to identify
natural language dialects. Lundberg showed that one can
relate clusters in recordings from Swedish speakers to spoken
dialects. Recordings were converted into acoustic features,
and clustered using PCA, k-means, and hierarchical clustering
[12]. Grieve et al. also used hierarchical clustering for classi-
fication of dialects across different regions of the US, based
on use of lexical alternation variables (for instance, “actually”
versus “in fact”) [13].

Finally, we note in passing the structural similarity between
the weighted Dowker complex approach used here and factor
analysis [14]. Factor analysis effectively works from the
opposite perspective to ours. One starts with an assumed
dependence between variables rather than locating violations
of independence when they occur in the data. The difference
is important; violations of independence occur near “dialect
boundaries” within a dataset.

C. Assumptions and Limitations

This paper assumes that there is a pre-existing collection
of Boolean “messages” produced by several parsers, and that
each file under consideration has been processed by each
parser. We will assume that these messages cover all of the
relevant aspects of the dialects that we wish to measure, and
that the messages are diverse enough to discriminate between
these aspects. Our methodology is format agnostic, in that it
does not look at the file contents directly. File contents are
only considered through the lens of the pre-existing parsers,

so a user of our method will not need to be a format expert.
Moreover, “messages” need not be error messages, per se.
For instance, a message could be the presence or absence of
a certain byte sequence in the file, or it may simply report
whether the exit code for a given parser corresponds to a valid
parse.

The theoretical justification for our method relies upon the
independence of messages for files within a given dialect. In a
representative sample of messages for the dataset we describe
in the next section, we found that most pairs of messages are
independent, though a small subset of messages are highly
dependent on other messages (see Section II-B).

In our specific dataset, this dependence arises because
several parsers can be run with different options. Running the
same parser with different options sometimes results in nearly
identical messages being produced.

The proper strategy from the perspective of a formal model
would be to capture the dependence structure, but it is
extremely computationally infeasible to test for dependence
(even pairwise dependence) whenever there are more than a
few dozen messages. When we incorrectly assume conditional
independence across all messages—as we will blithely pro-
ceed to do—this artificially reduces the probability of certain
patterns of messages below what is actually observed. We
can compensate for this effect by raising the overall message
probability above what is estimated on a per-message basis.
This appears to result in a distribution of message patterns that
agrees with the observations, though some of the multi-way
dependence structure is lost.

Finally, we will assume that for each dialect that we wish
to study, there are only two kinds of messages: those that
occur frequently for that dialect, and those that occur at
about the same frequency as for other dialects. Although
apparently limiting, our dataset agrees with this assumption
(see Figure 7). The less frequent kind of message is effectively
a “background” message. At the start of our analysis, we
do not know which message plays which role for any given
dialect.

II. DATASET DESCRIPTION

The data we processed to test our methodology were
produced as training data by the Test and Evaluation Team
for the DARPA SafeDocs evaluation exercise 3. These data
consist of PDF files, ostensibly compliant with the ISO 32000-
2 standard. For this exercise, we used the “Universe A” good
files and bad files datasets. Each dataset consisted of 100001
hand-curated PDF files, for a total of 200002 files.

Given that the Test and Evaluation Team consists of PDF
format experts, the Test and Evaluation Team was able to
manually ensure that these two datasets had known ground
truth: the good files are either syntactically and semantically
valid PDF files, or are files that could be unambiguously
corrected. The bad files exhibit various kinds of malformations
including syntax errors, semantic violations, or other kinds of
problems. The good files were largely sourced from Common
Crawl [15], while the bad files were drawn from various

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



3

TABLE I
PARSERS AND OPTIONS USED

Parser Possible options Messages
caradoc extract 121

stats 121
stats --strict 94

hammer (none) 69
mutool clean 214

draw 248
show 75

origami pdfcop 40
pdfium (none) 26
pdfminer dumppdf 88

pdf2txt 155
pdftk server 33
pdftools pdfid 4

pdfparser 30
peepdf (none) 4
poppler pdffonts 100

pdfinfo 90
pdftocairo 214
pdftoppm 155
pdftops 189
pdftotext 139

qpdf (none) 192
verapdf greenfield 40

pdfbox 50
xpdf pdffonts 82

pdfinfo 70
pdftoppm 122
pdftops 157
pdftotext 100

Total 3022

sources: some were found in the wild (from Common Crawl),
some were malicious files created by the Test and Evaluation
Team, and others were non-malicious non-compliant files
created by the Test and Evaluation Team.

Each file was processed through 13 distinct base parsers,
run with various options to make a total of 29 parsers. A
total of #M = 3022 Boolean messages were collected, as
shown in Table I. One message per parser is an exit code
corresponding to the presence of an error, which accounts for
a total of 29 messages. The rest of the messages correspond
to specific regular expressions (regexes) run against stderr,
as explained in Section II-A. Several of these messages were
found to play an important role in identifying dialects and are
discussed in detail in latter sections of this paper. The reader
interested in seeing example regexes should consult Table V.

The input to the methodology described in this paper is
therefore an unordered list of file-message pairs, recording
the set of messages that occurred for each file. These data
can be rendered into a matrix form, in which the rows
correspond to messages and the columns correspond to files.
The entries are either 1 or 0, if the message occurred or did not
occur, respectively. The matrices for both datasets are shown
in Figure 1. Since the same set of messages was collected
for both datasets, the rows have the same meaning in both
matrices. Even though the same number of files was present
in each dataset, the meaning of the columns differs since the
sets of files differ.

It is immediately clear visually that the two matrices are
quite different. In particular, the bad files produce far more
messages than the good files on average. A rough classification
of an unknown file from one of these two sets based on its
message count can clearly be an effective strategy. However, as
will be shown in Section IV-D, our method outperforms this
naı̈ve strategy by a wide margin. One can determine which
specific message patterns correspond to different behaviors,
yielding a finer classification.

A. Message regex construction

The message regexes were generated by running all unique
stderr messages for each parser (independently in parallel)
through a set of manually created find-and-replace rules,
followed by a final multi/single line filter, as described below.
The idea is that message regexes should match to a message
type or template, ignoring variable fields. For example, one
of the caradoc stderr messages is PDF error : Error
in Flate/Zlib stream in object [number]!, and
messages which fill in the template with different object
numbers should all still be combined into the same regex:
PDF error : Error in Flate/Zlib stream in
object \d+ !

Each rule includes (1) a stderr-file-wide regex, (2) a find
regex, and (3) replace text. If the rule’s stderr-file-wide
regex matches the stderr file produced by a parser, then
the rule’s find regex is used to replace all its matches with the
rule’s replace text to create a potential message regex.

Newlines are not automatically treated as a message de-
limiter, so the resulting regex set contains duplicates of sin-
gle/multi line messages in different orders. To compress these
duplicates, a final multi/single line filter numbers all unique
lines and repeatedly loops through the sequences to distinguish
single line regexes from multi-line regexes. To this end, it
uses the known single lines to identify and split more single
lines, until a final set of single lines and unsplittable multi-line
message regexes is obtained for each parser.

B. Preliminary test: Message independence

To assess the message conditional independence assump-
tion, we ran χ2 tests for independence on each pair of
messages drawn from a simple random sample of n = 30
messages for the good files and the bad files, separately. Figure
2 shows a summary of the resulting p-values for each pair of
messages from the sample for both the good (left) and bad
(right) files. A small p-value corresponds to a likely dependent
pair of messages, while a large p-value corresponds to a pair
of messages that are likely independent. Figure 2 shows that
most message pairs are likely independent (with p > 0.05,
though typically much larger). There is a small subset of the
message pairs that are very dependent (with p < 0.05). Given
the banding structure, these dependencies are caused by a
small number of individual messages.

Some of the most significant message dependencies corre-
spond to duplicate regexes run on the output of a given parser,
when different options are enabled. For instance, messages 19

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



4

Good files Bad files
file # file #

m
es

sa
ge

 #

Fig. 1. Matrices of messages (rows) versus files (columns) for the SafeDocs Evaluation 3 Universe A good files (left) and bad files (right). The message
numbers are arbitrary but are the same for both matrices. The files differ between the two data sets.

Good files Bad files

Fig. 2. SafeDocs Evaluation 3 Universe A dataset pairwise χ2 test for independence between a random sample of 30 messages. The p-values for each pair
are shown for the good files (left) and bad files (right).

and 140 in Table V use the same regex for the output of the
caradoc parser. Message 19 is reported when caradoc is
run with the extract option, while message 140 is reported
when caradoc is run with the stats option. Given that
running caradoc with different options likely uses the same
code in many places, is reasonable to expect—though it need
not be the case that—a given file will produce both of these
messages or neither of them.

III. METHODS

Let A and B be two sets of files, corresponding to different
dialects that we would like to classify. That is, files in A are
of one dialect, while files in B are of another dialect. Each of
these files are run through parsers that can potentially produce
any messages from a fixed set M of messages. We will assume
that the messages are independent as random variables, after
they have been conditioned upon the dialect. That is, if we are
only considering files of dialect A, then the messages will be
independent. However, if we consider the files in two dialects
A ∪B, then independence may be violated.

The independence assumption lets us consider the message
probabilities for each dialect separately. In the case of dialect

A, we will model the messages as Bernoulli random vari-
ables with one of two probabilities: p0 or pA. The subset
of messages with probability pA is denoted as MA ⊆ M .
The remainder of the messages (in M c

A = M − MA, the
complement of MA within M ) are assumed to occur with
probability p0. If we assume that pA > p0, it is useful to
interpret MA as the set of messages that are “characteristic”
to dialect A. We can similarly define a set MB of messages
that occur with probability pB for files in dialect B.

We will use only one value for p0 across both dialects,
which suggests the interpretation that p0 is the “background”
message probability. If message is in MA ∩M c

B , then it will
either occur with probability pA if the file is in dialect A,
or it will occur with probability p0 if the file is in dialect B.
Conversely, a message in M c

A∩MB will occur with probability
pB if the file is in dialect B, or it will occur with probability
p0 if the file is in dialect A.

Under the above assumptions, the probability of getting

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



5

exactly a set of messages K ⊆M on a file f in dialect A is

P (K|A) =p#(K∩Mc
A)

0 (1− p0)#(Kc∩Mc
A)×

p
#(K∩MA)
A (1− pA)#(Kc∩MA).

(1)

We note that in our two datasets, the messages are not com-
pletely independent, especially for those messages that have a
low probability of occurrence. The proper probabilistic model
should account for various correlations between messages, but
is substantially more complicated than Equation (1). That said,
by artificially inflating the probability p0, one can produce
similar message patterns to what are observed in the data.

A. Estimating the parameters of the model for a single dialect

If #MA � #M , then we can estimate p0 from the data.
The probability that no messages will occur is then

P (∅|A) = (1− p0)#Mc
A(1− pA)#MA

= (1− p0)#M

(
1− pA
1− p0

)#MA

≈ (1− p0)#M .

(2)

On the other hand if pA � p0 is a good assumption, then
considering each message independently will identify those
that are in MA, since their individual probabilities differ from
p0 by a significant amount.

Although it turns out to be unnecessary in the case of our
dataset, one could identify messages in MA by a standard
hypothesis test for a proportion. This is helpful if pA is close
to p0. To that end, if the t-test statistic for message k,

t =
pk − p0√
p0(1−p0)

#files

is large—say larger than 1.96 for 95% confidence—then we
conclude that this message is an element of MA.

B. Message patterns and weighted Dowker complexes

Given the set of messages M , there are 2M possible
message patterns that might occur for a given a file. Under the
model given by Equation (1), not all of these are equally likely.
Some message patterns can be expected to be quite common.
For instance, if the messages are all “errors” and the dialect
under consideration consists of mostly valid files, we should
expect the the empty pattern ∅ to be the most common.

The set of message patterns that occur for a given dataset
has rich mathematical structure. The most famous of these
structures is that of the Dowker complex.

Definition 1. [2], [16] The set X of all message patterns K ⊆
2M such that there is a file exhibiting (at least) the messages in
K is called the Dowker complex. Each such message pattern
is called a Dower simplex. Furthermore, the number of files
exhibiting exactly the messages in K and no others is called
the differential weight d(K). For simplicity, we will usually
call d(K) the weight or the file count for the message pattern
K.

There are many interesting properties of the Dowker com-
plex, because it is an example of an abstract simplicial
complex, a combinatorial topological model of an abstract
space. For our purposes in this article, the most important
properties follow from the fact that message patterns are
partially ordered by subset inclusion. That is, if K1, K2,
and K3 are message patterns and we know that K1 ⊆ K2

and K2 ⊆ K3, then it follows that K1 ⊆ K3. Moreover, if
K1 ⊆ K2 and K2 ⊆ K1, then it follows that K1 = K2.
It is obvious that the message count for a message pattern
K (the number of messages in K) constrains which other
message patterns are related to K. This impacts the statistics
of the distribution of message counts exhibited within a given
dataset, as will be explained in Lemma 1 of Section III-C.

Since the number of messages is typically large, for instance
#M = 3022, the number of possible message patterns is truly
enormous. It is therefore unwise to attempt to compute the
weight of all possible message patterns for a given dataset.
Since most of these weights will be zero, it is much better
to compute the message patterns that are actually present
and their corresponding weights simultaneously. This can
be done efficiently by lexically sorting the columns of the
matrix form of the data, and then grouping blocks of identical
columns greedily. Each distinct column clearly corresponds to
a particular message pattern with a nonzero weight, and the
weight is simply the number of duplicate columns.

As a sample implementation of this greedy approach, we
exhibit a very succinct implementation in the tidyverse
dialect of the R statistical programming language. (A more
optimized Python implementation, suitable for interactive ex-
ploration of our entire test data, is discussed in Section IV-C.)
This implementation assumes that the Boolean matrix of
messages is stored as a data frame called message_data, in
which the rows correspond to files. (That is, the data frame is
the transpose of the matrices shown in Figure 1.) The columns
which correspond to messages are named starting with the
character ’X’, and all other columns are ignored.

The following snippet will compute a new data frame called
dowker containing the Dowker complex and weights (file
counts), and then produces a histogram of the weights, like
what is shown in Figure 4. Because the count() function is
quite efficient, the snippet runs quickly provided that the data
fit in memory.

dowker <− message data %>%
group by ( a c r o s s ( s t a r t s w i th ( ’X’ ) ) ) %>%
count ( name= ’ we ig h t ’ , s o r t =TRUE) %>%
ungroup ( )

dowker %>%
mu ta t e ( s i m p l e x =row number ( ) ) %>%
g g p l o t ( a e s ( x= s implex ,

y= s o r t ( weight ,
d e c r e a s i n g =TRUE ) ) ) +

geom l i n e ( )

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



6

Fig. 3. Probability that a file will produce a certain number of messages, given
a total of 8 messages: 3 messages with probability 0.25, and 5 messages with
probability 0.4.

C. Relationship with message count

If the messages mostly correspond to error conditions and
most files in a given dialect are valid, then we expect that
most files will generate few messages. Using the model given
by Equation (1), the probability that a file will produce n
messages is the weighted sum of binomial distributions,

P (#K = n|A) =
n∑

k=0

[(
#MA

k

)(
#M −#MA

n− k

)
pn−k0 ×

(1− p0)#M−#MA−(n−k)×
pkA(1− pA)#MA−k

]
After a bit of algebra (or logic), if pA = p0, then the

probability of n messages occurring is simply given by a
binomial distribution. Since the binomial distribution is not
necessarily monotonic, neither is message count, for instance
see Figure 3. Nevertheless, there is a definite dependence
between message count and the probability of a given message
pattern.

Lemma 1. Assume that each message has probability less
than 0.5 and the messages are independent when conditioned
on files of dialect A. If K1 ⊂ K2 are two message sets, so
that #K1 < #K2, then P (K2|A) < P (K1|A).

Proof. By moving from K1 to K2, we are merely swapping
out factors in P (K|A) of the form (1−pk) for corresponding
factors pk. Under the hypothesis, these new factors are smaller.

If messages occur with probability greater than 0.5, it is
usually more informative to consider their absence instead
of their presence. For instance, pdfium usually produced a
message Processed \d+ pages\.. The absence of this
message suggests that the parser exited without producing
any useful output because the file was too malformed, but
its presence was not very helpful.

Note that the Lemma is clearly true for Equation (1),
though it holds even if every message probability is different.
Inspired by the binomial distribution, we expect the weight

Fig. 4. Expected weight (file count) of a simplex compared with its message
count, given a total of 8 messages: 3 messages with probability 0.25, and 5
messages with probability 0.4.

to eventually decrease as number of messages increases, as
shown in Figure 4. The variability in weights in Figure 4 is
a bit misleading, because as messages are added the weight
must decrease.

Corollary 1. Under the same conditions as Lemma 1, if K1

and K2 are two Dowker simplices, with K1 ⊂ K2 (so that
K2 consists of more messages happening), then the expected
weights satisfy d(K1) > d(K2).

That is, patterns with a higher message count are typically
exhibited by fewer files. Note that this does not mean that the
weight decreases with increasing message count; only that it
decreases as additional messages are considered. As a result,
it is particularly interesting when this trend is not followed in
the actual data: the weight increases as additional messages are
added. These violations of Corollary 1 typically occur when
messages are strongly dependent upon one another, and are
effectively measuring related phenomena.

D. Distribution of weights

Observe that for a given pattern of messages K for a single
dialect A, Equation (1) gives the probability that a particular
file will count towards the weight for K, when K is thought
of as a simplex of the Dowker complex.

A convenient display of the weights for a given set of
message patterns is to sort them in decreasing order, resulting
in a Dowker histogram. Equation (1) specifies the expected
values of each possible weight, but does not specify how many
simplices will have this particular weight. This is easily found,
however. There are(

#MA

k

)(
#M −#MA

n− k

)
different simplices corresponding to the situation where n
messages occurred, k of which are characteristic to the dialect

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



7

Fig. 5. Histogram of expected Dowker weights (red) versus 300 random
trials (blue/gray) of 1000 files, with a total of 8 messages: 3 messages with
probability 0.25, and 5 messages with probability 0.4. Each point along the
horizontal axis specifies a simplex (ordered so that their corresponding weights
decrease).

A. Each of these simplices has the same expected weight,
namely

P (#K = n,#(K ∩MA) = k|A) =
pn−k0 (1− p0)(#M−#MA−(n−k))pkA(1− pA)#MA−k.

(3)

Example 1. Convergence of the actual weights to the expected
weight computed by Equation (3) is quite rapid if p0 and
pA are not close to 0.5. Consider a dataset with 8 messages
collected from 1000 files, in which 5 of the messages occur
with probability 0.4 and the remaining 3 messages occur with
probability 0.25. Such a dataset is much smaller than the
dataset we ultimately considered! To assess the variability
in the resulting Dowker histogram, we simulated 300 cases
of this kind of dataset. The resulting histograms are shown
(in aggregate) in blue in Figure 5, over which the expected
weights are plotted in red. There is quite close agreement
between the simulated and expected histograms.

E. File ratios for two dialects

Suppose that the dataset contains files from two dialects, A
and B. Although files from both dialects might exhibit a given
message pattern, this pattern may occur more frequently for
files from one dialect. Another way to interpret this situation
is that files of one dialect may be more prevalent on certain
Dowker simplices than on others. If the distribution of files
across the simplices differs, then it is possible to separate
(some portion of) the dialects. There can be simplices where
the dialects overlap, namely certain patterns of messages that
are exhibited with roughly equal probabilities by both dialects.
These files cannot be separated using message patterns, and
are of potential interest to file format analysts.

The ratio of dialect B files to dialect A files for a message
pattern K is

P (K|B)(#B files)
P (K|A)(#A files)

=

(
P (K|B)

P (K|A)

)(
P (B)

P (A)

)
(#files) .

Notice that the ratio of conditional probabilities is the only
dependence on the simplex K. This ratio can be estimated
using Equation (1).

Lemma 2. If MA ∩MB = ∅, then the ratio of conditional
probabilities for B files to A files in simplex K is expected to
be

P (K|B)

P (K|A)
=

[(
p0
pA

)(
1− pA
1− p0

)]#(K∩MA)

×[(
pB
p0

)(
1− p0
1− pB

)]#(K∩MB)

×(
1− p0
1− pA

)#MA
(
1− pB
1− p0

)#MB

.

If the conditional independence assumption is violated, the
ratio of conditional probabilities can still be computed. In this
case, it is usually called a pseudolikelihood ratio [17].

Proof. This is an elaborate calculation following from Equa-
tion (1), the main goal of which is to eliminate the com-
plements where they appear on each of K, MA and MB .
The following Boolean algebraic identities help to simplify
the work:

K ∩M c
A = (K ∩M c

A ∩M c
B) ∪ (K ∩M c

A ∩MB)

K ∩M c
B = (K ∩M c

A ∩M c
B) ∪ (K ∩MA ∩M c

B)

Kc ∩M c
A = (Kc ∩M c

A ∩M c
B) ∪ (Kc ∩M c

A ∩MB)

Kc ∩M c
B = (Kc ∩M c

A ∩M c
B) ∪ (Kc ∩MA ∩M c

B)

Specifically, the first two identities, followed by an application
of the disjointness MA ∩MB = ∅, establishes that

p
#(K∩Mc

B)
0

p
#(K∩Mc

A)
0

= p
#(K∩MA∩Mc

B)−#(K∩Mc
A∩MB)

0

= p
#(K∩MA)−#(K∩MB)
0 .

In a similar way, we can derive that

(1− p0)#(Kc∩Mc
B)

(1− p0)#(Kc∩Mc
A)

= (1− p0)#(Kc∩MA∩Mc
B)−#(Kc∩Mc

A∩MB)

= (1− p0)#(Kc∩MA)−#(Kc∩MB).

Reorganizing yields the ratio

P (K|B)

P (K|A)
=

(
p0
pA

)#(K∩MA)(
pB
p0

)#(K∩MB)

×(
(1− p0)
(1− pA)

)#(Kc∩MA)(
(1− pB)
(1− p0)

)#(Kc∩MB)

.

To remove the remaining complements on the K, observe that

#(Kc ∩MA) = #MA −#(K ∩MA)

#(Kc ∩MB) = #MB −#(K ∩MB)

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



8

from which the desired result follows.

Under the assumption that both pA and pB are greater than
p0, the first factor in the statement of Lemma 2 is less than
1, while the second is greater than 1. Therefore, the ratio of
dialect B to dialect A files in the simplex corresponding to K
is increased by ensuring that the messages in K contain all
of MB and none of MA. Messages outside MA ∪MB do not
impact the ratio of files in K at all. This is sensible: if one
wishes to collect mostly dialect B files, one looks for those
that produce any messages in MB but none in MA.

Conversely, places where the file ratio is close to 1 are
message patterns that are ambiguous. Format analysts should
spend more time on that particular set of files, since it is
hard to disposition the files as clearly one dialect or the
other without inspecting the file contents directly. One could
imagine that it might also be possible to craft new messages
that discriminate between the dialects better by considering
only the files exhibiting these ambiguous message patterns.
This may greatly reduce the number of files that need to be
considered.

Corollary 2. If MA ∩MB = ∅ and p = pA = pB , then the
ratio of B files to A files in simplex K is expected to be

P (K|B)

P (K|A)
=

[(
p

p0

)(
1− p0
1− p

)]#(K∩MB)−#(K∩MA)

×(
1− p
1− p0

)#MB−#MA

.

Corollary 2 is straightforward to apply and gives fine-
grained information about where to look for files of a certain
dialect.

Example 2. Consider a notional dataset containing files from
two dialects A and B. Suppose that there are three messages
in total with #MA = #MB = 1, and MA ∩MB = ∅. If we
let p = pA = pB = 0.4, p0 = 0.2, this dataset will satisfy the
hypotheses of Corollary 2.

For three messages, there are 8 possible message patterns.
These message patterns can be organized in a lattice based
upon incrementally adding new messages, as is shown in
Figure 6. In the figure, the message patterns are indicated by
three squares: a filled square indicates that the corresponding
message occurred, while an empty one indicates that the
message is absent. Message count increases as one moves up
in the diagram: the bottom row corresponds to files exhibiting
no messages, while the top row corresponds to files exhibiting
all three messages.

Corollary 1 asserts that because p, p0 < 0.5, the per-
dialect weights (shown as areas in the pie charts in Figure
6) must decrease as one follows the gray arrows upwards
in the diagram (adding messages incrementally). Corollary 2
was used to compute the expected file ratio for each message
pattern.

The largest weight is on the bottom of the diagram, where
the files exhibit no messages. Since the ratio is 1 for that
message pattern (the pie chart shows equal areas for both

pA = 0.4

pB = 0.4

p0 = 0.2

Area proportional 

to file count

MA MB

Message present

Message absent

Dialect A files

Dialect B files

Fig. 6. Expected weight and file ratio for two dialects using three messages
as described in Example 2.

dialects), it is not possible to separate dialects for the files that
exhibit no messages. One might imagine that there are other
features that might be informative, but that these are simply
not captured by the three messages under consideration.

The next largest weight is in the second row, where just the
messages in MA or MB occur. (If p > 0.5 instead, the largest
weights can occur on rows other than the bottom, because the
hypotheses of Corollary 1 are not satisfied.)

Considering the pie charts, the majority of the dialect A
files are on the left of the diagram, while the majority of the
dialect B files are on the right of the diagram. Therefore,
coarse dialect separation can be done on those files on the left
or right, on account of their message patterns being different.

F. Separating dialects by thresholding posterior probabilities

Of course, the disjointness of MA and MB required by
Lemma 2 might not hold exactly in practice. Messages that
lie in the intersection of MA and MB will not impact the
ratio of files on any simplex if pA ≈ pB , as is also easily seen
in Corollary 2. However, if pA and pB differ substantially,
this will tend to change the ratio of files from the estimate
in Lemma 2 for any simplex that contains any messages in
MA ∩MB . Furthermore, if there are not many B files, it may
be difficult to estimate pB or the true contents of MB .

Observe that files in the tail of the Dowker histogram are
also in the tail of the message count histogram. These are
instances where P (K|A) or P (#K = n|A) is low. On the
other hand, if P (K|B) or P (#K = n|A) is comparatively
higher, this will cause the ratio of dialect B files to be
statistically significantly higher, and thereby possible to detect.

A systematic way to exploit this information is to consider
the probability that a given file is from a certain dialect,
given that it exhibits a certain message pattern. This is called
the posterior probability, and can be computed using Bayes’
theorem. For instance, to ascertain the probability that a file
is in dialect A given that it produced message pattern K, this
is given by

P (A|K) = P (K|A) P (A)
P (K)

. (4)

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



9

This formula defines a test statistic—a quantity that yields a
classifier for dialect A files upon thresholding P (A|K). Files
with large P (A|K) are likely from dialect A, while files with
a lower value of P (A|K) are less likely to be from dialect A.

In order to compute P (A|K), one needs to obtain each
factor in Equation (4). P (K) is easily assessed by computing
the frequency of the message pattern K in the dataset at hand.
P (K|A) is given by Equation (1), subject to the assumptions
mentioned earlier in the paper. Moreover, if one has a training
set consisting (almost) entirely of dialect A files, then one can
estimate P (K|A) by simple counting. This avoids the potential
issues with violations of the independence of messages.

Finally, P (A) is the expected probability that a file will be
of dialect A, given no further information. This last factor
is the most difficult to estimate, and can be best thought
of as a “risk factor”: choosing a larger value of P (A) will
result in a higher estimate for P (A|K), while choosing a
lower value of P (A) will consequently reduce the estimate
for P (A|K). Thus, if dialect A files are dangerous, it is wise
to overestimate P (A). Conversely, if A files are likely benign,
an underestimate of P (A) will produce fewer false alarms.

IV. RESULTS

Figure 7 shows the message probabilities for the SafeDocs
Evaluation 3 Universe A good files dataset. Some messages
occur more than 50% of the time; for these messages, it is
more useful to assume that their absence is an informative
event. Therefore, as a preprocessing step, when computing the
probability of a message k, if its probability is pk > 0.5, we
instead use 1− pk in what follows.

The vast majority of files have a low probability of occur-
rence, while there are roughly 6 messages with an elevated
probability (note the logarithmic scale). Using the model we
propose is tantamount to discretizing the probabilities shown
to two separate levels: a higher one for the first 6 messages,
and a lower one for the rest of the messages. The average
probability for each of the first 6 messages is pgood = 0.380.
The specific messages this threshold selects are shown in Table
II, so a reasonable cutoff for the probability of an Mgood
message is pgood > 0.25. (Note that Table II shows the raw
probabilities of the messages, which may exceed 0.5.) The
regexes for these messages appear in Table V. It happens
that nearly all of the Mgood messages are nonzero exit codes
for parsers, but with no further detail. Four of the messages
are from caradoc, which is known to be a fairly stringent
parser. One may interpret Mgood as consisting of mostly benign
messages that are indicative of otherwise good files.

Running the same process on the SafeDocs Evaluation 3
Universe A bad files dataset with same threshold as before,
pbad > 0.25, yields 54 messages with an elevated probability,
at approximately 0.312. The intersection between this set
and the corresponding set of messages for the good files is
nonempty and consists of 4 messages, shown in the upper
portion of Table II. The actual regexes appear in Table V.

When there are many messages, the estimates of P (K|A)
tend to be very small, regardless of the dialect, and therefore

TABLE II
MESSAGES IN MGOOD FOR UNIVERSE A FILES

Message Parser and options Prob. in Prob. in
good files bad files

1 caradoc extract 0.414 0.697
122 caradoc stats 0.414 0.697
943 origami pdfcop 0.426 0.500

2055 qpdf 0.303 0.603
243 caradoc stats --strict 0.626 0.842
334 caradoc stats --strict 0.351 0.033

are subject to substantial sampling error. In the Universe A
good files set, none of the files produced no messages (after
inverting the meaning of any message with probability greater
than 0.5). Therefore Equation (2) cannot be used. Moreover,
many of the messages with low probabilities are not indepen-
dent. For these reasons, it is better to select an overestimate for
p0, since this results in more frequent co-occurrence between
messages. The largest overestimate for p0 is the value at the
threshold chosen for Mgood, namely p0 = 0.25, as shown on
Figure 7. This choice will be later confirmed by the agreement
between the actual and expected Dowker histograms described
in the next Section by considering Figure 8.

A. Message pattern distribution

There are 2#M possible message patterns. Since the total
number of messages collected was large, it is not feasible
to compute the expected weights for each message pattern.
Instead, it is much more practical to compare only the message
patterns that were actually observed. This means that we
need to normalize the probabilities so that the sum over all
observed message patterns is 1, instead of normalizing so
that the sum over all possible message patterns is 1. This
being done, the comparison between observed and expected
weight distributions is shown at left in Figure 8. There is close
agreement over the entire distribution, which can be taken as
validating our model of the data, and validating our choice of
p0 in particular.

We can also compare the expected distribution of weights
with the bad files set. It is most interesting to do this not with
Mbad and pbad, but rather with the parameters Mgood, pgood,
and p0. Because of the close agreement on the good files,
differences between the expected and observed distributions
in the bad files are more visible. The resulting plot is shown
at right in Figure 8. While there is still close agreement for
the large weights (indeed, there is somewhat better agreement
than for the good files), the message patterns with low weights
are quite different. The expectation is that there would be
rather fewer files exhibiting particular message patterns than
actually occurred. Since low weights are correlated with higher
message counts, this suggests that the bad files frequently
produce messages that are not in Mgood. In other words, the
bad files consist of a distinct dialect from the good files.

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



10

Mgood

pgood = 0.380

p0 = 0.25

Mbad

p0 = 0.25pbad = 0.312

Good files Bad files

Fig. 7. Probability a given message will occur for the SafeDocs Evaluation 3 Universe A good files (left) and bad files (right). In both frames, messages in
MA are to the left of the gray vertical line. Estimates for pA and p0 are shown as horizontal lines.

"Good files" "Bad" files

actual

expected

Fig. 8. Histograms of expected weights (file counts) versus actual weights for the SafeDocs Evaluation 3 Universe A datasets: (left) the good file subset,
used for training, and (right) the bad files subset.

B. Behavior differences within the datasets

Grouping files based upon message patterns does yield a
useful tool for clustering related behaviors. This is exhibited
in both the good and bad files, with the largest weights
corresponding to clear behavioral patterns.

The message patterns with the largest weights are shown
in Table III. Since messages 243, 991, 1319, and 287 had
probabilities exceeding 0.5, we will consider their absence
rather than their presence as noted earlier. For instance,
pdfium always produces message 991, so it is rather unin-
formative. The messages that were initially reported (without
this reversal) are shown in the column “Raw messages”, while

the messages after this reversal are recorded in the column
“Messages (corrected)”.

Although these messages are recoverable (since the files
under consideration are in the good files set), these message
patterns correspond to three distinct classes of behavior: errors
within a compressed stream, syntax errors within the PDF file,
and type errors.

The specific messages involved in Table III are shown in
Table V. Several of the regexes are duplicated because the
same base parser caradoc can be run with different options.
(These duplicated messages are not independent.)

For the bad files, the message patterns with the largest
weights involve substantially more messages, as shown in

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



11

TABLE III
THE MESSAGE PATTERNS WITH THE LARGEST WEIGHTS (FILE COUNTS) IN GOOD FILES

Weight Raw messages Messages (corrected) Message count Error taxonomy
24101 334, 943, 991, 1319, 2287 243, 943, 334 3 Compressed stream error
7470 334, 991, 1319, 2287 243, 334 2 Compressed stream error
5170 243, 258, 991, 1319, 2287 258 1 Syntax error (lexing)
3313 351, 991, 1319, 2287 243, 351 2 Syntax error (newline placement)
1767 1, 19, 122, 140, 243, 330, 991, 1, 19, 122, 140, 330 5 Type error

1319, 2287

Table IV. Again, several messages occur with probability
greater than 0.5 and so their absence is shown in the column
“Messages (corrected)”. These message are different from
the good files, and are 1, 122, 243, 991, 1319, 2055, and
2287. Without this correction, the most common message
pattern in the bad files is the same as one occurring in the
good files, involving a syntax (lexing) error. However, without
the correction, it is rather different. This message pattern
contains 5170/(5170 + 16980) = 23% good files and 77%
bad files. Further delineation of this particular syntax error
as recoverable or not is impossible given the messages we
collected.

Aside from the most common pattern, there is no overlap
between good and bad files among the most common message
patterns. In the remaining message patterns most commonly
exhibited by the bad files, there are several patterns corre-
sponding to damaged xref tables. Since xref tables provide
important structural information about the contents a PDF file,
it is unsurprising that damage to the xref table results in
many more messages being produced.

From a careful inspection of the first two rows of Table
III, we can conclude that there is a violation of Corollary
1. That is, the addition of message 943 resulted in a higher
weight with than without it. This indicates that there is a strong
relationship between message 943 and the messages which
indicate issues with compressed streams. We can infer that the
presence of message 943 is sometimes indicative of problems
with compressed streams in PDFs, even though the message
is merely an exit code.

A violation of Corollary 1 was also exhibited by the bad
files as well, though it does not appear in Table IV because the
lists of messages are too long to fit. This violation effectively
groups together a collection of messages related to broken
xref tables.

C. Interactive display of Dowker complexes

While the Dowker complex can be computed succinctly
using R as discussed in Section III-B, this implementation
is not particularly efficient for large datasets. Additionally, it
does not easily support visualization of the lattice structure
mentioned in previous sections. Therefore, we developed an
optimized Python version of the Dowker complex construc-
tion. For a small number of messages, a 2d representation of
the lattice structure (like what appears in Figure 6) suffices,
but this becomes increasingly cluttered with more messages.

To remedy this issue, we implemented a Python version that
embeds the Dowker complex in 3 dimensions and permits
interactive examination. The Dowker visualization relies on
Plotly and its 3d network graph [18]. The 3d network
graph consists of connected nodes. Each node corresponds
to a message pattern whose weight exceeds a user-chosen
parameter, and each edge corresponds to the addition of a
single message. The resulting graph can be customized by
setting node and edge colors, positions etc.

We start with the Boolean matrix representation of the data
stored in an array msgMatrix in which each file is a row
and each message is a column (like in the R implementation,
this is the transpose of the matrices shown in Figure 1). Each
row corresponds to a message pattern, which will be displayed
as a node in the graph upon the removal of duplicates. The
first step is to construct the mappings of nodes to attributes
as well as getting all possible connected nodes to be used to
identify edges.

For efficiency, our implementation uses Python’s hash()
function to quickly and uniquely identify each message
pattern. Importantly, this allows us to define a function
getConnNodes() that takes a message pattern and com-
putes the hashes for all possible message patterns with one
fewer message. Using this function getConnNodes(), the
pseudocode below shows how to construct the Dowker com-
plex and its weights.

f o r row in msgMatr ix :
rowHash = hash ( s t r ( row ) )
l a b e l = s t r ( row )
i f rowHash in nodeWeightMap :
nodeWeightMap [ rowHash ]+=1

e l s e :
nodeWeightMap [ rowHash ]=1
nodeLabelMap [ rowHash ] = l a b e l

# Find l a b e l s f o r a l l p o s s i b l e
# c o n n e c t e d nodes , by f i n d i n g
# a l l nodes w i t h 1 l e s s message
nodeConnNodeMap [ l a b e l ] =

getConnNodes ( row )

The above code is only notional because we found that the
call to hash(str(row)) turned out to be about 825 times
slower than using numpy builtins to first interpret the row
as bytes and then hexify into a string. This is because using
str() on an array row calls numpy’s array2str with

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



12

TABLE IV
THE MESSAGE PATTERNS WITH THE LARGEST WEIGHTS (FILE COUNTS) IN BAD FILES

Weight Raw messages Messages (corrected) Message count Error taxonomy
16980 243, 258, 991, 1319, 2287 1, 122, 258, 2055 4 Syntax error (lexing)
4702 (not listed for space considerations) (not listed for space considerations) 104 Damaged or missing xref table
4000 (not listed for space considerations) (not listed for space considerations) 84 Damaged or missing xref table
2825 (not listed for space considerations) (not listed for space considerations) 72 Damaged or missing xref table
1715 243,271,991,1319,2055,2287 1,122,271 3 Syntax error

TABLE V
MESSAGES INVOLVED IN TABLES II, III, AND IV

Message Parser stderr regex
1 caradoc extract (exit code indicating error)
19 caradoc extract Type error : Unexpected entry .* in instance of class .* in object .* !

122 caradoc stats (exit code indicating error)
140 caradoc stats Type error : Unexpected entry .* in instance of class .* in object .* !
243 caradoc stats --strict (exit code indicating error)
258 caradoc stats --strict PDF error : Lexing error : unexpected character : 0x[A-Fa-f\d]+ at offset

\d+ \[0x[A-Fa-f\d]+\] in file !
271 caradoc stats --strict PDF error : Syntax error at offset \d+ \[0x[A-Fa-f\d]+\] in file !
330 caradoc stats --strict Type error : Unexpected entry .* in instance of class .* in object .* !
334 caradoc stats --strict Warning : FlateZlib stream with appended newline in object .*
351 hammer VIOLATION\[\d+\]@\d+ \(0x[A-Fa-f\d]+\): No newline before ’endstream’

\(severity\=.*\)
943 origami pdfcop (exit code indicating error)
991 pdfium Processed \d+ pages\.
1319 peepdf (exit code indicating error)
2055 qpdf (exit code indicating error)
2287 verapdf pdfbox (exit code indicating error)

internal recursion that incurs about 100 operations per row
and 20 operations per element while numpy.packbits()
only incurs about 6 operations per row and 0 operations
per element. Combined with other optimization efforts, the
Dowker generation was sped up by a factor of 628 over the
naı̈ve translation of the pseudocode.

Our preferred layout is a layered one, where each layer
consists of all nodes with the same number of messages,
and each layer is arranged in a circle. The layers are sorted
numerically by message count. Other visualization methods
we have tried include laying out nodes in a force-directed
Kamada-Kawai and Fruchterman-Reingold [19], though the
renderings these produced were generally harder to interpret
because they disrupted the layered structure.

Figure 9 shows the Dowker graph generated from the
SafeDocs Universe A combined dataset, with nodes colored
such that higher weight nodes (more files triggering those
message patterns) are colored yellow, and lower weight nodes
are colored purple. The majority of files have few messages,
as indicated by the wide “base” at the bottom of the rendering,
where the brighter colored nodes are located. Nodes become
more sparse at higher layers, corresponding to files that
produced more messages. The wider “neck” in the the middle
indicates that many message patterns had a message count
around 100. Figure 9 also shows edges connecting neighboring
message patterns which differ by a single message. The edges
are colored in either green to indicate that the weight decreased

Zoom in on
bottom layers

Fig. 9. 3d rendering of the Dowker complex for the SafeDocs Evaluation 3
Universe A, colored by weight. Each point corresponds to a message pattern,
with the number of messages increasing as one moves up in the diagram.
Edges marked in red correspond to violations of Corollary 1. Inset shows the
ten “layers” corresponding to fewer than 10 messages.

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



13

Fig. 10. 3d rendering of the Dowker complex for the SafeDocs Evaluation 3
Universe A, colored by percentage of good files. Each point corresponds to a
message pattern. The size of the points indicates the weight of each message
pattern. To reduce clutter, the edges are not shown.

in accordance with Corollary 1, or red if the weight increased.
Because Corollary 1 depends on the conditional independence
of messages, red edges indicate that this assumption has failed
for the message patterns involved. Highly dependent messages
are often indicative of dialect boundaries, so they could
be candidates for further analysis based upon file contents.
Moreover, the sparsity of edges in the upper portion of the
diagram indicates that most of the message patterns for the
associated files files are unrelated to one another; adding or
removing a single message drastically reduces the number of
files exhibiting that new pattern.

We can also change the coloring of nodes to display the
different dialects. Figure 10 shows the nodes’ classification
based on whether the files in question were good (blue),
bad (yellow), or a mixture (shades of green). It is clear that
the message count is clearly indicative of whether a file is
good or bad: the nodes with high message counts are all
yellow, corresponding to an overwhelming majority of bad
files. Additionally, since the weights in Figure 10 are shown
by the size of the nodes, the message patterns with the largest
weights shown in Table III for the good files are quite visible,
and they all appear near the bottom of the diagram. The
largest weight message pattern for the bad files in Table IV
is also visible near the bottom of the diagram as well, and
is marked with an arrow. The presence of this particular
message pattern, and several other majority-bad nodes with
low message count near the bottom of the diagram justifies
the use of the Dowker complex for dialect classification, rather
than using only message count.

D. Separating dialects by thresholding

Thresholding posterior probabilities works well for separat-
ing the good files from the bad files. Starting with the Universe
A good files as a training set ensures that we have a training
set that is mostly good files.

From this training set, we estimate P (K|good) for all
message patterns K that are exhibited in the data. To this
end, we can either use Equation (1) (theoretical) based upon
our previous estimates of Mgood and pgood = 0.380, or we can
compute P (K|good) directly by counting how many message
patterns are exhibited (empirical).

Now let us consider the combined dataset with two dialects,
namely both the Universe A good and bad files, but let us
“forget” which file comes from which set. Given the fact that
we know how many files of each dialect there are (but not
which file is which), we know that P (good) = 0.5, since the
data happen to contain equal numbers of both files. For this
combined dataset, we can estimate P (K) directly from the
data by counting the number of times each message pattern
occurs (just as we did for P (K|good)).

Given all of these facts, we can then use Equation (4)
to determine the probability P (good|K) that a given file is
good, given the particular message pattern K produced by the
file. It still remains to select a probability threshold to use to
determine whether we declare a file as good or bad. For that
threshold, we can determine the recall (the fraction of good
files with probability above our chosen threshold), and the
precision (the fraction of truly good files above our threshold
versus the total number of files above our threshold). An ideal
classifier will have both precision and recall as close to 1 as
possible.

Since we do not have any prior knowledge, the best measure
of performance is to consider all possible thresholds, and to
aggregate all precision and recall scores. This is shown in
Figure 11. The figure shows three curves: the red curve uses
Equation (1) to estimate P (K|good), the black curve uses the
values estimated empirically from the good files alone, and the
blue dashed curve shows the performance of classifying using
message count alone. While message count alone does not do a
good job of classifying (largely because it misclassifies the bad
files that produce only a few messages), the other two curves
show good performance. Using the empirical estimates yields
the best overall performance. This is not unexpected, since
the conditional independence assumption made by Equation
(1) does not entirely hold.

From Figure 11, we conclude that the precision of our
method typically exceeds its recall for most threshold choices.
One can interpret this to mean that the files with a high
probability of being good based upon their message patterns
are indeed good, though many good files are missed because
they exhibit more unusual message patterns. Intuitively, this
means that many messages produced are of a benign nature.

V. CONCLUSION

This paper provides a theoretical basis and practical al-
gorithms for determining the format dialect of files within

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.



14

empirical

theoretical

message count

Fig. 11. Precision versus recall for separating the SafeDocs Evaluation 3
Universe A good files from the bad files, estimating P (K|good) empirically
from training on the good files (black), using Equation (1) with parameters
as described in the text (red), or using message count alone (blue, dashed).

a dataset based upon the statistics of messages that parsers
produce as they consume the files. The methods we used
are based upon thresholding the posterior probability of a file
being in a certain dialect, using the idea that messages occur
independently once they are conditioned upon dialect. Even
though a naı̈ve classification of files based on message count
might seem clearly the best, our method outperforms this by
a wide margin.

Moreover, using our method, a format analyst can therefore
greatly reduce the number of files they need to consider, by
focusing their attention on only the files exhibiting message
patterns with an ambiguous posterior probability. By looking
at only these files, one can likely discover features that serve
as “cut points” between dialects. Moreover, the theoretical file
ratios allow one to predict which message patterns will be
easy to disposition and which will not. Those that are not
easy to disposition will tell the format analyst about what kind
of new messages need to be crafted to discriminate between
dialects. Such new messages are likely easier to construct
under the condition that the ambiguous message pattern is
already present. This may greatly reduce the number of files
that need to be considered when constructing new messages.

Besides dispositioning of files as one dialect or another, the
relationships between the message patterns themselves allow
for a finer analysis. Our theoretical model establishes that
the number of files exhibiting a given pattern of messages
should decrease as more messages are triggered (Corollary 1).
Violations of this result indicates places where our assumption
of conditional independence is violated. In our data, these
violations allow one to draw inferences about the semantic

meaning of certain parser exit codes that are not associated
with human-readable regular expressions.

Conversely, it is sometimes a valuable exercise to craft in-
tentionally ambiguous files, such as polyglot or schizophrenic
files. Polyglot files can be used to probe a format specification,
as they often trigger unexpected corner cases in its logic.
Intuitively, polyglot files are easiest to construct when they
elicit a pattern of messages with file ratio close to 1. Knowing
which message patterns already have file ratios close to 1 may
aid in constructing these files.

ACKNOWLEDGMENTS

The authors would like to thank the SafeDocs test and
evaluation team, including NASA (National Aeronautics and
Space Administration) Jet Propulsion Laboratory, California
Institute of Technology and the PDF Association, Inc., for
providing the test data. The authors would like to thank Denley
Lam for the initial processing of the files into sets of messages.

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) SafeDocs pro-
gram under contract HR001119C0072. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of DARPA.

REFERENCES

[1] M. Robinson, “Looking for non-compliant documents using error mes-
sages from multiple parsers,” in LangSec 2021, a subconference of IEEE
Security & Privacy, May 2021.

[2] K. Ambrose, S. Huntsman, M. Robinson, and M. Yutin, “Topological
differential testing, arxiv:2003.00976,” 2020.

[3] M. Belaoued and S. Mazouzi, “A real-time PE-malware detection system
based on chi-square test and PE-file features,” in IFIP International
Conference on Computer Science and its Applications. Springer, 2015,
pp. 416–425.

[4] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware
threat success factors, taxonomy, and countermeasures: A survey and
research directions,” Computers & Security, vol. 74, pp. 144–166, 2018.

[5] S. D. S.L and J. CD, “Windows malware detector using convolutional
neural network based on visualization images,” IEEE Transactions on
Emerging Topics in Computing, pp. 1–1, 2019.

[6] M. Alazab, “Profiling and classifying the behavior of malicious
codes,” Journal of Systems and Software, vol. 100, pp. 91 – 102,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121214002283

[7] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 559–570, 2013.

[8] G. J. J. van den Burg, A. Nazábal, and C. Sutton, “Wrangling
messy CSV files by detecting row and type patterns,” CoRR, vol.
abs/1811.11242, 2018. [Online]. Available: http://arxiv.org/abs/1811.
11242

[9] K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels:
fully automatic tool generation from ad hoc data,” Acm sigplan notices,
vol. 43, no. 1, pp. 421–434, 2008.

[10] N. C. Rowe and S. L. Garfinkel, “Finding anomalous and suspicious files
from directory metadata on a large corpus,” in International Conference
on Digital Forensics and Cyber Crime. Springer, 2011, pp. 115–130.

[11] D. Scofield, C. Miles, and S. Kuhn, “Fast model learning for the
detection of malicious digital documents,” in SSPREW-7, December
2017.

[12] J. Lundberg, “Classifying dialects using cluster analysis,” Master’s
thesis, Göteborg University, 2005.

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.

http://www.sciencedirect.com/science/article/pii/S0164121214002283
http://www.sciencedirect.com/science/article/pii/S0164121214002283
http://arxiv.org/abs/1811.11242
http://arxiv.org/abs/1811.11242


15

[13] J. Grieve, D. Speelman, and D. Geeraerts, “A statistical method for the
identification and aggregation of regional linguistic variation,” Language
Variation and Change, vol. 23, no. 2, pp. 193–221, 2011.

[14] A. G. Yong, S. Pearce et al., “A beginner’s guide to factor analysis: Fo-
cusing on exploratory factor analysis,” Tutorials in quantitative methods
for psychology, vol. 9, no. 2, pp. 79–94, 2013.

[15] C. C. Foundation, “Common Crawl,” http://commoncrawl.org, 2021,
[Online; accessed 11-Mar-2021].

[16] M. Robinson, “Cosheaf representations of relations and dowker com-
plexes,” J Appl. and Comput. Topology, 2021.

[17] B. C. Arnold and D. Strauss, “Pseudolikelihood estimation: some
examples,” Sankhyā: The Indian Journal of Statistics, Series B, pp. 233–
243, 1991.

[18] Plotly, “3d network graphs in python/v3,” 2022. [Online]. Available:
https://plotly.com/python/v3/3d-network-graph/

[19] igraph, “python-igraph manual,” 2020. [Online]. Available: https:
//igraph.org/python/tutorial/latest/tutorial.html

January 21, 2022 Approved for public release; unlimited distribution. Not export controlled per ES-FL-011422-0005.

http://commoncrawl.org
https://plotly.com/python/v3/3d-network-graph/
https://igraph.org/python/tutorial/latest/tutorial.html
https://igraph.org/python/tutorial/latest/tutorial.html

	I Introduction
	I-A Application context
	I-B Background
	I-C Assumptions and Limitations

	II Dataset description
	II-A Message regex construction
	II-B Preliminary test: Message independence

	III Methods
	III-A Estimating the parameters of the model for a single dialect
	III-B Message patterns and weighted Dowker complexes
	III-C Relationship with message count
	III-D Distribution of weights
	III-E File ratios for two dialects
	III-F Separating dialects by thresholding posterior probabilities

	IV Results
	IV-A Message pattern distribution
	IV-B Behavior differences within the datasets
	IV-C Interactive display of Dowker complexes
	IV-D Separating dialects by thresholding

	V Conclusion
	References

