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Abstract 
 

Database replication is widely used to improve both 
fault tolerance and DBMS performance. Non-diverse 
database replication has a significant limitation - it is 
effective against crash failures only. Diverse 
redundancy is an effective mechanism of tolerating a 
wider range of failures, including many non-crash 
failures. However it has not been adopted in practice 
because many see DBMS performance as the main 
concern. 

In this paper we show experimental evidence that 
diverse redundancy (diverse replication) can bring 
benefits in terms of DBMS performance, too. We report 
on experimental results with an optimistic architecture 
built with two diverse DBMSs under a load derived 
from TPC-C benchmark, which show that a diverse 
pair performs faster not only than non-diverse pairs 
but also than the individual copies of the DBMSs used. 
This result is important because it shows potential for 
DBMS performance better than anything achievable 
with the available off-the-shelf servers. 

 
 
1. Introduction 
 

The most important non-functional requirements for 
a Database Management System (DBMS) are 
performance and dependability, which often require 
mutually exclusive mechanisms. Thus, a trade-off 
between the two is sought, which would be optimal for 
a specific system. 

Data replication has proved to be a viable method of 
enhancing both dependability and performance of 
DBMSs. Performance is improved by balancing the 
load between the deployed replicas, while fail-over 
mechanisms are normally used to re-distribute the load 
of a failed replica among the remaining operational 

ones. Crashes are commonly believed to be the main 
type of failure of DBMSs. Providing that only crashes 
occur, using several identical replicas provides 
appropriate protection. Under this assumption the 
replication scheme ROWAA (read once write all 
available) is adequate [1]. Unfortunately, this common 
belief is hard to justify. In a recent study, we presented 
overwhelming evidence against crash failures being the 
main concern [2]. Using the log of known bugs 
reported for four major DBMSs we observed for all 
four servers that more than 50% of the known bugs 
lead to non-crash failures, which will not be tolerated 
by a non-diverse replication. Only by deploying 
diverse redundancy, i.e. deploying diverse replicas, 
would we deliver an adequate protection against the 
non-crash failures of the DBMSs.  

A possible architecture for a fault-tolerant server 
employing (diverse) redundancy is depicted in  

Figure 1. The middleware propagates the statements 
generated by the client applications to both (all, in case 
of more than 2) diverse replicas for execution. The 
results from the replicas are collected by the 
middleware and in the case of a positive adjudication 
the middleware reports a result back to the client 
application(s). Clearly, this architecture differs from 
the ROWAA scheme. In the new architecture all 
statements (including the reads from the database) are 
executed multiple times by several diverse replicas, 
while in the ROWAA scheme all active replicas 
execute only the writes to the databases. 

While dependability gains from deploying diverse 
redundancy are beyond doubt, it is far from obvious 
what the implications of this architecture would be for 
system performance. From the known applications of 
design diversity in other areas, it is well known that 
fault-tolerant mechanisms (failure detection, fault-
containment, state recovery, etc.) have their 
performance cost. Is diverse redundancy then 



necessarily a bad thing in terms of system 
performance?  
 
 

 
 

Figure 1. Fault-tolerant server node (FT-node) 
with two (possibly more) diverse DBMSs (SQL 

server 1 and SQL server 2). The middleware 
“hides” the servers from the clients (1 to n) for 

which the data storage appears as a single 
DBMS. 

 
The overall performance of the system shown in  
Figure 1 will depend on the performance of the 

diverse replicas deployed and on the performance 
characteristics of the middleware itself. For instance, 
the middleware can use different adjudication 
mechanisms. A few reasonable alternatives are listed 
below: 
- Slowest response. The middleware collects the 

results of the individual statements (a multitude of 
which constitute a whole transaction) executed by 
diverse replicas. Once a sufficient number of 
responses are collected, they are adjudicated and 
only if identical responses from all the replicas are 
observed a successful completion of the statement 
is reported back to the client application. 

- Fastest response. Alternatively, the middleware 
may buffer the statements coming from a client 
application and make them available to the diverse 
replicas as soon as the statements are placed in the 
respective buffers. Each diverse replica collects 
the next available statement from its respective 
buffer, executes it, marks it as being completed 
and makes the response from the statement 
available to the middleware. As soon as the 
middleware receives the first response to a 
statement from a replica, it is immediately passed 
on to the client application, thus letting the client 
application proceed with the other statements 

within the transaction. The fastest response comes 
from either of the DBMSs, depending on the SQL 
statement (Figure 2). Responses from the diverse 
replicas to the same statement are adjudicated 
later, when a sufficient number of responses are 
collected, but before the end of the transaction. 
Buffering the statements in the middleware allows 
the diverse replicas to work at a maximum speed 
within transactions, as shown in Figure 2 
(DBMS1 would start execution of the next SQL 
statement even though the DBMS2 has not 
finished the previous one as indicated with the 
dashed rectangle). The transactions are committed 
(or aborted) based on the outcome of adjudicating 
the results of the statements. Commit is only 
applied if all the replicas execute all the statements 
successfully and all the statement responses are 
positively adjudicated. Otherwise, the transaction 
is aborted. 

- Optimistic response. This is similar to the fastest 
response except: i) no adjudication of the 
responses from the diverse replicas is applied; ii) a 
skip feature is implemented in the middleware as 
follows. Before a replica, X, executes a read (i.e. 
SELECT) statement it checks if a response to this 
statement has already been received from another 
replica, Y≠X. If so then X does not execute the 
statement (i.e. skips it)1. The modifying SQL 
statements (DELETE, INSERT and UPDATE) are 
executed on all servers, i.e. they cannot be 
skipped. Clearly, this regime of operation does not 
offer the same level of protection as the previous 
ones. It may, however, be adequate in many cases, 
which we discuss later (see the Discussion 
section).  

We have already [3] on systematic differences 
between the times it takes diverse DBMSs to execute 
the same statement. This may be due, for example, to 
the respective execution plans being different, the 
concurrency control mechanisms being implemented 
differently, etc. When the slowest response regime is 
used such differences will lead to the fault-tolerant 
node (FT-node) being slower than the respective 
DBMSs it consists of. When the optimistic regime is 
used, however, the systematic difference might lead to 
improved performance. If the mix of statements within 
a transaction is such that both servers ‘skip’ statements, 
                                                        
1 The functionality of looking up the next statement and the ‘skip’ 
feature is, of course, implemented in the middleware, which relays to 
the DBMSs the statements for execution. If a read statement is to be 
skipped, then the middleware simply does not pass it to the 
respective DBMS for execution. 



then the transaction will take the FT-node shorter than 
it would take each of the DBMSs it uses. When the 
‘skip’ feature is not used the best that the FT-node can 
do is process SQL statements as fast as the faster of the 
two servers can, thus diversity cannot bring any 
performance gains. 
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Figure 2. Timing diagram of a client 
communicating with two, possibly diverse, 

database servers and the middleware running 
in fastest response or optimistic regime. The 
meanings of the callouts are: 1 – the client 

sends an SQL statement to the middleware, 2 
– the middleware translates the request to the 

dialects of the servers and places the 
resulting SQL statements, or sequences of 
SQL statements, in the respective server 

buffers; 3 – the fastest response is received 
by the middleware; 4 - the middleware sends 

the response to the client. The dashed 
rectangle indicates that DBMS2 will not be 
ready to start (n+1)th SQL statement at the 

same time with DBMS1 
 

This paper, therefore, is focused on the empirical 
investigation of whether the potential performance 
gains with the optimistic regime of operation of the 
FT-node can be achieved under a realistic load, such as 
the one defined by the TPC-C performance benchmark 
[4]. Whichever regime under the FT-node operates, 
data consistency between the diverse replicas must be 
guaranteed, which is typically defined as 1-copy 
serialisability between the transaction histories of the 
replicas [1].  

Should a level of replication be required that is 
higher than the number of diverse replicas used in a 
single FT-node, then the FT-node can be combined 
with any database replication scheme, which is 
considered adequate for a particular set of 
requirements. These can be schemes for eager database 
replication, e.g. based on group communication 
primitives [5], or even lazy replication [6]. In either 

case the FT-node will replace a replica of a particular 
DBMS used by the particular database replication 
scheme.  

This paper is structured as follows. In section 2 we 
describe the experimental setup. In section 3 we 
enumerate possible configurations of the FT-node. In 
section 4 we show consistency of the experimental 
results. In section 5 we present the performance 
comparison of different FT-node configurations. In 
section 6 we compare performance of the diverse pair 
and a non-diverse solution. In section 7 we discuss 
possible performance gains when diverse DBMSs are 
used and in section 8 we present conclusions made and 
describe provisions for future work. 
 
2. Experimental Setup 
 

In the empirical study we used our own 
implementation of the industry-standard benchmark for 
online transaction processing - TPC-C [4], to evaluate 
the potential for performance improvement. TPC-C 
defines five types of transactions: New-Order (NO), 
Payment (P), Order-Status (OS), Delivery (D) and 
Stock-Level (SL) and sets the probability of execution 
of each. The minimum probability of execution for 
each transaction type is as follows: NO – 43%, P – 
43%, OS – 4%, D – 4% and SL – 4%. The benchmark 
provides a mechanism for performance comparison of 
the DBMSs from different vendors, with different 
hardware configurations and operating systems. The 
specified measure of throughput is the number of NO 
transactions completed per minute (under the specified 
mix of transaction types). Our measurements were 
more detailed than those required by the standard. We 
recorded the response times of the individual SQL 
statements and transactions executed by the DBMSs 
used in the FT-node. The test harness consisted of 
three machines: 
- a client machine, which executes a JAVA 

implementation of the TPC-C standard (it uses 
JDBC to access the DBMSs); 

- two server machines, on which two diverse open-
source DBMSs are run, namely InterBase 6.0 and 
PostgreSQL 7.4.0 (referred to as IB and PG, 
respectively, in the rest of the paper).  

The two DBMSs ran on Linux RedHat 6.0 
(Hedwig) operating system, while the client machine 
ran under Windows 2000 Professional (sp4) operating 
system. The hardware specifications are as follows: 
- client machine: 1.5 GHz Intel Pentium 4 

processor, 640 MB RAMBUS RAM and 20GB 
HDD (Maxtor DiamondM) 



- server machines: 1.5 GHz Intel Pentium 4 
processor, 384 MB RAMBUS RAM and 20GB 
HDD (Seagate U Series). 

The implementation of the TPC-C application did 
not necessitate the use of any proprietary features from 
either IB or PG. The SQL statements were 
implemented using the common subset of the 
language. Nevertheless we have developed preliminary 
versions of our own SQL translator tool. In addition 
one could make use of commercial products for porting 
between different DBMSs such as Fyracle [7], Oracle-
mode Firebird or its PostgreSQL counterpart 
EnterpriseDB [8]. 
 
3. FT-node Configurations 
 

We run a set of experiments with the following 
server configurations: 
- 1IB1PG, an FT-node with a copy of IB and PG. 

1IB,  
- a single replica of IB; 
- 1PG, a single replica of PG; 
- 2IB, an FT-node with two replicas of IB, and  
- 2PG, an FT-node with two replicas of PG.  

Each experiment comprises the same sequence of 
10,000 transactions and was repeated five times, for 
reasons detailed below. The server machines were 
restarted and databases restored between the 
repetitions.  

All the measurements were associated with a single 
TPC-C client under different server loads as follows: 
- no additional clients; 
- 10 additional clients, and  
- 50 additional clients. 

Whenever additional clients were deployed they 
executed a mix of read-only transactions (RO mix) 
instead of the mix of transactions recommended by the 
TPC-C2. The RO mix consists of the two read-only 
transactions: Order-Status and Stock-Level of almost 
equal proportion. Thus, only one TPC-C compliant 
client modifies the database. The readers and writers 
do not conflict in the two DBMSs, since both IB and 

                                                        
2 We did run multiple concurrent TPC-C clients with our own 
implementation of 1-copy serialisability between the DBMSs. These 
experiments, however, did lead to a very large number of non-
serialisable transactions, which had to be aborted. Due to non-
determinism between the orders in which the servers serve the 
concurrent clients we could not achieve a repeatable set of 
experiments to make a fair comparison between the different server 
configurations. Thus, we chose to restrict the results presented here 
to experiments with a single TPC-C compliant client while 
simulating the increased load by deploying an increasing number of 
read only clients.  

PG implement a type of MVCC (Multi-Version 
Concurrency Control). Hence data consistency 
between the replicas is guaranteed (experimentally 
confirmed by successfully running a comparison 
between the databases at the end of the experiments).  

The overhead that the test harness introduces 
(mainly due to using JAVA multi-threading for 
communication of the clients with the middleware and 
of the middleware with the different DBMSs) is the 
same irrespective whether a single or two replicas are 
used in the experiment. It has been measured to be 
negligible compared with the time taken by the 
respective DBMSs to process the 10,000 transactions. 
 
4. Confidence in the Results 
 

Each experimental setup (with a fixed configuration 
and load) was repeated five times so that we could 
detect significant variation between the observed 
results due to factors beyond our control (e.g. 
fragmentation of files on the servers). 

Figure 3 shows the mean transaction times for all 
transactions together and per transaction type in a 
10,000-transaction run, grouped by experiment 
repetitions when only a single TPC-C compliant client 
is deployed. There is no significant variation between 
the results across the repetitions. This is true for both a 
particular transaction type and all transactions together. 
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Figure 3. Mean transaction times per 
transaction type and for all transactions 

together for 5 repetitions with each of the 
configurations (1IB, 1PG, 1IB1PG, 2IB, 2PG) 

with a load generated by a single TPC-C 
compliant client. 

 



A similar picture, consistent across the repetitions, 
was established for the increased load of 10 and 50 
additional clients (Figure 4). The only configuration 
with a noticeable variation between the repetitions was 
1IB. In particular, the first run is 25% faster than the 
remaining four in terms of the mean transaction time 
with all transaction types (represented by the first bar 
in each of the five groups above the “All 5” category). 
A noticeable variation also exists between the specific 
transaction types, for which the percentages vary 
between 20% and 25%. This variation, however, does 
not change the ordering between the configurations.  

In addition the ordering between the configurations 
does not change even if we execute a different 
sequence of transactions. This was experimentally 
confirmed by executing 10,000 transactions in different 
order with either a single TPC-C compliant client or 
with ten additional clients.  

Such consistency between the observations, in 
particular, the fact that the ordering between the 
configurations remains unchanged across the repeated 
experiments, is the reason why in the rest of the paper 
we compare the performances using a single run per 
configuration. 
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Figure 4. Mean transaction times per 
transaction type and for all transactions 

together for 5 repetitions of each experiment 
type (1IB, 1PG, 1IB1PG, 2IB, 2PG) under 

increased load with 50 additional read-only 
clients. 

 
5. Performance Comparison of Different 
DBMS Configurations 
 

To compare different DBMS configurations we 
used the following measures of interest: 

- mean transaction time (for all five transaction 
types); 

- mean transaction time for a particular type of 
transaction; 

- cumulative transaction time, i.e. experiment 
duration. 

Figure 5 depicts the response time when only a 
single TPC-C client communicates with the FT-node 
configurations. 1PG is on average the best 
configuration under this load, though transactions of 
type Delivery and Order-Status are faster on 1IB. The 
ranking changes when the load increases (Figure 6). 
Now the fastest configuration on average is the diverse 
pair, albeit not for all transaction types (1IB is the 
fastest for Order-Status and Payment, while 1PG is the 
fastest for Stock-Level). The figure indicates that the 
diverse DBMSs “complement” each other in the sense 
that when IB is slow to process a transaction then PG 
is fast (New-Order and Stock-Level) and vice versa 
(Payment, Order-Status and Delivery). These 
systematic differences illustrate why the 1IB1PG 
diverse pair is the best configuration on average. In 
addition the ‘skip’ feature enables the diverse pair to 
augment this advantage by omitting the read 
(SELECT) SQL statements on the slower DBMS. 
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Figure 5. The mean transaction times for each 
transaction type and for all transactions 

together under a load generated by a single 
TPC-C compliant client. The configurations 
compared under this load are as follows: 

configurations with a single DBMS (1IB, 1PG), 
a configuration with a diverse pair of DBMSs 

(1IB1PG) and configurations with 
homogenous pairs of DBMSs (2IB, 2PG). 

 



Although a DBMS is fastest on average for a 
particular transaction type, within the transactions the 
fastest responses to SQL statements may come from 
different DBMSs. This fact is utilised in the diverse 
pair. Hence, it is not surprising that IB executes more 
SELECT statements in an experiment than PG when 
the two are employed as a diverse pair (IB executes 
70%, while PG executes 51%)3.  

Similar results were obtained under the load with 50 
additional clients. 

Figure 7 shows how the ordering changes between 
the configurations as a result of a load increase. An 
experiment comprising 10,000 transactions under the 
‘lightest’ load (0 additional clients) is fastest with 1PG. 
Under increased load, however, the diverse pair, 
1IB1PG, becomes the fastest configuration. The 
experiment duration with the diverse pair is shorter 
than with the individual DBMSs, or with either of the 
non-diverse (homogenous) DBMS pairs. The diverse 
pair is 20% faster than the second best configuration 
(1PG) with 10 additional clients and more than 25% 
faster than the second best combination (2PG) with 50 
additional clients. The benefits of the systematic 
difference in transaction times between the diverse 
DBMSs and the efficiency of the ‘skip’ feature become 
more clearly pronounced when the load increases. 
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Figure 6. The mean transaction times for 
single DBMS configurations (1IB, 1PG), 

diverse DBMSs pair (1IB1PG) and 
homogenous DBMS pairs (2IB, 2PG) for each 

transaction type and for all transactions 

                                                        
3 There is nothing unusual in the fact that the sum 70% + 50% is 
greater than 100%. It simply means that there are statements which 
are executed by both servers. If the fastest server has not completed a 
statement by the time the slower is ready to start, then both will 
process the particular statement.  

together under an increased load with 10 
additional read-only clients. 
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Figure 7. Cumulative transaction time 
(experiment duration) for the five DBMS 

configurations under different load (0, 10 and 
50 additional read-only clients). 

 
6. Comparison of Diverse Pair and a Non-
Diverse Solution 
 

In this section we compare the performance of the 
diverse pair and of a well-known solution for eager 
data replication [9]. The solution uses non-diverse 
redundancy. It combines transactional concurrency 
control and group communication primitives in order 
to guarantee data consistency (referred to as 
TCC+GCP in the remainder of the document) among 
replicas. It provides both fault-tolerance and good 
performance.  

In order to guarantee a 1-copy serialisability, 
TCC+GCP relies on “totally ordered” [9] delivery of 
transactions using a reliable multicast protocol. It is 
based on the ROWAA (Read-Once Write All 
Available) protocol [1].  

Under this replication scheme the clients served by 
TCC+GCP connect to only one replica, called the local 
replica of the client. For this client the other replicas of 
the TCC+GCP are remote replicas. A read-only 
transaction generated by a client is executed by the 
local replica, only. A write transaction (i.e. one that 
includes write statements) is first executed by the local 
replica. The outcomes of the write statements are then 
broadcast (by the respective middleware) to the remote 
replicas of TCC+GCP in the form of write sets. The 
remote replicas install the write sets according to the 



total order of transactions established among the 
replicas used in TCC+GCP. 

Clearly, with TCC+GCP the read-only transactions 
are load-balanced between the replicas. Ideally, the 
clients should be fairly divided between the replicas. A 
fair performance comparison, thus, of TCC+GCP and 
an FT-node with two diverse DBMSs, would require 
the following arrangement:  
- a single DBMS working in TCC+GCP will be 

subjected to the write transactions load generated 
by all clients and half of the load generated by the 
read-only transactions generated by the clients; 

- the FT-node handles the entire load, both from 
write and read transactions, generated by all the 
clients.  

We ran experiments for loads generated by a single 
TPC-C client and additional read-only clients: 10 and 
50. To make a fair comparison between an FT-node 
and TCC+GCP, we used the results measured for the 
FT-node (see above) and run a new set of experiments 
with 5 and 25 read-only clients respectively with an 
FT-node. We simulated the performance of the 
TCC+GCP using the measurements obtained with the 
FT-node under the new loads (with 5 and 25 read-only 
clients).  

We calculated a lower and an upper bound on the 
TCC+GCP transaction times as follows. The lower 
bound is the actual transaction time measured in the 
new experiments with the individual DBMSs and the 
number of read-only clients equal to 5 and 25, 
respectively. This lower bound seems unattainable by 
TCC+GCP, because the installation of the write sets 
(especially the lock phase) [10] on the remote replicas, 
as well as on the local replicas is not accounted for in 
the lower bound. Installing the write sets is on the 
critical path – it is always done after the local replica 
creates the write sets. The upper bound is calculated 
from the experimental log (in which we record the start 
and completion times of the individual statements) by 
doubling the execution time of all write SQL 
statements (DELETE, INSERT and UPDATE) 
encountered during the experiment. Whether the bound 
is indeed an upper bound is moot since it is unclear 
whether the actual overhead due to group 
communication primitives and the actual installation of 
the write sets by all the replicas is greater or smaller 
than the time it takes the local replica to execute a 
write statement. The upper bound may be too 
pessimistic, if the mentioned overheads are negligible 
compared with the write statements execution times. 
On the other hand, however, a simplistic 
implementation of the write sets would be forwarding 

them to the remote replicas, which in turn will actually 
execute them. Under this simplistic scenario, our upper 
bound will be in fact too optimistic because it does not 
account for the overhead due to propagating the write 
sets to the remote replicas. In summary, the realism of 
the upper bound is questionable and should be 
scrutinised in the future, ideally by actually 
implementing TCC+GCP. Despite this problem, 
however, using the lower and the upper bounds allows 
us to get preliminary indications of how the 
performance of FT-node compares with TCC+GCP. 

Figure 8 presents the results of a fair comparison 
between the two replication schemes under a load with 
1 modifying and 50 additional read-only clients. 
Diverse pair performs clearly better than TCC+GCP if 
IB is used: the transaction times of the FT-node is 
lower than the lower bound (unattainable by 
TCC+GCP).  The diverse pair is also better (~ 15%) 
than the upper bound of TCC+GCP with PG. It is, 
however, worse than the lower bound of TCC+GCP 
with PG. The diverse pair is ~30% slower than the 
lower bound. Thus, it remains unclear whether 
TCC+GCP with PG is faster than the FT-node. Similar 
results have been observed in all repetitions with this 
load.  

Similar ordering between the FT-node and the 
TCC+GCP has been observed with a lower load of 
only 10 additional read-only clients. Again, only the 
lower bound of the non-diverse replication with PG is 
faster than the diverse pair. However, the difference 
between the diverse pair and the upper bound is 
smaller. 
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Figure 8. Mean response times for diverse 
replication (1IB1PG) and calculated lower and 

upper bound of mean response times for a 
non-diverse replication schema when either 



1IB or 1PG is used. The lower bound is 
calculated using results from respective 

individual DBMS (IB or PG) experiment under 
the load with 1 modifying and 25 read-only 

clients. The number of read-only clients was 
halved because the non-diverse schema uses 

a load balancing approach where reads are 
executed at only one node.  To estimate the 

upper bound, mean response time of 
transactions’ write sets was added to the 

lower bound. 
 
7. Discussion 
 

Performance implications of using diverse 
redundancy in the context of database replication are 
the focus of this paper. Diverse redundancy is the only 
known realistic protection against design faults in 
complex software products. Once diverse redundancy 
is deployed there might exist performance 
implications, which we evaluated empirically. 

A standard fault-tolerant architecture (see Figure 1) 
would dictate adjudicating all the responses from (a 
sufficient number of) diverse replicas before a response 
is returned back to a client application, i.e. adjudication 
is applied at the level of individual statements. This 
adjudication, normally implemented by a specialised 
middleware, can be done as the responses are received 
(referred to as the slowest response) or postponed and 
completed before the end of the corresponding 
transaction (the fastest response regime). Either way, 
fault-tolerance will lead to performance penalty and the 
FT-node cannot be faster than the fastest of the 
deployed DBMSs.  

The schemes adopted for practical database 
replications provide no protection against design faults. 
A common assumption is made that node crashes are 
the main concern, an assumption under which various 
optimistic regimes of operations are used such as 
ROWAA. These do not require statement adjudication 
and as a result the adjudication overhead is simply 
avoided.  

Failures of DBMSs are rare. Most of the time the 
applications use statements that are handled correctly 
by the deployed DBMSs. Even if diverse DBMSs are 
deployed most of the statements will be handled 
correctly by all the diverse replicas. Thus, most of the 
time adjudicating the responses of diverse replicas will 
reveal no discrepancy, making the adjudication 
overhead a waste of time. The point, of course, is that 
we will never know which statement will turn out to 

trigger a fault in the DBMSs and revealing a 
discrepancy between the replica responses. In some 
extreme cases, however, one may know with certainty, 
that all the statements used by the application will be 
processed by the DBMSs correctly; hence one may be 
prepared to use regimes in which the adjudication is 
eliminated. One such example is the implementation of 
the optimistic regime. Its advantage compared with the 
well-known ROWAA regime of operation lies in the 
fact that under ROWAA the load is statically 
distributed between the replicas – in the ideal case a 
fair load-balancing between the replicas is sought. 
Instead, when the FT-node operates under the 
optimistic regime its diverse replicas naturally get the 
load that they are better at executing. As a result the 
optimistic mode has the potential of performing better 
than ROWAA. Unfortunately, our experiments did not 
provide a conclusive answer as to whether this 
potential can be materialised, but it did not refute it 
either. Further, more accurate measurements, possibly 
using proper implementation of the replication 
schemes based on ROWAA will provide a definitive 
answer. 

It is worth pointing out that the 3 regimes of 
operation of the FT-node listed above (slowest 
response, fastest response and optimistic) are not 
mutually exclusive. In fact, they can be combined to 
offer configurable quality of service, as we argued 
elsewhere [3]. The clients mainly concerned with high 
dependability assurance can be served under the 
slowest response regime. The clients mainly interested 
in maximising the performance can be served under the 
optimistic regime of operation. Finally, by deploying 
learning capabilities, e.g. based on Bayesian inference, 
[11], the middleware may become capable of 
switching intelligently between the different regimes of 
operation: initially a new type of statement (e.g. SQL 
statement involving a complex and rarely executed 
JOIN operation) will be treated by the middleware with 
suspicion and the most conservative, slowest response, 
regime of adjudication will be applied. As more 
instances of the same statement are executed 
successfully (i.e. the adjudication is passed 
successfully in all the observed instances), then the 
middleware will switch from slowest response through 
the fastest response eventually to the optimistic regime 
of operation. Clearly, adjudication is simply impossible 
with ROWAA, thus the scope for trading-off 
intelligently performance for improved dependability 
assurance is very limited, if not impossible.    
 



8. Conclusions and Future Work 
 

The results presented here show an intriguing 
possibility to get a performance gain, in some cases 
very substantial, when diverse redundancy is used in 
the context of database replication. We compared 
diverse with non-diverse redundancy using an 
optimistic architecture, FT-node, in which the variation 
between the execution times of the diverse replicas is 
turned into a performance advantage. In this setup, 
diverse redundancy is clearly beneficial compared with 
non-diverse redundancy. 

We also compared non-replicated solutions (a single 
copy of a DBMS) with an FT-node, in which a diverse 
pair of DBMSs is deployed. Diverse pair performs 
significantly faster than the non-replicated solution.  

These two results seem very significant since they 
open up new ways of achieving high performance, 
especially when the main system concern is achieving 
as high a performance as possible. 

We also looked at how diversity performs against 
eager replication solutions based on total transaction 
order (TCC+GCP), which use load balancing for 
improved performance. The comparison, performed 
under various simplifying assumptions, is indecisive in 
the general case. Diverse redundancy is not guaranteed 
to always achieve a known lower bound of 
performance for those solutions, although we recorded 
that the diverse pair performed better than TCC+GCP 
implemented with replicas of Interbase 6.0. This lower 
bound, however, is unattainable for TCC+GCP too! 
The performance of diverse redundancy is better than 
the likely upper bound on the performance of 
TCC+GCP with replicas of PostgreSQL 7.4. In some 
cases of simple implementations of TCC+GCP, e.g. the 
write sets being propagated to the remote replicas in 
the form of full SQL statements, the upper bound will 
become a lower bound on the performance of 
TCC+GCP. For this implementation of TCC+GCP we 
have a decisive argument in favour of diverse 
redundancy: it is guaranteed to be faster than 
TCC+GCP.  

In the experiments we used a synthetic load (TPC-
C) mainly due to the wide acceptance of the 
benchmark for performance measurement studies. 
Although the reported effect is dependant on the mix of 
SQL statements used we expect similar results in 
favour of diverse redundancy to be observed for a wide 
range of real loads. In fact, TPC-C specifies a write 
intensive mix of statements, not ideal for the optimistic 
regime of an FT-node. Applications based towards 

read-only mixes of SQL statements are more suitable 
for the reported effect to make a bigger impact. 

A promising direction for future development is 
implementation of a configurable middleware, 
deployable on diverse DBMSs, which would allow the 
clients to request quality of service in line with their 
specific requirements for performance and 
dependability assurance.  
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