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Abstract—In this work, we investigate the effectiveness of
deep-learning-based password guessing models for targeted
attacks on human-chosen passwords. In recent years, service
providers have increased the level of security of users’
passwords. This is done by requiring more complex password
generation patterns and by using computationally expensive
hash functions. For the attackers this means a reduced
number of available guessing attempts, which introduces the
necessity to target their guess by exploiting a victim’s publicly
available information. In this work, we introduce a context-
aware password guessing model that better capture attackers’
behavior. We demonstrate that knowing a victim’s email
address is already critical in compromising the associated
password and provide an in-depth analysis of the relationship
between them. We also show the potential of such models to
identify clusters of users based on their password generation
behaviour, which can spot fake profiles and populations more
vulnerable to context-aware guesses. The code is publicly avail-
able at https://github.com/spring-epfl/DCM_sp.

1. Introduction

User-generated passwords are up until today the main
authentication mechanism in modern software applications.
They are convenient to implement and deploy for devel-
opers, and they are straightforward to use for the end-
users. On the downside, humans tend to choose their
passwords based on convenience rather than security,
enabling password guessing attacks via dictionaries.

Since humans often use repetitive patterns for their
passwords, software tools have been developed that gener-
ate passwords based on word-lists and manually curated
password mangling rules. This is intended to model human
password generation behavior, for instance, the ”e” in a
word is replaced by a ”3”, or a number is appended to a
word. Well known tools of this kind are John the Ripper
and HashCat [1], [2].

Removing the need to manually create the password
generation rules, Markov models and probabilistic context-
free grammars (PCFGs) statistically extrapolate rules from
publicly available password leaks [18]. Markov models
learn to generate passwords based on preceding context
characters and PCFGs learn the underlying pattern proba-
bilities of a rule being used in a password [18].
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Recently, the performance of the aforementioned meth-
ods has been surpassed by a new class of models, artificial
neural networks. An intuitive modern network architecture
to model a password distribution space is a recurrent neural
network (RNN). RNNs are sequence-to-sequence models
with feedback connections and an internal memory state
that remember information about previous elements in the
sequence. This architecture has been shown to outperform
previous approaches [12].

However, it is known that real-world adversaries make
use of users’ publicly available data to improve their
attacks [13]. The additional data can leak information
about a user’s nationality, relatives, pets, or hobbies, all of
which provide information about the conditional password
space of a user.

The importance of investigating the relationship be-
tween public information and passwords has been rein-
forced by recent data breaches and leaks, including the
password manager LastPass data leak in December 2022,
which exposed sensitive information of millions of users.

To adapt models to the new attack behaviour, sequence-
to-sequence models emerged. In pass2pass, passwords are
generated given a list of leaked password from a user [13].
In the same direction, [19] use a set of public information
of a user such as the email, phone number, birthday, website
domain, nickname, and the last/first name as input to their
Transformer model, cf. Section 2.

Current research focuses on models performing guess-
ing attacks but does not investigate the relation between
the model, the public information, and the user password.
In this paper we will focus on exactly this relationship,
using the user email as representative public information.

1.1. Contributions

With our work, we aim to enable a more robust and
precise password security evaluation; to inform users about
the extent to which they are vulnerable to realistic, adaptive
guessing attacks. Through a comprehensive analysis, we
demonstrate the impact of supplementary information on
the security of passwords and provide insights on how to
enhance password protection. Our work lays the foundation
to develop a password strength control that is not based
on generic control factors like length, presence of special
symbols, uppercase letters, but displays the real strength
of a personalized password. Our main contributions are:

• We investigate the association between email ad-
dresses and passwords and demonstrate the fea-
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Figure 1. Email subdomain. We show the hidden states of the context-
sensitive model and can observe that the model disentangled the structure
of the subdomains, which implies that it can extract valuable information
about the password from it. In gray are domains that are not listed in
the legend.

sibility of using context-aware deep learning to
model this relationship.

• We formally asses the superiority of context-aware
attention model over general password generator
model using the guess number metric for targeted
attacks

• We perform a thorough analysis of the change in
the latent password space from the base to the
context-sensitive model.

• We show that such models expose groups of users
with similar password generation behaviour vulner-
able to attacks leveraging contextual information,
cf. Figure 1 and Figure 2.

2. Related work

Password modeling based on neural networks replaced
the usage of manually created or statistically inferred
password generation rules. First steps were taken in explor-
ing the effectiveness of simple recurrent neural network
architectures for this modeling task [12]. Since then,
various improvements have been proposed to accurately
learn the password distribution space, for example by lever-
aging the generative adversarial network architecture [9],
[14] or language representation models like BERT [11]
and GPT2 [3]. Those approaches are limited to modeling
the unconstrained password space, however, they do not
incorporate additional available information.

LSTM networks are a type of recurrent neural network
capable of processing elements in sequences. They use an
internal memory to remember information about previous
elements in the sequence [15].

By implementing an LSTM model that maps from
the personal information space to the actual password
space, Zhou et al. demonstrated that users partially integrate
their name, birthday, username, and email prefix into their
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Figure 2. Email topdomain. We show the hidden states of the context-
sensitive model decoder and can observe that the model disentangled the
structure of the topdomains, which implies that it can extract valuable
information about the password from it. In gray are domains that are not
listed in the legend.

constructed passwords [19]. Harnessing the fact that intra-
user generated passwords can be extremely similar, Pal
et al. analyzed the situation where there are previously
leaked passwords from a user available [13]. They de-
signed an encoder-decoder model called pass2pass and
showcased its effectiveness in compromising user accounts.

Employing the Transformer architecture and augment-
ing it by adding an information weight layer in the
data pre-processing, He et al. showed that it surpasses
the effectiveness of other models such as a standard
Transformer, an encoder-decoder model with attention, and
an LSTM, in terms of password guessability [8]. They
investigated the relationship between personal information
such as the email, phone number, birthday, website domain,
nickname, and the last- and first name, and the generated
password. Through substring matching, they showed that
the email is the most correlated with the password of all
those features.

The fact that email addresses are the personal attribute
with the best predictive power and that they are fre-
quently available together with a leaked password motivates
our research to improve the password space modeling
conditioned on a user’s email address. We leverage the
LSTM architecture because it has been shown to be
effective for generating text in the context of character-
level natural language tasks [7], [16] and is therefore
the most promising model to accurately reflect how the
latent password distribution changes given the additional
information. To investigate the influence of each component
of the additional information, we do not just concatenate
all the personal information as in He et al. [8], but we map
each feature in a meaningful embedding space first and
interpret the individual importance of each feature based
on the attention head evaluation score.



3. Methods

3.1. Dataset

The dataset is comprised of 1.4 billion clear text
credentials. The credentials originate from the Exploit.in
and Anti Public password leaks and contain 252 breaches.
We process the data such that each email-password pair
has the format:

username@subdomain.topdomain:password

Ethical considerations. We are showing email-
password pairs in Section 4 which does not impair the
affected accounts any further, since the dataset is publicly
available. Although our dataset is publicly available and has
been used in other papers [13], all shown plaintext pairs
were checked with haveibeenpwned.com to not cause
additional harm for the users.

3.2. Base auto-regressive model

Our base model is comprised of a two-layer LSTM
with 512 units followed by a dense layer, identical to the
model architecture propsed by Melicher et al. [12]. See
Appendix A.6 for more details. The input is mapped into
an embedding of size 512 and passed into the LSTM. The
auto-regressive nature of the model is needed for computing
the Monte Carlo estimation discussed in Section 3.5.3.

3.3. Context-sensitive attention model
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Figure 3. Model architecture of our context-aware model. The embedding
of each email segment is reshaped by a dense layer to size 128 and a
position embedding is to them. Afterward, it is passed to a 4-headed
attention layer with self-attention. The output of the MHA layer is passed
to the first LSTM if the decoder has hidden states.

The context-sensitive attention model extracts the
information from a victim’s email address that is critical
in compromising the associated password. Our complete
architecture is depicted in Figure 3. The main components
of the attention model are the encoder, decoder, and the
self-attention mechanism.

3.3.1. Encoder. We individually embed the components of
an email, which are the username, the subdomain and the
topdomain. The embeddings of the sub- and topdomains are
generated with one hot encoding of the 60% most common
domains. The remaining domains are evenly distributed
among an extra 20 buckets by hashing. This reduces the
impact of rare domain names and grants flexibility to the
model when facing unseen domains.

For the username, we use both a semantic embedding
and a character-level embedding. The semantic embedding
is based on the fasttext model [4]. This allows the model to
use hidden semantic information learned by the pretrained
model in a username that aids to shape the conditional
password space of a user.

The character-level encoder is a two-layer LSTM with
384 units followed by a dense layer. It mimics the decoder
architecture in its tokenization of the characters, using one
hot encoding over the alphabet of the dataset.

3.3.2. Decoder. The embedded email components together
with a positional encoding are passed to a self-attention
layer, which completes the encoder part of the attention
model. We use positional encoding to differentiate the
source of each embedding to the attention layer. The output
of the encoder is passed through a dense layer and forms
the initial state of a two-layer LSTM decoder with the
same specification as the base model. See Appendix A.
for more details.

3.4. Training setup

We split the data set into train, validation, and test data
in magnitudes of 202 : 1 : 186 million. For the training,
we employ the Adam optimizer [10] and the learning rate
is scheduled to decrease after every 2 million steps of
training from 1e−3 to 1e−4 to 5e−5 and finally to 3e−5.
The model stops the training when the validation loss did
not decrease for more than 30 iterations.

3.5. Inference

3.5.1. Calculating probabilities. To calculate the probabil-
ities of a character encoded password p = [c1, c2, c3, ..., cn]
under the base model Mb, we obtain the probability
distribution for each character under Mb and calculate the
password probability as the conditional probability of each
character given the previous characters:

PMb
(p) = PMb

([c1, c2, c3, ..., cn])

= PMb
(c1) · PMb

(c2|c1)
· ... · PMb

(cn|cn−1, ..., c1)

(1)

For the context-sensitive model Mc−s, we additionally
condition the probability on a given character encoded
email e:

PMc−s
(p|e) = PMc−s

([c1, c2, c3, ..., cn]|e)
= PMc−s

(c1|e) · PMc−s
(c2|c1, e)

· ... · PMc−s
(cn|cn−1, ..., c1, e)

(2)



3.5.2. Compare probabilities. To compare the two mod-
els, we first look at the different probabilities that they as-
sign to a password. We create logarithmically equal spaced
buckets ranging from 0 to 1 and sort each probability
generated under the two models in its corresponding bucket.
To investigate which model assigns a higher probability to
a password, we then compare the buckets rather than the
raw probabilities. This offers robustness in determining the
superiority of a given model since the logarithmic spacing
accounts for a fairer assessment of the difference between
each assigned probability in the regime of low as well as
high probabilities.

Independent of the logarithmic buckets, we also intro-
duce the metric of a difference score, calculated by the
formula

Dc-s,base(x) =

∣∣∣∣Pc-s(x)− Pbase(x)

Pc-s(x) + Pbase(x)

∣∣∣∣, (3)

which allows us to assess the relative difference be-
tween two predicted probabilities under the two models,
respectively.

3.5.3. Calculating guess numbers. In order to evaluate
the password strength via simulating a guessing attack,
we have to calculate the guess number of a password. A
guess number denotes how many guesses it would take an
attacker to try a given password under the assumption that
all password guesses are arranged in descending order of
their likelihood under a given model. Therefore it serves
as an indicator of the strength of a password and of the
respective model. Let Γ denote the (possibly infinite) set
of all allowed passwords. Then the guess number G for
password x under model M is:

GM(x) = |{y ∈ Γ : M(y) > M(x)}| (4)

An efficient way to extract the guess number is by
Monte Carlo simulations [6]. In a Monte Carlo simulation,
a sample S consisting of n passwords is generated via
ancestral sampling. For the base model Mb, the guess
number G of a password x is then calculated as:

GMb
(x) =∑

xi∈S


(
PMb

(xi) · n
)−1

PMb
(xi) > PMb

(x)

0 otherwise

(5)

Regarding the context-sensitive model Mc−s, we have
to condition the sampled passwords on a given email e:

GMcs(x) =∑
xi∈S


(
PMcs

(xi|e) · n
)−1

PMcs
(xi|e) > PMcs

(x|e)
0 otherwise

(6)
If we employ the context-sensitive model, a new Monte

Carlo sample of passwords has to be created for every
different email address, making the procedure of testing
multiple email addresses computationally quite expensive.
Note that the Monte Carlo simulation is only possible due
to the auto-regressive nature of the model, for example a
GAN that generates an entire word and not a character at
a time would not be able use this method.

Figure 4. Distribution of the absolute difference scores Dc-s,base for a
randomly sampled subset of the test data of size 500, 000 under the base
and the context-sensitive model. Blue: passwords that were assigned a
higher probability under the base model. Orange: passwords that were
assigned a higher probability under the context-sensitive model.

4. Results

4.1. Comparison base- and context-sensitive model

An established metric to compare two language models
is the perplexity score. We calculate it by taking the
exponent of the loss of a sample of passwords from the
test set and obtain the mean and the median perplexity
as comparative statistics. Based on a randomly sampled
subset of the test set of size 100, 000, we find that the
mean perplexity score of the context-sensitive model is
12.785 and 12.97 for the base model. The median is 9.62
and 9.81, respectively. The perplexity score being lower
under the context-sensitive model is a first indicator for
the superiority of this model.

Another indicator is given by comparing the two
probabilities under both models for each test data pair,
as described in Section 3.5.2. The bucket size being a
potential hyperparameter, we investigate in Figure 7 how
changing it influences the superiority rate of the context-
sensitive model. We can see that for a random sample
of size 500, 000 from the test data, the context-sensitive
model consistently assigned a higher probability to the
passwords than the base model for all bucket sizes in
Pc−s > Pbase ≈ 60% of the cases. Our results are
therefore independent of any particular bucket size.

Looking at the probability differences score Dc-s,base
calculated from the test data, we can observe in Figure 4
that the context-sensitive model (orange) surpasses the
base model (blue) for all possible differences, except for
a difference score of around 0.0. This shows that the
predicted probability of a password is significantly higher
under the context-sensitive model than under the base
model.

4.2. Guess numbers

A popular method to compare the effectiveness of pass-
word attack models are guess numbers [6], [12], [13]. Com-
puted as outlined in Section 3.5.3, we present in Table 1
the guess numbers under both models for the 10 samples
from the test data with a high difference score Dc-s,base. In
the last column we compute the logarithm of the guess



TABLE 1. PROBABILITIES P AND GUESS NUMBERS G FOR THE 10 SAMPLES FROM THE TEST SET WITH A DIFFERENCE SCORE DC-S,BASE > 0.99.
FURTHER NOTE THAT THE PASSWORD LEAK IS PUBLICLY AVAILABLE AND THEREFORE REPORTING THE USERNAME-PASSWORD PAIR DOES NOT

REPRESENT A PRIVACY VIOLATION.

Email Password Pbase Pc−s Gbase Gc−s log(Gbase
Gc−s

)

celticbiker80@gmail.com #E$R%T6y7u8i(O)P 1e-40 1e-28 9e34 8e23 25
lp.lp@lplppl.lp LPLPLPLPLPLPLP 1e-30 6e-21 6e25 2e17 20
ai20092011@mail.ru 00000qqqqq—Good 4e-36 2e-28 7e30 1e24 16
huangping20032@yahoo.com HAPhgp520YINGyan 2e-32 3e-21 3e27 7e21 13
responsiblewoman@yahoo.com RESPONSIBLE 1e-32 1e-27 4e27 1e23 10
urich37@yandex.ru 37rus89644909462a 1e-26 1e-21 1e22 1e18 10
huliteryatsya@mail.ru 15.10.1996.13.10.1996 1e-30 2e-25 7e25 3e21 10
chocolate87@live.it dolcecioccolata 2e-17 1e-12 3e14 3e10 9
famillerigaud@live.fr famillerigaud 9e-18 2e-13 6e14 1e11 8
stereo@x-city.com.ua stereostereostereo 5e-21 4e-17 3e17 2e14 7

number under the base model Gbase subtracted from the
logarithm of the guess number under the context-sensitive
model Gc−s, i.e. log(Gbase

Gc−s
) = log(Gbase) − log(Gc−s).

This number tells us how many orders of magnitude
the guess number is higher under the base model than
under the context-sensitive model. We can see that the
context-sensitive model offers a considerable advantage
when guessing the passwords of these vulnerable email
addresses.

Note how the first displayed password
#E$R%T6y7u8i(O)P could be evaluated as strong by
a naive password meter, based on characteristics such
as length, randomness, and special characters. However,
given the email address, the password guess number
decreases by 25 orders of magnitude. The email domain
hints at the user being from the US. Indeed, by inspecting
a standard US-QWERTY-based keyboard, we can observe
that the password was created by iteratively selecting
characters from the number and highest character row,
while pressing the SHIFT key at the beginning and
the end. This explains the detected decrease in the
password’s strength in terms of required guesses by the
context-sensitive model compared to the base model.

Under the viewpoint of length, the second password,
LPLPLPLPLPLPLP can be evaluated as strong. Given
that we know the username, topdomain, and subdo-
main contain the substring lp, however, the password’s
guess number decreases by 20 orders of magnitude.
Another pattern we observe by looking at the email
huangping20032@yahoo.com is that the correspond-
ing password HAPhgp520YINGyan is mostly composed
of the letters and digits of the username. Lastly, knowing
the user’s topdomain hints at the password containing
words in the specific target language. For the email address
chocolate87@live.it the corresponding password
dolcecioccolata is in Italian, as indicated by the
topdomain it.

By investigating the 30 samples from the test data with
the highest difference score (c.f. Appendix Table 7 for the
full table), we can state more generally that knowing the
email address of the target decreases the guess number
on average by 11.5 orders of magnitude compared to the
base model. The median decrease in magnitude is 10.
When looking at the username-password pairs we find
that 20% of the users are reusing parts of their username
in the password, where 7% use their entire username
concatenated with itself as their password. Furthermore,

we can see that 67% of the users use meaningful sentences,
phrases, or the same word concatenated with itself as their
password.

Our results demonstrate that context aware models can
exploit the fact that reusing a user’s username, parts of
their username, or words in a specific target language
as indicated by the topdomain of the email weakens the
strength of their passwords by several orders of magnitude.

4.3. When the base model performs better

The user email can confuse the context aware model
in two main cases: if the user uses random characters
and if the user chooses a very common password such
as 123456. In the first case both the context-aware and
base model show similar performances, c.f. Table 6 and
Table 5, because both models cannot guess a random
sequence of characters. The second case reflects the main
difference between the two models. The base model learns
the general distribution of passwords, which will output
the most common password in the dataset with highest
probability, c.f. Table 3, while the context-aware model
prioritizes groups of users with similar usernames that
generate similar password, c.f. Table 4).

If we look at the pair where the probability difference of
the base model is much higher than the context-aware one
(c.f. Table 8) we can spot short pseudo-random passwords
such as d9Zufqd92N which is shared by at least 4 emails:

• daleek13@lyme.in
• francisqg20@kamryn.tia.inxes.in
• biancabt34@mail.oplog.in
• junevb16@chi.blognet.in

Note that all usernames have the same construction: name-
2 random characters-2 digits. This indicates that the
users have been generated automatically and that fake
profiles can be spotted looking at the difference of the
evaluations of both models.

4.4. Relevance of the contextual input

4.4.1. Average attention weights highlight username
importance. The attention weight outputs for each head
averaged over 120, 000 random samples from the test set as
visualized in Table 2 provide inside into the inner workings
of the context-sensitive model.



TABLE 2. WE SHOW THE CUMULATIVE ATTENTION SCORE FOR EACH
PART OF THE EMAIL. THE CUMULATIVE ATTENTION SCORE IS

AVERAGED OVER 64, 000 RANDOM SAMPLES FROM THE TEST SET.

username
LSTM

sub
domain

top
domain

username
Fasttext

cumulative
attention

score
3.41 2.64 2.91 3.27

These findings highlight the username’s importance
in shaping the latent space of the password distribution
given a specific username. This implies that usernames and
passwords are far from being independent of each other,
but that the model was able to extract a great amount
of structure from the username. The attention weights
themselves do not tell us what specific structure that
was, however, one explanation we found in an exploratory
analysis of the data is that users tend to reuse parts of
their username or repetitive patterns in their password.

The attention weights also revealed that the model
was able to condition the output density on the sub- and
topdomain. A possible explanation can be found in the
domains revealing information about the nationality of
the user since users tend to use email providers from
their respective country of origin. This speculation can be
further confirmed by an analysis of the hidden states of
the decoder, as we will see in the following section.

4.4.2. Sub- and topdomain influence. Another way to
understand the structure that the context-sensitive model
has learned from the additional data is to inspect the
hidden states of the its decoder, which we visualize with
the TSNE algorithm in Figure 1 and Figure 2 [17]. The
model was able to identify clusters for the sub- as well as
the topdomain. Sometimes, as in the case of the topdomain
"com" and "ru", there are multiple separate clusters for
the same domain. This implies that the model was able to
identify different regularities within a domain that facilitate
its task to predict the probability of a certain password.

Investigating this claim, we colored the same test data
points according to the difference in assigned probability
Dc-s,base under the two models and display the results in
Figure 5. We can see that there are clusters for which the
context-sensitive model assigns a much higher probability
to the passwords than the base model, meaning that these
classes are especially vulnerable to a context-sensitive
password guessing attack.

To investigate what these clusters have in common,
we can refer back to Figure 1 and Figure 2. The clusters
with a high difference in predicted probability have either
the subdomain "mail" mixed with "gmail", or the
subdomain "rambler" or "aol". Interestingly, there
are clusters with subdomain "yahoo" or "hotmail"
that have a high probability difference but are separated
from other clusters with that subdomain. Regarding the
topdomain we observe that there are high difference
clusters with either the topdomain "ru", "fr", "cn", or
"com". In contrast to that, there are no visibly identifiable
clusters for the case that the base model assigned a higher
probability to a test data point than the context-sensitive
model, c.f. Figure 8.

0.5
1.0

0.4
0.9

0.3
0.8

0.2
0.7

0.1
0.6

Figure 5. Pc−s > Pbase. Difference score Dc-s,base for the test data
entries where the relation Pc−s > Pbase holds. We can observe that
there are clusters for which the context-sensitive model assigns a much
higher probability to the passwords than the base model.

These findings indicate that the context-sensitive model
was able to extract structure from the available email. It
could even identify subclusters within different domains
for which it learned regularities in the email address that
allowed it to expect the corresponding password with a
much higher probability than the base model. This is
another compelling result highlighting how much structure
there is to be found in public information that largely
diminish the strength of a target password.

5. Conclusion

We were able to find compelling evidence in favor
of the hypothesis that additional information weakens the
strength of a user’s password. The context-sensitive model
learned regularities in the email address that allowed it to
expect a password with a much higher probability than
the base model. The context-sensitive model can identify
clusters of users whose passwords are easy to guess,
making those groups extremely vulnerable to password
guessing attacks with a context-aware model.

A limitation of our analysis is faced by the presence
of password managers that allow the user to use truly
randomly generated passwords. However, there still needs
to be one master password that is to be chosen and
remembered by the user, and recent password manager
breaches underpin the usefulness of our analysis.

Conclusively, this shows that password models that
are currently not exploiting public and easily retrievable
information about users, such as their email addresses,
overestimate the real strength of a password and fail to
model realistic password attacks.

With our research, we intend to highlight the impor-
tance of deep learning in simulating attacks that exploit data
leaks and encourage the development of more sophisticated
password models that take into account a wide range of
contextual information.
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Figure 7. Change of the probability rate Pc−s > Pbase with varying
number of buckets.

TABLE 3. EMAIL-PASSWORD PAIRS WITH HIGHEST PROBABILITY
WITH THE base MODEL

email pwd Pctx Pbase

kara kartal541@hotmail.com 12345 0.018454 0.018093
travist yudh@yahoo.com 12345 0.018592 0.018093
loveyougodpidra@yahoo.com 12345 0.020903 0.018093
jesz1@tlen.pl 12345 0.015960 0.018093
vnmuta5@gmail.com 12345 0.029174 0.018093
niko94@live.it 12345 0.022636 0.018093
rgd2@yandex.ru 12345 0.024919 0.018093
almetadag 9643@yandex.ru 12345 0.029047 0.018093
berence 08@hotmail.com 12345 0.018241 0.018093
hiphoper@rambler.ru 12345 0.026887 0.018093

A. Appendix

A.1. Training setup

We chose the generous train:validation:test split of
202 : 1 : 186 million due to the abundance of available
data and to ensure that the obtained test score for our
method is representative.

A.2. Base model
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Figure 6. Model architecture of the base model. We chose to follow the
architecture proposed by Melicher et al. [12], since their work represents
an important milestone in the password security research. The 2 LSTM
layers have 512 units each. The output size of the dense layer corresponds
to the length of our vocabulary which is the number of ASCII characters.
The last softmax and argmax layers are used to select the next character
with the highest probability to take.

The base model is not context-aware. It is an auto-
regressive model, that generates one character at a time
based on the previously generated character. See Figure 6
for a detailed description of the model architecture.

A.3. Context aware model

A.3.1. Preprocessing. We remove any emails containing
non-ASCII characters and with a username that is longer
than 32 characters. We also remove duplicate entries and
email addresses that appear more than 100, 000 times in
the database. Since we split the email address into its
components based on the ”@” symbol, we filter emails
that contain more than one of those. Similarly, we filter
emails and passwords with the ”:” symbol as it is the
delimiter used in the dataset to split email and passwords.
After the preprocessing, we are left with 390, 147, 060
email-password pairs, where each data entry has the format
username@subdomain.topdomain:password.

In our context-sensitive attention model, we use two
different encodings for the username: a character-level one
and a word embedding based on the multi-lingual fasttext
model developed at Facebook [5]. We rely on a multi-
lingual embedding since the password leak we use as our
data origin from a multitude of different countries. In the
preprocessing of the username for the fasttext model, we
split the username based on any non-alphabetic token and
remove all those non-alphabetic tokens. For instance, the
username john.doe would be split into [john, doe] and
the username spaceexplorer123456 would be processed as
[spaceexplorer].

B. Results

B.1. Attention score matrix

The average attention score of the context aware model
in Table 2 show that each head is focusing on embeddings
originating from the username part (LSTM and fasttext)
compared to the sub abd top domain.

For three out of the four heads the sub- and topdomains
(SUB, TOP) as well as the fasttext embedding of the
username (USER-EMB) pay attention to the character-
embedded username (USER-CHAR). In the remaining head,
all layers except for the fasttext embedding of the username
attend to the fasttext embedding.

TABLE 4. EMAIL-PASSWORD PAIRS WITH HIGHEST PROBABILITY
WITH THE ctx MODEL

email pwd Pctx Pbase

wangzi160@tianya.cn 123456 0.087573 0.01577
qingtaowang2003@tianya.cn 123456 0.085443 0.01577
sunguirong1234@tianya.cn 123456 0.085423 0.01577
vbnm567@tianya.cn 123456 0.082656 0.01577
liuyulun123@tianya.cn 123456 0.082291 0.01577
yokoyico110@tianya.cn 123456 0.081175 0.01577
akira123@tianya.cn 123456 0.079154 0.01577
mtwj02@tianya.cn 123456 0.066099 0.01577
sailormoon1@tianya.cn 123456 0.065521 0.01577
ybyq86@tianya.cn 123456 0.063941 0.01577



TABLE 5. EMAIL-PASSWORD PAIRS WITH THE LOWEST PROBABILITY UNDER THE ctx MODEL

email pwd Pctx Pbase

it@capnajax.com iB]Wzx;V3u3%cw¿w)¡Mz2=3QPJW479 2.95e-78 2.92e-75
yrm2e-lkgjq-2x87v-2idrl-3myeq@live.com YRM2E-LKGJQ-2X87V-2IDRL-3MYEQ 7.79e-59 1.18e-59
www.frank ungemach@web.de bc?watfngjl&-wvs-qmv-zv$v 1.64e-56 3.03e-52
whiskas-forever2008@yandex.ru F8910fzZkvirus005Lerik@vIel 1.68e-54 1.51e-53
w@razryv.1gb.ru w@razryv.1gb.ruw@razryv.1gb.ru 2.07e-54 1.73e-55
peri.odi.c.al.we.r.y@yahoo.com ox582HzxsEE6b1iiGNevGJzLfd 3.24e-53 1.29e-53
bebek citra@yahoo.com q$Lnpo623X67j7HxeJ$vb6u 8.57e-52 2.16e-51
lukinskaya.diana@yandex.ru jAmBvAVd8V5S6LVSnhDhFhFgOM 1.53e-51 8.20e-53
qwuy23ioy3qtuwgetjhgewhj@mail.ru qwkjhr32uirio132uriqwhrthewj 2.05e-49 6.15e-48
tolstenkova@mail.ru alge6ra1p0chat0kanal13u94942443 4.63e-49 9.46e-53

TABLE 6. EMAIL-PASSWORD PAIRS WITH THE LOWEST PROBABILITY UNDER THE base MODEL

email pwd Pctx Pbase

it@capnajax.com iB]Wzx;V3u3%cw¿w)¡Mz2=3QPJW479 2.95e-78 2.92e-75
yrm2e-lkgjq-2x87v-2idrl-3myeq@live.com YRM2E-LKGJQ-2X87V-2IDRL-3MYEQ 7.79e-59 1.18e-59
w@razryv.1gb.ru w@razryv.1gb.ruw@razryv.1gb.ru 2.07e-54 1.73e-55
peri.odi.c.al.we.r.y@yahoo.com ox582HzxsEE6b1iiGNevGJzLfd 3.24e-53 1.29e-53
whiskas-forever2008@yandex.ru F8910fzZkvirus005Lerik@vIel 1.68e-54 1.51e-53
lukinskaya.diana@yandex.ru jAmBvAVd8V5S6LVSnhDhFhFgOM 1.53e-51 8.20e-53
tolstenkova@mail.ru alge6ra1p0chat0kanal13u94942443 4.63e-49 9.46e-53
www.frank ungemach@web.de bc?watfngjl&-wvs-qmv-zv$v 1.64e-56 3.03e-52
bebek citra@yahoo.com q$Lnpo623X67j7HxeJ$vb6u 8.57e-52 2.16e-51
cleveland515@yahoo.com 1nn0c3nttVmwxhcRHsZwhsaY 3.72e-46 1.36e-48

Figure 8. Pc−s < Pbase. Difference score Dc-s,base for test data entries where the relation Pc−s < Pbase holds. There is no clear cluster for which
the base model assigns a higher probability to the passwords than the context-sensitive model



TABLE 7. SELECTED EMAIL-PASSWORD PAIR AND THEIR RESPECTIVE GUESS NUMBER AND PROBABILITY SCORE, WHERE THE PROBABILITY OF
ctx IS BETTER THAN base

email pwd Pctx Pbase Gctx Gbase

celticbiker80@gmail.com #E$R%T6y7u8i(O)P 1.62e-28 1.20e-40 8.18e+23 9.33e+34
lp.lp@lplppl.lp LPLPLPLPLPLPLPLPLPLP 6.71e-21 1.15e-30 2.21e+17 6.56e+25
mikeoogod@gmail.com AZSXdcfv !@ 7.04e-18 7.54e-27 8.08e+14 2.74e+22
imant94@mail.ru yfever[bvelhj 1.37e-19 2.97e-27 2.77e+16 5.73e+22
huangping20032004@yahoo.com.cn HAPhgp520YINGyan 5.16e-26 2.13e-32 6.85e+21 3.24e+27
garik1@rambler.ru igadministrator 6.91e-13 1.01e-18 3.87e+10 3.86e+15
wifnqiw678@aol.com 8ix6S1fceH 3.05e-09 7.46e-15 2.02e+07 1.87e+12
etramdirai@gmail.com DVGGhejAxMQSfQc4 6.21e-30 1.58e-35 1.72e+25 1.45e+30
ilve 34@yahoo.de h2eternity 3.25e-10 1.16e-15 1.55e+08 9.30e+12
huliteryatsya@mail.ru 15.10.1996.13.10.1996.88.R. 2.29e-25 1.13e-30 3.18e+21 6.56e+25
kiki duarte 2@web.de dothepeanutbuttajelly 1.04e-19 5.49e-25 3.43e+16 7.10e+20
emanuel-sgg@yahoo.de xx candyflavored xx 1.41e-18 8.66e-24 2.95e+15 6.40e+19
michelineb@lycos.de babyxtazxinxbabyxbluex 1.38e-28 8.64e-34 5.78e+23 4.86e+28
urich37@yandex.ru 37rus89644909462a 1.28e-21 1.25e-26 9.72e+17 1.42e+22
carmine.nastro.gosp@web.de takaministryofinfor 7.77e-23 7.68e-28 1.26e+19 2.25e+23
donkacosta@hotmail.com electrocolombo53 1.33e-14 1.69e-19 9.09e+08 1.59e+16
responsiblewomanfortoday@yahoo.com RESPONSIBLE 1.07e-27 1.40e-32 1.30e+23 3.75e+27
stefanny777@list.ru 7sagittarius12 4.06e-14 6.72e-19 1.32e+09 5.19e+15
gatasalvaje3871@web.de thefreepicktoncampaign 4.88e-25 8.07e-30 1.11e+21 1.47e+25
chocolate87@live.it dolcecioccolata 1.12e-12 1.86e-17 2.61e+10 3.12e+14
famillerigaud@live.fr famillerigaud 1.59e-13 9.30e-18 1.31e+11 5.84e+14
solaceguddah@gmail.com S14ORIGINAL 3.56e-14 2.53e-18 4.46e+11 2.22e+15
fail apas@yandex.ru afbkmqwe 2.39e-10 1.99e-14 3.63e+08 7.74e+11
cerdanyola46@gmx.de emilythecelebrity 1.17e-14 1.02e-18 1.51e+12 3.84e+15
fominane@yandex.ru YTAjvbyf 1.13e-12 1.01e-16 2.57e+10 6.43e+13
mathculot@hotmail.com labradorlabrador 7.91e-13 7.26e-17 3.36e+10 8.85e+13
despoinakord@yahoo.com NEVERGIVEUP 1.12e-11 1.05e-15 3.20e+09 1.00e+13
martolina 92@web.de trevotheawesome 1.31e-13 1.25e-17 1.57e+11 4.58e+14
stereo@x-city.com.ua stereostereostereo 3.85e-17 4.09e-21 1.95e+14 3.23e+17

TABLE 8. SELECTED EMAIL-PASSWORD PAIR AND THEIR RESPECTIVE GUESS NUMBER AND PROBABILITY SCORE, WHERE THE PROBABILITY OF
ctx IS WORST THEN base

email pwd Pctx Pbase Gctx Gbase

olegator 87@inbox.ru X3LUym2MMJ 5.57e-17 4.61e-08 1.11e+13 1.02e+06
rrikimiki@rambler.ru qawsed 1.02e-13 5.76e-05 1.91e+11 2.33e+02
iseudoir941@inbox.ru 7ugd5hip2j 6.11e-15 3.67e-07 2.27e+11 1.36e+05
bestheyu@163.com NBvBB32fa9 5.03e-19 6.38e-12 6.32e+15 5.29e+09
moses.mai@netiq.com maivtxLINKEDIN 5.23e-26 4.36e-19 5.80e+21 7.35e+15
daleek13@lyme.in d9Zufqd92N 1.21e-14 1.14e-09 1.22e+12 4.67e+07
mepotts@ovis.net milky[way] 2.29e-25 2.13e-20 1.49e+21 7.56e+16
shuyikan@163.com 9ol.0p;/ 1.14e-20 5.33e-15 1.30e+17 2.55e+11
kazzaanna@yahoo.com djpleiyfzlshf 8.54e-24 2.88e-18 6.40e+19 2.04e+14
030811306@bk.ru yuzhaofang 1.03e-15 3.41e-10 1.02e+13 1.71e+08
mamotenko.arina@yahoo.com vscxfcnkbds112296 2.40e-23 5.58e-18 2.73e+19 9.90e+14
ponfilovitch@yahoo.com rty789fgh456vbn123xc 1.56e-30 3.61e-25 3.44e+25 1.08e+21
temka89228628680@rambler.ru fujitsusiemens 1.18e-16 1.91e-11 5.67e+13 2.08e+08
francisqg20@kamryn.tia.inxes d9Zufqd92N 7.36e-15 1.14e-09 1.90e+12 4.67e+07
cat2k2@msn.com 7008J05A6AA47C68B 1.19e-29 1.49e-24 1.35e+25 3.21e+20
endemoniado9@yahoo.fr testerqQ1!wW2” 5.94e-34 6.22e-29 6.17e+28 2.90e+24
aparickmfrancesy@ymail.org pk3x7w9W 2.02e-11 2.06e-06 2.00e+09 1.75e+04
daleek13@lyme.minemail.in d9Zufqd92N 1.21e-14 1.14e-09 1.22e+12 4.67e+07
htaz@pengelan123.com pk3x7w9W 2.30e-11 2.06e-06 1.79e+09 1.75e+04
biancabt34@mail.oplog.in d9Zufqd92N 7.34e-15 1.14e-09 1.91e+12 4.67e+06
lfibadjlank@gmail.com qdujvyG5sxa 3.66e-13 2.07e-06 6.56e+10 1.73e+04
ncefehmdaahi@yahoo.com qdujvyG5sxa 3.92e-13 2.07e-06 6.21e+10 1.73e+04
q1ae0kdxwthrtoq@mail.ru X3LUym2MMJ 6.64e-17 4.61e-08 9.47e+13 1.02e+06
perlet7@yahoo.com intereforjoet@sbcglobal.net 2.41e-29 1.56e-23 8.32e+24 3.79e+19
g.l.a.n.du.l.arnri.e@swbell.net d2xyw89sxj 5.46e-16 3.60e-11 1.67e+12 1.27e+09
unfoua@gmail.com djcrhtctyrf 1.33e-15 7.49e-11 8.58e+12 7.47e+08
junevb16@imp.chi.blognet.in d9Zufqd92N 2.00e-14 1.14e-09 7.72e+11 4.67e+07
juliasunshienvvpc@gmail.com okhueleigbe5 4.87e-22 2.39e-17 2.45e+18 2.38e+13
tcdz83@mail-s01.pl pk3x7w9W 4.23e-11 2.06e-06 1.12e+09 1.75e+04
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Figure 9. Average attention weights over 120, 000 random samples from the test set for each of the four heads. For three out of the four heads, all
parts pay attention to the character embedded username (USER-CHAR). One head focuses on the username embedding generated by the fasttext
model (USER-EMB). Minor attention is paid by three out of the four heads to the sub- and topdomain (SUB, TOP).
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