

City, University of London Institutional Repository

Citation: Stankovic, V. & Popov, P. T. (2006). Improving DBMS performance through

diverse redundancy. SRDS 2006: 25th IEEE Symposium on Reliable Distributed Systems,
Proceedings, pp. 391-400. ISSN 1060-9857

This is the draft version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/529/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Improving DBMS Performance through Diverse Redundancy

Vladimir Stankovic, Peter Popov
Centre for Software Reliability,

City University,
Northampton Square,
London EC1V 0HB,

United Kingdom
V.Stankovic@city.ac.uk, Ptp@csr.city.ac.uk

Abstract

Database replication is widely used to improve both
fault tolerance and DBMS performance. Non-diverse
database replication has a significant limitation - it is
effective against crash failures only. Diverse
redundancy is an effective mechanism of tolerating a
wider range of failures, including many non-crash
failures. However it has not been adopted in practice
because many see DBMS performance as the main
concern.

In this paper we show experimental evidence that
diverse redundancy (diverse replication) can bring
benefits in terms of DBMS performance, too. We report
on experimental results with an optimistic architecture
built with two diverse DBMSs under a load derived
from TPC-C benchmark, which show that a diverse
pair performs faster not only than non-diverse pairs
but also than the individual copies of the DBMSs used.
This result is important because it shows potential for
DBMS performance better than anything achievable
with the available off-the-shelf servers.

1. Introduction

The most important non-functional requirements for
a Database Management System (DBMS) are
performance and dependability, which often require
mutually exclusive mechanisms. Thus, a trade-off
between the two is sought, which would be optimal for
a specific system.

Data replication has proved to be a viable method of
enhancing both dependability and performance of
DBMSs. Performance is improved by balancing the
load between the deployed replicas, while fail-over
mechanisms are normally used to re-distribute the load
of a failed replica among the remaining operational

ones. Crashes are commonly believed to be the main
type of failure of DBMSs. Providing that only crashes
occur, using several identical replicas provides
appropriate protection. Under this assumption the
replication scheme ROWAA (read once write all
available) is adequate [1]. Unfortunately, this common
belief is hard to justify. In a recent study, we presented
overwhelming evidence against crash failures being the
main concern [2]. Using the log of known bugs
reported for four major DBMSs we observed for all
four servers that more than 50% of the known bugs
lead to non-crash failures, which will not be tolerated
by a non-diverse replication. Only by deploying
diverse redundancy, i.e. deploying diverse replicas,
would we deliver an adequate protection against the
non-crash failures of the DBMSs.

A possible architecture for a fault-tolerant server
employing (diverse) redundancy is depicted in

Figure 1. The middleware propagates the statements
generated by the client applications to both (all, in case
of more than 2) diverse replicas for execution. The
results from the replicas are collected by the
middleware and in the case of a positive adjudication
the middleware reports a result back to the client
application(s). Clearly, this architecture differs from
the ROWAA scheme. In the new architecture all
statements (including the reads from the database) are
executed multiple times by several diverse replicas,
while in the ROWAA scheme all active replicas
execute only the writes to the databases.

While dependability gains from deploying diverse
redundancy are beyond doubt, it is far from obvious
what the implications of this architecture would be for
system performance. From the known applications of
design diversity in other areas, it is well known that
fault-tolerant mechanisms (failure detection, fault-
containment, state recovery, etc.) have their
performance cost. Is diverse redundancy then

necessarily a bad thing in terms of system
performance?

Figure 1. Fault-tolerant server node (FT-node)
with two (possibly more) diverse DBMSs (SQL

server 1 and SQL server 2). The middleware
“hides” the servers from the clients (1 to n) for

which the data storage appears as a single
DBMS.

The overall performance of the system shown in
Figure 1 will depend on the performance of the

diverse replicas deployed and on the performance
characteristics of the middleware itself. For instance,
the middleware can use different adjudication
mechanisms. A few reasonable alternatives are listed
below:
- Slowest response. The middleware collects the

results of the individual statements (a multitude of
which constitute a whole transaction) executed by
diverse replicas. Once a sufficient number of
responses are collected, they are adjudicated and
only if identical responses from all the replicas are
observed a successful completion of the statement
is reported back to the client application.

- Fastest response. Alternatively, the middleware
may buffer the statements coming from a client
application and make them available to the diverse
replicas as soon as the statements are placed in the
respective buffers. Each diverse replica collects
the next available statement from its respective
buffer, executes it, marks it as being completed
and makes the response from the statement
available to the middleware. As soon as the
middleware receives the first response to a
statement from a replica, it is immediately passed
on to the client application, thus letting the client
application proceed with the other statements

within the transaction. The fastest response comes
from either of the DBMSs, depending on the SQL
statement (Figure 2). Responses from the diverse
replicas to the same statement are adjudicated
later, when a sufficient number of responses are
collected, but before the end of the transaction.
Buffering the statements in the middleware allows
the diverse replicas to work at a maximum speed
within transactions, as shown in Figure 2
(DBMS1 would start execution of the next SQL
statement even though the DBMS2 has not
finished the previous one as indicated with the
dashed rectangle). The transactions are committed
(or aborted) based on the outcome of adjudicating
the results of the statements. Commit is only
applied if all the replicas execute all the statements
successfully and all the statement responses are
positively adjudicated. Otherwise, the transaction
is aborted.

- Optimistic response. This is similar to the fastest
response except: i) no adjudication of the
responses from the diverse replicas is applied; ii) a
skip feature is implemented in the middleware as
follows. Before a replica, X, executes a read (i.e.
SELECT) statement it checks if a response to this
statement has already been received from another
replica, Y≠X. If so then X does not execute the
statement (i.e. skips it)1. The modifying SQL
statements (DELETE, INSERT and UPDATE) are
executed on all servers, i.e. they cannot be
skipped. Clearly, this regime of operation does not
offer the same level of protection as the previous
ones. It may, however, be adequate in many cases,
which we discuss later (see the Discussion
section).

We have already [3] on systematic differences
between the times it takes diverse DBMSs to execute
the same statement. This may be due, for example, to
the respective execution plans being different, the
concurrency control mechanisms being implemented
differently, etc. When the slowest response regime is
used such differences will lead to the fault-tolerant
node (FT-node) being slower than the respective
DBMSs it consists of. When the optimistic regime is
used, however, the systematic difference might lead to
improved performance. If the mix of statements within
a transaction is such that both servers ‘skip’ statements,

1 The functionality of looking up the next statement and the ‘skip’
feature is, of course, implemented in the middleware, which relays to
the DBMSs the statements for execution. If a read statement is to be
skipped, then the middleware simply does not pass it to the
respective DBMS for execution.

then the transaction will take the FT-node shorter than
it would take each of the DBMSs it uses. When the
‘skip’ feature is not used the best that the FT-node can
do is process SQL statements as fast as the faster of the
two servers can, thus diversity cannot bring any
performance gains.

1

2

3

4 Client

DBMS 1

DBMS 2

Middleware

nth SQL
statement

n+1 th SQL
statement

n+2th SQL
statement

1

2

3

4
1

2

3

4 Client

DBMS 1

DBMS 2

Middleware

nth SQL
statement

n+1 th SQL
statement

n+2th SQL
statement

1

2

3

4

Figure 2. Timing diagram of a client
communicating with two, possibly diverse,

database servers and the middleware running
in fastest response or optimistic regime. The
meanings of the callouts are: 1 – the client

sends an SQL statement to the middleware, 2
– the middleware translates the request to the

dialects of the servers and places the
resulting SQL statements, or sequences of
SQL statements, in the respective server

buffers; 3 – the fastest response is received
by the middleware; 4 - the middleware sends

the response to the client. The dashed
rectangle indicates that DBMS2 will not be
ready to start (n+1)th SQL statement at the

same time with DBMS1

This paper, therefore, is focused on the empirical
investigation of whether the potential performance
gains with the optimistic regime of operation of the
FT-node can be achieved under a realistic load, such as
the one defined by the TPC-C performance benchmark
[4]. Whichever regime under the FT-node operates,
data consistency between the diverse replicas must be
guaranteed, which is typically defined as 1-copy
serialisability between the transaction histories of the
replicas [1].

Should a level of replication be required that is
higher than the number of diverse replicas used in a
single FT-node, then the FT-node can be combined
with any database replication scheme, which is
considered adequate for a particular set of
requirements. These can be schemes for eager database
replication, e.g. based on group communication
primitives [5], or even lazy replication [6]. In either

case the FT-node will replace a replica of a particular
DBMS used by the particular database replication
scheme.

This paper is structured as follows. In section 2 we
describe the experimental setup. In section 3 we
enumerate possible configurations of the FT-node. In
section 4 we show consistency of the experimental
results. In section 5 we present the performance
comparison of different FT-node configurations. In
section 6 we compare performance of the diverse pair
and a non-diverse solution. In section 7 we discuss
possible performance gains when diverse DBMSs are
used and in section 8 we present conclusions made and
describe provisions for future work.

2. Experimental Setup

In the empirical study we used our own
implementation of the industry-standard benchmark for
online transaction processing - TPC-C [4], to evaluate
the potential for performance improvement. TPC-C
defines five types of transactions: New-Order (NO),
Payment (P), Order-Status (OS), Delivery (D) and
Stock-Level (SL) and sets the probability of execution
of each. The minimum probability of execution for
each transaction type is as follows: NO – 43%, P –
43%, OS – 4%, D – 4% and SL – 4%. The benchmark
provides a mechanism for performance comparison of
the DBMSs from different vendors, with different
hardware configurations and operating systems. The
specified measure of throughput is the number of NO
transactions completed per minute (under the specified
mix of transaction types). Our measurements were
more detailed than those required by the standard. We
recorded the response times of the individual SQL
statements and transactions executed by the DBMSs
used in the FT-node. The test harness consisted of
three machines:
- a client machine, which executes a JAVA

implementation of the TPC-C standard (it uses
JDBC to access the DBMSs);

- two server machines, on which two diverse open-
source DBMSs are run, namely InterBase 6.0 and
PostgreSQL 7.4.0 (referred to as IB and PG,
respectively, in the rest of the paper).

The two DBMSs ran on Linux RedHat 6.0
(Hedwig) operating system, while the client machine
ran under Windows 2000 Professional (sp4) operating
system. The hardware specifications are as follows:
- client machine: 1.5 GHz Intel Pentium 4

processor, 640 MB RAMBUS RAM and 20GB
HDD (Maxtor DiamondM)

- server machines: 1.5 GHz Intel Pentium 4
processor, 384 MB RAMBUS RAM and 20GB
HDD (Seagate U Series).

The implementation of the TPC-C application did
not necessitate the use of any proprietary features from
either IB or PG. The SQL statements were
implemented using the common subset of the
language. Nevertheless we have developed preliminary
versions of our own SQL translator tool. In addition
one could make use of commercial products for porting
between different DBMSs such as Fyracle [7], Oracle-
mode Firebird or its PostgreSQL counterpart
EnterpriseDB [8].

3. FT-node Configurations

We run a set of experiments with the following
server configurations:
- 1IB1PG, an FT-node with a copy of IB and PG.

1IB,
- a single replica of IB;
- 1PG, a single replica of PG;
- 2IB, an FT-node with two replicas of IB, and
- 2PG, an FT-node with two replicas of PG.

Each experiment comprises the same sequence of
10,000 transactions and was repeated five times, for
reasons detailed below. The server machines were
restarted and databases restored between the
repetitions.

All the measurements were associated with a single
TPC-C client under different server loads as follows:
- no additional clients;
- 10 additional clients, and
- 50 additional clients.

Whenever additional clients were deployed they
executed a mix of read-only transactions (RO mix)
instead of the mix of transactions recommended by the
TPC-C2. The RO mix consists of the two read-only
transactions: Order-Status and Stock-Level of almost
equal proportion. Thus, only one TPC-C compliant
client modifies the database. The readers and writers
do not conflict in the two DBMSs, since both IB and

2 We did run multiple concurrent TPC-C clients with our own
implementation of 1-copy serialisability between the DBMSs. These
experiments, however, did lead to a very large number of non-
serialisable transactions, which had to be aborted. Due to non-
determinism between the orders in which the servers serve the
concurrent clients we could not achieve a repeatable set of
experiments to make a fair comparison between the different server
configurations. Thus, we chose to restrict the results presented here
to experiments with a single TPC-C compliant client while
simulating the increased load by deploying an increasing number of
read only clients.

PG implement a type of MVCC (Multi-Version
Concurrency Control). Hence data consistency
between the replicas is guaranteed (experimentally
confirmed by successfully running a comparison
between the databases at the end of the experiments).

The overhead that the test harness introduces
(mainly due to using JAVA multi-threading for
communication of the clients with the middleware and
of the middleware with the different DBMSs) is the
same irrespective whether a single or two replicas are
used in the experiment. It has been measured to be
negligible compared with the time taken by the
respective DBMSs to process the 10,000 transactions.

4. Confidence in the Results

Each experimental setup (with a fixed configuration
and load) was repeated five times so that we could
detect significant variation between the observed
results due to factors beyond our control (e.g.
fragmentation of files on the servers).

Figure 3 shows the mean transaction times for all
transactions together and per transaction type in a
10,000-transaction run, grouped by experiment
repetitions when only a single TPC-C compliant client
is deployed. There is no significant variation between
the results across the repetitions. This is true for both a
particular transaction type and all transactions together.

Consistency of Results (1+0 Clients Experiment)

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

All 5 D NO OS P SL

Transaction Type / Experiment Repetition

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB 1PG 1IB1PG 2IB 2PG

Figure 3. Mean transaction times per
transaction type and for all transactions

together for 5 repetitions with each of the
configurations (1IB, 1PG, 1IB1PG, 2IB, 2PG)

with a load generated by a single TPC-C
compliant client.

A similar picture, consistent across the repetitions,
was established for the increased load of 10 and 50
additional clients (Figure 4). The only configuration
with a noticeable variation between the repetitions was
1IB. In particular, the first run is 25% faster than the
remaining four in terms of the mean transaction time
with all transaction types (represented by the first bar
in each of the five groups above the “All 5” category).
A noticeable variation also exists between the specific
transaction types, for which the percentages vary
between 20% and 25%. This variation, however, does
not change the ordering between the configurations.

In addition the ordering between the configurations
does not change even if we execute a different
sequence of transactions. This was experimentally
confirmed by executing 10,000 transactions in different
order with either a single TPC-C compliant client or
with ten additional clients.

Such consistency between the observations, in
particular, the fact that the ordering between the
configurations remains unchanged across the repeated
experiments, is the reason why in the rest of the paper
we compare the performances using a single run per
configuration.

Consistency of Results (1+50 Clients Experiment)

0

5000

10000

15000

20000

25000

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

All 5 D NO OS P SL
Transaction Type / Experiment Reptition

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB 1PG 1IB1PG 2IB 2PG

Figure 4. Mean transaction times per
transaction type and for all transactions

together for 5 repetitions of each experiment
type (1IB, 1PG, 1IB1PG, 2IB, 2PG) under

increased load with 50 additional read-only
clients.

5. Performance Comparison of Different
DBMS Configurations

To compare different DBMS configurations we
used the following measures of interest:

- mean transaction time (for all five transaction
types);

- mean transaction time for a particular type of
transaction;

- cumulative transaction time, i.e. experiment
duration.

Figure 5 depicts the response time when only a
single TPC-C client communicates with the FT-node
configurations. 1PG is on average the best
configuration under this load, though transactions of
type Delivery and Order-Status are faster on 1IB. The
ranking changes when the load increases (Figure 6).
Now the fastest configuration on average is the diverse
pair, albeit not for all transaction types (1IB is the
fastest for Order-Status and Payment, while 1PG is the
fastest for Stock-Level). The figure indicates that the
diverse DBMSs “complement” each other in the sense
that when IB is slow to process a transaction then PG
is fast (New-Order and Stock-Level) and vice versa
(Payment, Order-Status and Delivery). These
systematic differences illustrate why the 1IB1PG
diverse pair is the best configuration on average. In
addition the ‘skip’ feature enables the diverse pair to
augment this advantage by omitting the read
(SELECT) SQL statements on the slower DBMS.

Mean Response Time (1+0 Clients Experiment)

27
2

56
8

38
0

82

17
7

25
6

15
5

61
7

18
8

41
9

59 49

24
3

65
5

28
1

19
9

16
3

28
530
7

62
1

40
5

13
6 18

9

35
9

21
4

84
4

26
1

20
3

12
1

57
0

200

400

600

800

1000

All 5 D NO OS P SL

Transaction Type

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB
1PG
1IB1PG
2IB
2PG

Figure 5. The mean transaction times for each
transaction type and for all transactions

together under a load generated by a single
TPC-C compliant client. The configurations
compared under this load are as follows:

configurations with a single DBMS (1IB, 1PG),
a configuration with a diverse pair of DBMSs

(1IB1PG) and configurations with
homogenous pairs of DBMSs (2IB, 2PG).

Although a DBMS is fastest on average for a
particular transaction type, within the transactions the
fastest responses to SQL statements may come from
different DBMSs. This fact is utilised in the diverse
pair. Hence, it is not surprising that IB executes more
SELECT statements in an experiment than PG when
the two are employed as a diverse pair (IB executes
70%, while PG executes 51%)3.

Similar results were obtained under the load with 50
additional clients.

Figure 7 shows how the ordering changes between
the configurations as a result of a load increase. An
experiment comprising 10,000 transactions under the
‘lightest’ load (0 additional clients) is fastest with 1PG.
Under increased load, however, the diverse pair,
1IB1PG, becomes the fastest configuration. The
experiment duration with the diverse pair is shorter
than with the individual DBMSs, or with either of the
non-diverse (homogenous) DBMS pairs. The diverse
pair is 20% faster than the second best configuration
(1PG) with 10 additional clients and more than 25%
faster than the second best combination (2PG) with 50
additional clients. The benefits of the systematic
difference in transaction times between the diverse
DBMSs and the efficiency of the ‘skip’ feature become
more clearly pronounced when the load increases.

Mean Response Time (1+10 Clients Experiment)

12
02

30
45

20
60

18
7 36

7

12
5

83
6

42
22

10
09

68
1

41
4

90

69
7

26
27

88
8

49
4

39
2

10
7

17
58

42
98

28
98

38
3 65

4

22
1

87
4

39
40

97
6

60
1

56
8

11
7

0

1000

2000

3000

4000

5000

All 5 D NO OS P SLTransaction Type

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB
1PG
1IB1PG
2IB
2PG

Figure 6. The mean transaction times for
single DBMS configurations (1IB, 1PG),

diverse DBMSs pair (1IB1PG) and
homogenous DBMS pairs (2IB, 2PG) for each

transaction type and for all transactions

3 There is nothing unusual in the fact that the sum 70% + 50% is
greater than 100%. It simply means that there are statements which
are executed by both servers. If the fastest server has not completed a
statement by the time the slower is ready to start, then both will
process the particular statement.

together under an increased load with 10
additional read-only clients.

Cumulative Transaction Time (Experiment Duration)

under Different Loads

48

320

26

141

631

40

113

448

51

292

36

14
6

60
6

1339 908

0

200

400

600

800

1+0 Clients 1+10 Clients 1+50 Clients
Load

R
es

po
ns

e
Ti

m
e

(m
in

)

1IB
1PG
1IB1PG
2IB
2PG

Figure 7. Cumulative transaction time
(experiment duration) for the five DBMS

configurations under different load (0, 10 and
50 additional read-only clients).

6. Comparison of Diverse Pair and a Non-
Diverse Solution

In this section we compare the performance of the
diverse pair and of a well-known solution for eager
data replication [9]. The solution uses non-diverse
redundancy. It combines transactional concurrency
control and group communication primitives in order
to guarantee data consistency (referred to as
TCC+GCP in the remainder of the document) among
replicas. It provides both fault-tolerance and good
performance.

In order to guarantee a 1-copy serialisability,
TCC+GCP relies on “totally ordered” [9] delivery of
transactions using a reliable multicast protocol. It is
based on the ROWAA (Read-Once Write All
Available) protocol [1].

Under this replication scheme the clients served by
TCC+GCP connect to only one replica, called the local
replica of the client. For this client the other replicas of
the TCC+GCP are remote replicas. A read-only
transaction generated by a client is executed by the
local replica, only. A write transaction (i.e. one that
includes write statements) is first executed by the local
replica. The outcomes of the write statements are then
broadcast (by the respective middleware) to the remote
replicas of TCC+GCP in the form of write sets. The
remote replicas install the write sets according to the

total order of transactions established among the
replicas used in TCC+GCP.

Clearly, with TCC+GCP the read-only transactions
are load-balanced between the replicas. Ideally, the
clients should be fairly divided between the replicas. A
fair performance comparison, thus, of TCC+GCP and
an FT-node with two diverse DBMSs, would require
the following arrangement:
- a single DBMS working in TCC+GCP will be

subjected to the write transactions load generated
by all clients and half of the load generated by the
read-only transactions generated by the clients;

- the FT-node handles the entire load, both from
write and read transactions, generated by all the
clients.

We ran experiments for loads generated by a single
TPC-C client and additional read-only clients: 10 and
50. To make a fair comparison between an FT-node
and TCC+GCP, we used the results measured for the
FT-node (see above) and run a new set of experiments
with 5 and 25 read-only clients respectively with an
FT-node. We simulated the performance of the
TCC+GCP using the measurements obtained with the
FT-node under the new loads (with 5 and 25 read-only
clients).

We calculated a lower and an upper bound on the
TCC+GCP transaction times as follows. The lower
bound is the actual transaction time measured in the
new experiments with the individual DBMSs and the
number of read-only clients equal to 5 and 25,
respectively. This lower bound seems unattainable by
TCC+GCP, because the installation of the write sets
(especially the lock phase) [10] on the remote replicas,
as well as on the local replicas is not accounted for in
the lower bound. Installing the write sets is on the
critical path – it is always done after the local replica
creates the write sets. The upper bound is calculated
from the experimental log (in which we record the start
and completion times of the individual statements) by
doubling the execution time of all write SQL
statements (DELETE, INSERT and UPDATE)
encountered during the experiment. Whether the bound
is indeed an upper bound is moot since it is unclear
whether the actual overhead due to group
communication primitives and the actual installation of
the write sets by all the replicas is greater or smaller
than the time it takes the local replica to execute a
write statement. The upper bound may be too
pessimistic, if the mentioned overheads are negligible
compared with the write statements execution times.
On the other hand, however, a simplistic
implementation of the write sets would be forwarding

them to the remote replicas, which in turn will actually
execute them. Under this simplistic scenario, our upper
bound will be in fact too optimistic because it does not
account for the overhead due to propagating the write
sets to the remote replicas. In summary, the realism of
the upper bound is questionable and should be
scrutinised in the future, ideally by actually
implementing TCC+GCP. Despite this problem,
however, using the lower and the upper bounds allows
us to get preliminary indications of how the
performance of FT-node compares with TCC+GCP.

Figure 8 presents the results of a fair comparison
between the two replication schemes under a load with
1 modifying and 50 additional read-only clients.
Diverse pair performs clearly better than TCC+GCP if
IB is used: the transaction times of the FT-node is
lower than the lower bound (unattainable by
TCC+GCP). The diverse pair is also better (~ 15%)
than the upper bound of TCC+GCP with PG. It is,
however, worse than the lower bound of TCC+GCP
with PG. The diverse pair is ~30% slower than the
lower bound. Thus, it remains unclear whether
TCC+GCP with PG is faster than the FT-node. Similar
results have been observed in all repetitions with this
load.

Similar ordering between the FT-node and the
TCC+GCP has been observed with a lower load of
only 10 additional read-only clients. Again, only the
lower bound of the non-diverse replication with PG is
faster than the diverse pair. However, the difference
between the diverse pair and the upper bound is
smaller.

Diverse vs Non-Diverse Redundancy
(1+50 Clients Experiment)

36
45

36
20

33
25 36

41

36
32

19
53

19
58

19
60

19
68

19
56

27
03

26
89

26
93

26
86

26
86

5297 5262
4837

5292 5286

30
77

30
91

30
91

31
01

30
88

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5
Experiment Repetition

M
ea

n
R

es
po

ns
e

Ti
m

e
(m

se
c)

1IB Lower 1PG Lower 1IB1PG 1IB Upper 1PG Upper

Figure 8. Mean response times for diverse
replication (1IB1PG) and calculated lower and

upper bound of mean response times for a
non-diverse replication schema when either

1IB or 1PG is used. The lower bound is
calculated using results from respective

individual DBMS (IB or PG) experiment under
the load with 1 modifying and 25 read-only

clients. The number of read-only clients was
halved because the non-diverse schema uses

a load balancing approach where reads are
executed at only one node. To estimate the

upper bound, mean response time of
transactions’ write sets was added to the

lower bound.

7. Discussion

Performance implications of using diverse
redundancy in the context of database replication are
the focus of this paper. Diverse redundancy is the only
known realistic protection against design faults in
complex software products. Once diverse redundancy
is deployed there might exist performance
implications, which we evaluated empirically.

A standard fault-tolerant architecture (see Figure 1)
would dictate adjudicating all the responses from (a
sufficient number of) diverse replicas before a response
is returned back to a client application, i.e. adjudication
is applied at the level of individual statements. This
adjudication, normally implemented by a specialised
middleware, can be done as the responses are received
(referred to as the slowest response) or postponed and
completed before the end of the corresponding
transaction (the fastest response regime). Either way,
fault-tolerance will lead to performance penalty and the
FT-node cannot be faster than the fastest of the
deployed DBMSs.

The schemes adopted for practical database
replications provide no protection against design faults.
A common assumption is made that node crashes are
the main concern, an assumption under which various
optimistic regimes of operations are used such as
ROWAA. These do not require statement adjudication
and as a result the adjudication overhead is simply
avoided.

Failures of DBMSs are rare. Most of the time the
applications use statements that are handled correctly
by the deployed DBMSs. Even if diverse DBMSs are
deployed most of the statements will be handled
correctly by all the diverse replicas. Thus, most of the
time adjudicating the responses of diverse replicas will
reveal no discrepancy, making the adjudication
overhead a waste of time. The point, of course, is that
we will never know which statement will turn out to

trigger a fault in the DBMSs and revealing a
discrepancy between the replica responses. In some
extreme cases, however, one may know with certainty,
that all the statements used by the application will be
processed by the DBMSs correctly; hence one may be
prepared to use regimes in which the adjudication is
eliminated. One such example is the implementation of
the optimistic regime. Its advantage compared with the
well-known ROWAA regime of operation lies in the
fact that under ROWAA the load is statically
distributed between the replicas – in the ideal case a
fair load-balancing between the replicas is sought.
Instead, when the FT-node operates under the
optimistic regime its diverse replicas naturally get the
load that they are better at executing. As a result the
optimistic mode has the potential of performing better
than ROWAA. Unfortunately, our experiments did not
provide a conclusive answer as to whether this
potential can be materialised, but it did not refute it
either. Further, more accurate measurements, possibly
using proper implementation of the replication
schemes based on ROWAA will provide a definitive
answer.

It is worth pointing out that the 3 regimes of
operation of the FT-node listed above (slowest
response, fastest response and optimistic) are not
mutually exclusive. In fact, they can be combined to
offer configurable quality of service, as we argued
elsewhere [3]. The clients mainly concerned with high
dependability assurance can be served under the
slowest response regime. The clients mainly interested
in maximising the performance can be served under the
optimistic regime of operation. Finally, by deploying
learning capabilities, e.g. based on Bayesian inference,
[11], the middleware may become capable of
switching intelligently between the different regimes of
operation: initially a new type of statement (e.g. SQL
statement involving a complex and rarely executed
JOIN operation) will be treated by the middleware with
suspicion and the most conservative, slowest response,
regime of adjudication will be applied. As more
instances of the same statement are executed
successfully (i.e. the adjudication is passed
successfully in all the observed instances), then the
middleware will switch from slowest response through
the fastest response eventually to the optimistic regime
of operation. Clearly, adjudication is simply impossible
with ROWAA, thus the scope for trading-off
intelligently performance for improved dependability
assurance is very limited, if not impossible.

8. Conclusions and Future Work

The results presented here show an intriguing
possibility to get a performance gain, in some cases
very substantial, when diverse redundancy is used in
the context of database replication. We compared
diverse with non-diverse redundancy using an
optimistic architecture, FT-node, in which the variation
between the execution times of the diverse replicas is
turned into a performance advantage. In this setup,
diverse redundancy is clearly beneficial compared with
non-diverse redundancy.

We also compared non-replicated solutions (a single
copy of a DBMS) with an FT-node, in which a diverse
pair of DBMSs is deployed. Diverse pair performs
significantly faster than the non-replicated solution.

These two results seem very significant since they
open up new ways of achieving high performance,
especially when the main system concern is achieving
as high a performance as possible.

We also looked at how diversity performs against
eager replication solutions based on total transaction
order (TCC+GCP), which use load balancing for
improved performance. The comparison, performed
under various simplifying assumptions, is indecisive in
the general case. Diverse redundancy is not guaranteed
to always achieve a known lower bound of
performance for those solutions, although we recorded
that the diverse pair performed better than TCC+GCP
implemented with replicas of Interbase 6.0. This lower
bound, however, is unattainable for TCC+GCP too!
The performance of diverse redundancy is better than
the likely upper bound on the performance of
TCC+GCP with replicas of PostgreSQL 7.4. In some
cases of simple implementations of TCC+GCP, e.g. the
write sets being propagated to the remote replicas in
the form of full SQL statements, the upper bound will
become a lower bound on the performance of
TCC+GCP. For this implementation of TCC+GCP we
have a decisive argument in favour of diverse
redundancy: it is guaranteed to be faster than
TCC+GCP.

In the experiments we used a synthetic load (TPC-
C) mainly due to the wide acceptance of the
benchmark for performance measurement studies.
Although the reported effect is dependant on the mix of
SQL statements used we expect similar results in
favour of diverse redundancy to be observed for a wide
range of real loads. In fact, TPC-C specifies a write
intensive mix of statements, not ideal for the optimistic
regime of an FT-node. Applications based towards

read-only mixes of SQL statements are more suitable
for the reported effect to make a bigger impact.

A promising direction for future development is
implementation of a configurable middleware,
deployable on diverse DBMSs, which would allow the
clients to request quality of service in line with their
specific requirements for performance and
dependability assurance.

Acknowledgements

This work has been supported in part by the
“Interdisciplinary Research Collaboration in
Dependability” (DIRC) project funded by the U.K.
Engineering and Physical Sciences Research Council
(EPSRC).

Bibliography

1. Bernstain, A., V. Hadzilacos, and N. Goodman,

Concurrency Control and Recovery in Database
Systems. 1987, Reading, Mass.: Addison-Wesley.

2. Gashi, I., P. Popov, and L. Strigini. Fault diversity
among off-the-shelf SQL database servers, in
International Conference on Dependable Systems
and Networks. 2004. Florence, Italy: IEEE
Computer Society Press.

3. Gashi, I., et al., On Designing Dependable Services
with Diverse Off-The-Shelf SQL Servers, in
Architecting Dependable Systems II, R. de Lemos,
C. Gacek, and A. Romanovsky, Editors. 2004,
Springer. p. 191-214.

4. TPC, TPC Benchmark C, Standard Specification,
Version 5.0. 2002, Transaction Processing
Performance Consortium.

5. Patino-Martinez, M., et al. Scalable Replication in
Database Clusters. In International Conference on
Distributed Computing, DISC'00. 2000: Springer.

6. Gray, J. and R. Andreas, Transaction processing:
concepts and techniques. 1993: Morgan Kaufmann.

7. Fyracle,
http://www.janus-software.com/fb_fyracle.html.
2006.

8. EnterpriseDB,
http://www.enterprisedb.com/products/migration_t
oolkit.do. 2006.

9. Jimenez-Peris, R., M. Patino-Martinez, and G.
Alonso. An Algorithm for Non-Intrusive, Parallel
Recovery of Replicated Data and its Correctness.
In 21st IEEE Int. Conf. on Reliable Distributed
Systems (SRDS 2002). 2002. Osaka, Japan.

10. Kemme, B., A. Bartoli, and O. Babaoglu. Online
Reconfiguration in Replicated Databases Based on
Group Communication. In Int. Conf. on

Dependable Systems and Networks (DSN 2001).
2001. Goteborg, Sweden: IEEE.

11. Gorbenko, A., et al., Dependable Composite Web
Services with Components Upgraded Online, in
Architecting Dependable Systems ADS III, R. de
Lemos, C. Gacek, and A. Romanovsky, Editors. in
print, Springer. p. 96-128.

