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Abstract

Database replication protocols need to detect, block or
abort part of conflicting transactions. A possible solution
is to check their writesets (and also their readsets in case
a serialisable isolation level is requested), which however
burdens the consumption of CPU time. This gets even worse
when the replication support is provided by a middleware,
since there is no direct DBMS support in that layer. We
propose and discuss the use of the concurrency control sup-
port of the local DBMS for detecting conflicts between local
transactions and writesets of remote transactions. This al-
lows to simplify many database replication protocols and to
enhance their performance.

1 Introduction

Many database replication protocols use the constant in-
teraction approach [19] for update propagation among repli-
cas; i.e., they only propagate their updates by a fixed num-
ber of multicasts to the rest of replicas (a single multicast
at the end of each transaction is most usual). In such pro-
tocols, transactions are executed following a scheme which
is similar to the passive replication model: a dedicated mas-
ter replica directly receives the transaction sentences, and
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once the commit procedure begins or terminates (depend-
ing on the protocol class [7] being either eager or lazy, re-
spectively), the master replica gets the transaction writeset
and multicasts it to the rest of the replicas. Once this write-
set is received in the rest of replicas, it has to be applied.
There are different techniques for applying the updates in
this writeset, which depend on the writeset contents [10]:
either standard SQL sentences or some specific data struc-
ture, such as the usual contents of a write-ahead redo log.

Whenever such writeset contents are applied in the local
database replica, concurrency control has to be taken care
of, since these updates may conflict with previous accesses
made by other local concurrent transactions. In some cases,
such conflicts may entail that the writesets must remain
blocked until those local transactions have terminated, or
that the latter must be aborted. In concurrent systems, trans-
actions that end up terminating with abortion ultimately
are consuming time and resources in vain before abort-
ing. These blocked resources could otherwise be made use
of advantageously for processing other, successful transac-
tions. The more time passes before the concurrency control
finally aborts a transaction, the more processing power is
consumed in vain. Thus, a mechanism able to detect abort
conditions as early as possible should be included in the
concurrency control.

Such a concurrency control support for database repli-
cation can be achieved by a simple extension of the DBMS
core, to the effect that appropriate locks are requested be-
fore the writeset is applied. On the other hand, details of



such extensions will always depend on the specific DBMS at
hand, possibly entailing a lot of problems related to main-
tenance, interoperability and migration. Thus, instead of
proprietary DBMS extensions, a product-independent mid-
dleware solution may be deployed for supporting database
replication. However, the above-mentioned concurrency
control checks may be less straightforward in a middleware-
based solution than in a DBMS extension, or, at least, more
costly.

In this paper, we describe a technique for managing con-
currency control which combines the simplicity of using
DBMS core support while maintaining the product indepen-
dence of a middleware solution. Transaction conflicts are
detected swiftly and replication protocols can better focus
on their main targets. Instead of having to request and wait
for termination, conflicting transactions may be immedi-
ately aborted. By reducing the abortion delay, the system
becomes ready faster for processing other active transac-
tions. The resulting performance improvement of replica-
tion protocols is corroborated by some tests presented in
the remainder.

We have implemented and tested our approach in Post-
greSQL. Our solution needs to scan the system’s locking ta-
bles. Similar tables are used in virtually all DBMSs, (e.g.,
the VSLOCK view in Oracle 9i, the DBA_LOCK in Oracle
10g 12, the sys.syslockinfo table of Microsoft SQL
Server 2000 —converted into a system view in SQL Server
2005—-, etc.) so that this scheme is seamlessly portable to all
of them, since only standard SQL constructs are used.

The remainder is structured as follows. Section 2 de-
scribes a scheme for detecting transaction conflicts with the
help of the DBMS. Section 3 describes a specific protocol
[12] and some variations that are used for testing the ben-
efits of our conflict detection scheme. Section 4 provides
some performance results that compare the approaches dis-
cussed in the previous section. Finally, sections 5 and 6
discuss related work and conclude the paper.

2 A Scheme for Conflict Detection

The functionality described in this section is part of the
bottom layer of the MADIS middleware, explained in more
detail in [9]. It is easily portable to other middleware ar-
chitectures since it does not depend on other components
of our architecture. Its aim is to detect conflicting pairs of
transactions.

MADIS has been implemented in Java, with a JDBC inter-
face to applications. Its current communication support is
provided by the Spread group communication system [1, 4].
Since, in this paper, nothing beyond the manner in which the
detection of conflicting concurrent transactions is supported
by the middleware architecture, no additional details about
the group communication system nor about MADIS are rele-

vant. Moreover, we remark that the description of protocols
in the next section is not complete, in as far as nothing is
said about their recovery procedures. Yet again, the mod-
ularity of our approach guarantees that details about these
procedures are irrelevant for discussing conflict detection
(although they are of course of key importance for the main
purpose of replication, viz., enabling high availability).

Notice, however, that our system has been designed for
supporting full replication, i.e., each machine in the net-
work covered by the middleware has a complete database
replica. All replication protocols considered in this pa-
per adhere to this kind of replication. Moreover, each of
them can be classified as eager, with constant interaction
and non-voting termination, according to [19]. Full repli-
cation with eager non-voting replication support is a prefer-
able option for middleware-based wide-area distributions of
OLTP systems and many other database applications, e.g., e-
commerce transactions.

Coming back to conflict detection, the main advantage
of our approach is the use of the concurrency control sup-
port of the underlying DBMS. Thereby, the middleware is
enabled to provide a row-level control (as opposed to the
usual coarse-grained table control), while all transactions
(even those associated to remote writesets) are subject to
the underlying concurrency control support. Its implemen-
tation is based on the following two elements:

e The database schema is enhanced by the stored func-
tion getBlocked(). It looks up blocked transactions
in the DBMS metadata (e.g., in the pg_locks view of
the PostgreSQL system catalogue). It returns a set of
pairs consisting of the identifiers of a blocked transac-
tion and of the transaction that has caused the block.
If there is no conflict when this function is called, it
returns the empty set.

In short, getBlocked() reads a system catalogue ta-
ble in which the DBMS keeps information about trans-
action conflicts. Such a table is maintained by most
DBMSs. Thus, this function is easily portable to most
of them. Moreover, these DBMSs only provide read
access to this system table. So, reading such views or
tables does not compromise the regular activity of the
DBMS core nor the activity of other transactions.

e An execution thread per database is needed that cycli-
cally calls getBlocked(). Its cycle is commonly set to
values between 300 and 1000 ms. It runs on the mid-
dleware layer.

Once this thread has received a non-empty set of con-
flicting pairs of transactions, it may request the abor-
tion of one of them. For this purpose, each transaction
has a priority level assigned to it. By default, it aborts
the transaction with smaller priority but takes no action
if both transactions have the same priority level.



This mechanism should be combined with a transaction
priority scheme in the replication protocol. For instance,
we might define two priority classes, with values 0 and 1.
Class 0 is assigned to local transactions that have not started
their commit phase. Class 1 is for local transactions that
have started their commit phase and also for those trans-
actions associated to delivered writesets that have to be lo-
cally applied. Once a conflict is detected, if the transactions
have different priorities, then the one with the lowest prior-
ity will be aborted. Otherwise, i.e., when both transactions
have the same priority, no action is taken and they remain
in their current state until the lock is released. Similar, or
more complex approaches might be followed in other repli-
cation protocols that belong to the update everywhere with
constant interaction class [19], as described in the next sec-
tion.
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Figure 1. Steps in the block detection proce-
dure

Note that this conflict detection strategy is intentionally
very simple and quite flexible, as shown in fig. 1. Noth-
ing but the set of pairs of conflicting transaction identi-
fiers needs to be known, which can be straightforwardly ob-
tained from the locking table, as described above. To begin
with, a client application uses the middleware for creating
local transactions (step 1). The middleware is able to fil-
ter such requests and sets the transaction identifier and pri-
ority level in an array managed by the monitoring thread
(step 2). Such task is made for both local and remote (i.e.,
writeset-application) transactions. This information is then
processed by the monitoring thread each time it reads the
system catalogue table (step 3). Once a conflict arises, and
depending on the transactions’ priority, one of two conflict-
ing transactions can be aborted immediately. The transac-
tion to be cancelled is in many replication protocols the
blocking (i.e., active) one, not the blocked one. Thus, its
cancellation can be requested by the middleware since it has
access to all active connections; i.e., the middleware uses

the context information of such an active blocking transac-
tion to request its own rollback (step 4). Subsequently, the
blocked transaction (usually the application of the writeset
of a remote transaction) is reactivated without further delay
and thus may terminate faster and successfully.

3 A Case Study: The SI-Rep Protocol

We have selected the SI-Rep protocol described in [12]
for a case study of our conflict detection mechanism. There
are several reasons that justify this selection: (i) It is a good
protocol for guaranteeing the snapshot isolation level [2] (at
least, its 1CSI variation as described in [12]), as shown by
its performance measurements. (ii) Its description includes
a lot of implementation optimisations that improve its over-
all performance. So, the following three implementations
variants of such a protocol can be tested: (a) an optimised
version without our conflict detection technique, (b) the op-
timised version with our conflict detection technique, (c)
the non-optimised version with our conflict detection tech-
nique. Such three implementations allow us to test the ad-
vantages and inconveniences of our block detector.

This protocol implements the snapshot isolation level.
According to [2], this isolation level needs to assign two
timestamps to each transaction. The first one is its start
timestamp, to be set when the transaction initiates its first
database access. The second one is its commit timestamp,
to be assigned when the transaction successfully commits.
Both usually are logical timestamps, i.e., implemented as
counters. In order to commit a transaction 7', a single
rule has to be respected in a centralised implementation of
this isolation level: No other transaction T' with a com-
mit timestamp in the interval [start(T'), commit(T)] wrote
data that T' also wrote. This correctness rule is needed for
understanding the SI-Rep protocol as described below, and
for justifying that our blocking detection technique does
not violate the correctness criteria of the original proto-
col. Some additional requirements on this isolation level for
replicated databases have been discussed and formalised in
[6], and they have been followed by all the implementations
discussed here.

This protocol uses an atomic multicast [8], i.e., a reli-
able multicast with total order delivery, and thus it ensures
that the writesets being multicast by each replica at com-
mit time are delivered in all replicas in the same order. It
uses two data structures for dealing with writesets: ws_list,
which stores all the writesets known (i.e., delivered) un-
til now, and tocommit_queue, which holds those writesets
locally certified but not yet applied in the local database
replica. Moreover, for each transaction, the attributes cert
and tid hold something similar to the transaction start and
commit timestamps, respectively.

The steps that define this protocol are shown in Fig. 2



Initialisation:
1. lastvalidated_tid := 0
2. ws_list:=0
3. tocommit_queue k := 0
I. Upon operation request for T, from local client
1. If select, update, insert, delete
a. if first operation of T; wait until no holes in
commit order and then begin T; at Ry
(( - T;.priority :=0))
b. execute operation at R; and return to client
2. else /* commit */
a. T;.WS := getwriteset(T;;) from local Ry,
b. if T;.WS = ), then commit and return
C. obtain wsmutex
d. if 3T; € tocommit_queue_k A T, WS N T; WS #£ 0
- release wsmutex
- abort T; at R, and return to client
e. T;.cert := lastvalidated_tid
f. release wsmutex
g. (( T;.priority := 1))
h. multicast T; using total order
II. Upon receiving T; in total order
1. obtain wsmutex
2.if 3T; € ws_list : T;.cert<T;.tid A T, WSNT; WS #£ 0
a. if T; is local then abort T; at Ry, else discard
3. else
a. T;.tid := ++lastvalidated_tid
b. append T; to ws_list and tocommit_queue_k
4. release wsmutex
lll. Upon vV T;, T, before T; in tocommit_queue k :
T;. WS NT;.WS =0, and either AT, waiting to start
at Ry or T, is local or T; does not create a new hole.
1. if T, is remote at Ry
a. begin T;; at Ry,
b. apply T;.WS to R
(( this application may abort local transactions before
they arrive to step 1.2.d when our technique is used ))
2. commit T, at Ry
3. remove T, from tocommit_queue_k

Figure 2. SI-Rep Algorithm at replica R, (SIR-
BD extensions in parentheses)

(further details can be found in [12]). In this figure, we have
added in parentheses the extensions needed to include our
blocking detection mechanism in SI-Rep. Such extensions
must be ignored in the following descriptions, since they
provide the basis of our SIR-BD implementation that will be
discussed later.

As can be seen in that figure, several conflict detection
checking variants are used in this protocol. The first one
in step I validates locally the transaction before its writeset
is multicast. Basically, it is checked whether the correct-
ness rule described at the start of this section is satisfied.
However, there may be other concurrent transactions whose
writeset is delivered before that of the analysed transaction,
which may also lead to its abortion. Those transactions are
checked in the global validation action of step II. Finally,
the writeset application procedure in step III also needs to

check for conflicts among writesets for deciding when each
writeset may be securely applied. This last checking en-
ables the concurrent execution of non-conflicting writesets,
i.e., it serves to optimise the protocol performance but is not
strictly necessary for the correctness of the protocol. Note
that also the checks in step I are, in a sense, redundant, since
they would be made in step Il anyway, but doing them ahead
of step Il may reduce the amount of needed multicasts, since
some transactions that otherwise would be aborted in II can
be aborted earlier.

Note that we have tacitly assumed that the underlying
database system is supposed to be able to check for con-
flicts, and to abort transactions the access patterns of which
violate the snapshot isolation level rules.

Based on this SI-Rep protocol, we have developed the
following three implementations:

e SIR (SI-Rep): In this case, our SI-Rep implementa-
tion follows all steps of the protocol described in [12]
(i.e., the algorithm presented in fig. 2 without any of
the extensions in parentheses). It scans the writesets
for deciding if they have a non-empty intersection. At
worst, an item per item comparison would be neces-
sary, detecting a conflict once a matching pair of items
is found; if no match arises, the writesets do not con-
flict. However, as we will see in the following section,
this conflict check can be easily optimised.

e SIR-BD (SI-Rep with Blocking Detection): In this sec-
ond alternative, based on the previous implementation,
we have added our blocking detection mechanism.
None of the checks in the previous alternative have
been removed. We have assigned the following priori-
ties to the transactions. All transactions are initialised
with a O priority level. They get level 1 when they
are multicast in their local node or when their write-
set is delivered in their remote nodes. This ensures the
correctness of this alternative, since our blocking de-
tection mechanism aborts a transaction only if all of
these conditions are satisfied. Otherwise, no particular
action is taken.

— The transaction to be aborted is local.

— It has not locally requested its commit; i.e., its
writeset has not been multicast.

— The transaction that causes its abortion has been
generated for applying a remote writeset.

This approach satisfies the correctness criteria of the
snapshot isolation level, since the writeset is asso-
ciated to a transaction that has successfully passed
its global validation phase. It already has a com-
mit timestamp which of course is in the range of the
[start, commit] interval of the local transaction, since



the latter has not yet requested its commit. Moreover, it version of our middleware. It is still a prototype and does

is able to abort local transactions even before SIR does, not perform well yet for writeset collection. Due to this, the
although SIR is seen as a highly optimised protocol for performance results discussed in the next section are im-
early conflict detection. paired. However, note that this disadvantage is common to
each protocol considered in the comparison.
Initialisation:
1. lastvalidated._tid := 0
2. lastcommitted_tid = 0 4 Performance Results
3. ws_list :=0
4. tocommit_queue k := () . . .
I. Upon operation request for T; from local client Based on a comparison of the three implementations of
1. If select, update, insert, delete the SI-Rep protocol described in the previous section, we

a. if first operation of T;

I in h h r blockin ion str rO-
" T, cert = lastcommitted_tid are going to show that our blocking detection strategy pro

vides better results than any other middleware layer ap-

- T,.priority :== 0
b. execute operation at R, and return to client proach with the same conflict granularity. Our SIR-BD im-
2. else /* commit */ plementation embodies a regular configuration of our con-

a. T;.WS := getwriteset(T;;) from local Ry,
b. if T;.WS = 0, then commit and return
c. T;.priority =1

flict detection technique, whilst SIR models a strongly op-
timised version of other techniques (as far as we know,

d. multicast T; using total order other middleware architectures for database replication only
”-1 Upgn receiving T; in total order achieve class granularity, where classes are usually associ-
. obtain wsmutex .
2.if3T, € ws.list : T,.cert < T,.tid A ated to tables. or fragments of tables that COl’r‘l‘pFlSC manz
T WS N T, WS # 0 rows). The third protocol attempts to model a “simplified
a. release wsmutex version of the original protocol, which shows that our tech-
Sb. 'If Ti is local then abort T; at Ry, else discard nique may be useful not only for middleware-based replica-
. else . . :
a. T, fid = ++lastvalidated_tid thn prgtocol design but also for concurrency control sim-
b. append T; to ws_list and tocommit_queue_k plification.
C. release wsmutex To accomplish the comparison, we use PostgreSQL as the
Il T; = head(tocommit.queue k) underlying DBMS, and a database with a single table with
1. if T; is remote at Ry N
a. begin Ty, at Ry, two columns and 10000 rows. One column is declared as
b. apply T;.WS to R, primary key, containing natural numbers 1 to 10000 as val-
c.VT;:Tjislocalin Ry AT, WSNT;, WS #0 ues. The simplicity of this database enables a fast detection

(/;h-:-sj izfnglc;tsaezi\tl)idofr sct(?r?fllii:t dotector of conflicts with row granularity at the middleware layer,

concurrently with the previous step I11.1.b) and in particular for the SIR protocol (i.e., one that does not
- abort T; use our automatised conflict detection). Since the primary
2. commit T, at Ry key values form a contiguous interval, we only need two
3. ++lastcommitted.tid ) values for each writeset: its lower bound, i.e., the value f of

4. remove T,; from tocommit_queue_k . . . . .
its first row, and its upper bound, i.e., the writeset size WS.
Thus, two writesets collide if and only if the f or f+ws value

Figure 3. SIR-SBD algorithm at replica R, of one is contained in the [f,f+ws) interval of the other.

Note that the efficiency of this conflict checking for the

e SIR-SBD (SI-Rep, Simplified and with Blocking SIR implementation does not gen.eralise wi.thout furth§r ado
Detection): This last implementation uses a simpli- to any protocol. In general, an item-per-item scanning as
fied version of the SI-Rep protocol, where all write- discussed aboye is needed. Further note that. we have cho-
set checks being made at steps I and III have been re- sen the very simple .databas<? above for grantlpg a favour to
moved. Figure 3 shows its actual algorithm. In this SIR for our comparison. With a more CQmpllcated sample
variant we have eliminated the possibility of apply- database, the performance of SIR would in fact be worse.
ing non-conflicting writesets concurrently. Our aim All protocols have been tested using our middleware
is only to prove that, by combining the mandatory with either 2, 4, or 8 replica nodes. Each node has a 2.8
writeset check of step II and our blocking detection GH.Z CPU with I GB of RAM running Linux Fedora C(.)re
mechanism, we obtain acceptable results. Of course, 2 with PostgreSQL 7~4'].2 and Sun Java 1.4.2. The.:y are in-
adding the possibility of concurrent execution among terconnected by a 1 Gbit/s Ethernet. In each replica, there
non-conflicting writesets yields better performance re- are 10 concurrent clients, and 10 sequential transactions are
sults in heavily loaded systems. executed via each client connection, without any pause be-

tween each pair of consecutive transactions. The monitor-

These protocols have been implemented in the current ing thread that cyclically calls our GetBlocked() function




uses in these experiments a cycle of 1000 ms. Other ex-
periments have been made using cycles of 300, 500, and
700 ms, but their results were practically the same as those
presented here.

Each transaction is composed of two sentences, sepa-
rated by a configurable delay for modelling a thinking user.
As suggested by standard benchmarks, like TPC-C [18], we
assume an interactive application that displays some infor-
mation to the user and later an update generated by that user.
The first sentence reads part of the table (with a select for
update sentence). The second is an update SQL sentence
which explicitly specifies the range of rows to be updated
with a where clause. Different transactions with varying
delay (1 or 4 seconds) and various amounts (5, 10, 15, 20,
40, 100) of items modified in the second sentence have been
generated. Below, we refer to transactions with a delay of 1
second as short transactions, and to the rest as long trans-
actions.

The work load in these tests consists of an uninterrupted
sequence of transactions executed by each client (recall: 10
clients per replica). Hence, we think that this is adequate for
bringing out the benefits of our conflict detection approach.

Based on this setting, the average completion time for
committed and aborted transactions is shown below. The
main advantage of our conflict detection technique is that
it aborts sooner the transaction that would abort later any-
way. This advantage becomes evident when comparing the
completion time of aborted transactions in SIR and SIR-BD.
Thus, our technique significantly contributes to decrease re-
dundant resource consumption and hence to improve the
overall transaction processing ratio.

Table 1 summarises all abortion rates obtained in our
tests. As can be seen, our conflict detection technique does
not introduce any significant abortion rate variation, which
clearly accounts for its efficiency and scalability.

Figures 4 to 6 show the mean transaction processing time
in six different scenarios, obtained by varying the numbers
of replicas and updated items. For each combination of pa-
rameters, 100 samples have been run. All protocol plots
consist of two curves, for committed and aborted transac-
tions. Subsequently, we are going to discuss these curves
for varying numbers of replicas.

Figure 4 shows performance results when only two repli-
cas are used. Of all cases studied, this is the worst for our
conflict detection technique, since the transaction through-
put ratio increases with the number of replicas. More pre-
cisely: since our technique accelerates the detection of con-
flicts between remote writeset applications and local trans-
actions, and since the number of such conflicts increases
with the number of replicas, it follows that the relative over-
head of our technique is amortised better by a larger number
of replicas.

In spite of this, figure 4 shows that the results obtained

Table 1. Abortion rates in all experiments

SIR Protocol
Number of Replicas
Updated 2 | 4 | 8
Items Delay (sec.)
1 4 1 4 1 4
5 0.8 1.2 1.8 3.0 3.6 5.9
10 1.2 2.7 2.1 6.3 6.7 11.5
15 34 4.1 6.5 9.5 10.9 15.8

20 3.0 6.2 7.5 10.6 16.5 | 203
40 8.3 10.7 179 | 21.5 | 323 | 369
100 | 25.0 | 26.8 | 434 | 43.6 | 61.0 | 60.9

SIR-BD Protocol

Number of Replicas
Updated 2 | 4 | 8
Items Delay (sec.)
1 4 1 1 4
5 0.9 1.5 1.5 2.7 4.6 6.2
10 1.1 3.1 2.3 5.5 7.2 11.6

15 2.9 3.9 6.0 8.8 11.7 16.4
20 3.1 52 7.8 11.4 163 | 21.0
40 9.2 9.9 18 213 | 33.7 | 36.0
100 | 249 | 27.6 | 440 | 446 | 61.0 | 62.1

SIR-SBD Protocol

Number of Replicas
Updated 2 | 4
Items Delay (sec.)
1 4 1 4
5 0.8 1.9 1.6 2.9

10 1.1 22 2.1 5.4
15 2.3 4.6 44 79
20 3.6 52 6.3 10.8
40 6.7 11.4 17.4 | 205
100 | 21.1 23.6 | 44.1 41.8

with SIR-BD are better than those of SIR. With short trans-
actions (fig. 4.a), the average response time of SIR-BD is
15% shorter than that of SIR for aborted transactions. This
reduces the overall system load and results in a 2% shorter
response time for SIR-BD as compared to SIR for committed
transactions. This shows that early abortions are directly
beneficial for successfully committing transactions. This
becomes even more evident with longer transactions. As
can be seen in fig. 4.b, a delay of 4 seconds between the
two accesses of each transaction results in a performance
gain of around 30% of SIR-BD over SIR for aborted transac-
tions and around 3% for committed transactions.

Recall that SIR-SBD is always impaired by its lack of SIR
optimisations. Thus, its performance for short transactions
is similar to that of SIR-BD whenever writesets are small,
but it degrades with more than 40 items per writeset, in par-
ticular for committed transactions, since the SI-Rep optimi-
sations are related to the concurrent application of remote
writesets, and writeset delivery and application in the local
database is included in the transaction completion phase.
However, with long transactions, SIR-SBD’s performance
is intermediate to the other two implementations.

The results obtained for four replicas display a simi-
lar pattern to those for two replicas, but with a better per-
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Figure 4. Performance results for 2 replicas

formance for our blocking detection technique. For short
transactions, SIR-BD is again about 15% faster than SIR for
aborted, and 3.5% faster for committed transactions, which
is slightly better than with 2 replicas. Note that this pos-
itive trend for committed transactions also is indicative of
the benefits obtained with increasingly large writesets.

For long transactions, the performance gain of SIR-BD
over SIR is around 35% for aborted transactions and 8.3%
for committed transactions (the latter is almost 3 times bet-
ter than with 2 replicas). This means that the performance
gains achievable by our conflict detection technique im-
prove with an increasing number of replicas, since the en-
tailed increase of conflicts produces a higher abortion rate.
Since abortions are accomplished sooner and more rapidly,
system resources that otherwise would remain blocked can
be released earlier for processing other transactions, thus
increasing the system throughput.

For short transactions, note that, with regard to aborted
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Figure 5. Performance results for 4 replicas

transactions, SIR-SBD yields results that are similar to those
of SIR-BD, but it fails to provide good results for commit-
ted transactions. As already explained above, this is due to
its lack of optimisations for concurrent writeset application.
By increasing the number of replicas in our tests, the load
increases proportionally, but SIR-SBD does not scale appro-
priately. This shows that the optimisations of the original
SI-Rep protocol were appropriate for providing adequate
scalability. Thus, for the test series with eight replicas, we
continue without further discussion of SIR-SBD. We have
shown that our conflict detection mechanism is able to sim-
plify concurrency control at the middleware layer, and that
its support is sufficient for light loads. For heavy loads,
other optimisations are still needed (such as those included
in the original SI-Rep, as maintained in both SIR and SIR-
BD) in order to ensure the protocol’s scalability. In spite
of this, when long transactions are used, the results of SIR-
SBD are better than those of SIR. So, our conflict detection
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Figure 6. Performance results for 8 replicas

technique seems to be good enough for this kind of scenar-
ios where its results are comparable to all the optimisations
made in the original SIR implementation.

The third set of experiments has been run on a cluster of
eight replicas. It confirms the trend suggested by the previ-
ous test with four replicas; i.e., the results are the better the
more replicas are added to the system.

For short aborted transactions, the performance gain of
SIR-BD over SIR ranges from 10% with writesets consist-
ing of less than 20 items to 22% for writesets of 100 items,
which is slightly better than with 4 replicas. Short commit-
ted transactions have a performance gain ranging from 3.2%
for writesets with less than 10 items to 5.4% for writesets
of 100 items. Again, these results are better than those ob-
tained with four replicas.

For long transactions better results are also obtained us-
ing SIR-BD. For aborted transactions, the performance gains
range from 32% (small writesets) to 38% (large writesets),
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Figure 7. Results varying the system load

while for committed transactions, the gain varies between
3.7% and 11%.

All these results have shown that our conflict detec-
tion technique is able to provide better performance than
other middleware-based approaches using different trans-
action lengths and different numbers of replicas. More-
over, it scales quite well when the number of replicas is
increased. However, no result has been given varying the
system load; i.e., the number of started transactions per sec-
ond. To remedy this, figure 7 shows the behaviour of our
technique when the system load ranges between 11 and 40
TPS for short transactions, and between 4 and 40 TPS for
long transactions. To this end, we have used again the sim-
plified database schema of the previous experiments, com-
bined with the same kind of transactions, accessing in this
case to 20 items of the single database table. Although at
first sight the load introduced in these experiments seems
light, we have to remark that the transactions being used are



quite long in both cases. Some standard benchmarks, like
TPC-W [17], are able to introduce higher TPS values, but
use short transactions that do not consider any user thinking
time (and that can be finished in a few milliseconds).

As this figure shows, the SIR-BD results are better than
those of the SIR implementation, in both kinds of transac-
tions (short and long). Moreover, as it has already happened
in the other figures, the differences are higher when long
transactions are used. The aim of this figure is to show that
such good results do not depend on the system load, as it
can be seen in both parts of Fig. 7, since the differences be-
tween SIR and SIR-BD remain more or less constant in all
the studied range of TPS, both for committed and aborted
transactions. This also shows that the overhead introduced
by our reading thread is minimal, and that it does not intro-
duce any bad behaviour when the load is increased.

Summarising the experimental results, it is fair to say
that our conflict detection technique improves traditional
middleware-based writeset conflict management techniques
in terms of row-level granularity. Additionally, our tech-
nique can be used in almost all replication protocols, since it
is able to manage any kind of conflict between transactions.
For instance, if read-write conflicts must be managed, we
only need to select an underlying isolation level that blocks
transactions whenever such a conflict arises. A good rule of
thumb is to always use the isolation level of the underlying
DBMS that is closest to the level correspondingly expected
from the replication protocol.

5 Related Work

As opposed to middleware-based solutions, database
replication protocols have been implemented in the DBMS
core when performance has been at stake [10]. Then, there
are no problems for dealing with transaction conflicts, since
internal concurrency control mechanisms can be used for
transaction handling. This has been a default for many repli-
cation protocols [11, 14]. In some of them, depending on
the requested isolation level, readsets must also be checked
[14].

The non-voting protocol described in [15] is one of the
first examples of an implementation on the middleware
layer. It has to check for conflicts between pairs of trans-
actions by scanning their writesets. With mechanisms as
described in this paper, its performance can be improved, as
we have shown for the SI-Rep protocol.

Another possible approach for dealing with conflict de-
tection at the middleware layer consists in using a linear
interaction principle as described in [19]. Then, all replicas
receive the same updating requests in the same order and
perform them according to the concurrency control of the
underlying database; i.e., no additional support is needed by
the middleware in this case. This technique has been used

in some systems, like C-JDBC [3] and RIDBC [5]. It shares
the advantages of our conflict detection mechanism, since
concurrency control is delegated to the DBMS, but the lin-
ear interaction technique demands the propagation of each
update sentence to all replicas, which is costly in terms of
communication overhead.

With regard to performance, an ideal middleware-based
conflict detection mechanism has been proposed in [13].
This solution is based on the definition of conflict classes
[16], that however depend on the given application. A pos-
sible option is to assign different conflict classes to differ-
ent database tables. If user transactions are implemented as
stored procedures, the middleware is able to know a priori
which conflict classes will be used by each transaction. So,
conflicts among transactions can be easily detected since
the replication protocol only needs to check if the conflict
classes of the considered transactions intersect. Thus, in-
stead of writesets, only their conflict classes need to be
analysed. Transaction support of the protocols in [13] can
be implemented straightforwardly using stored procedures.
These protocols may even be developed without stored pro-
cedures, though the aforementioned ease of implementation
then is forsaken.

Independent of this implementation detail, this approach
requires a significant effort to identify the conflict classes
to be used by each transaction. A sufficiently fine-grained
conflict detection cannot be achieved at runtime, i.e., the so-
lution is inadequate for applications where transaction be-
haviour cannot be predicted statically, e.g., interactive ap-
plications. In our solution, conflicts can be detected with
a finer granularity (indeed, row-level granularity, instead of
table-level) and no conflict class identification is needed.
Thus, it is more flexible than the solution in [13], and may
provide better performance results when the conflict rate
among transactions is not very low.

6 Conclusions

The conflict detection technique described in this pa-
per can be easily implemented on top of any DBMS as
a database replication middleware module. Its main ad-
vantages are: (i) database replication protocols may dele-
gate conflict detection to this module, by which the proto-
cols themselves become simpler; (ii) conflict detection can
be hooked up with transaction abortion, thus bringing for-
ward in time the decision to abort and hence accelerating
the overall transaction processing; (iii) conflict detection
is achieved by built-in DBMS functionality, so that an ad-
ditional error-prone implementation effort is avoided and
row-level (instead of table-level) granularity is obtained;
(iv) its overall cost is quite low, since only one execution
thread is needed that periodically checks one of the system
catalogue tables.



We have implemented and tested this mechanism with
one of the recent replication protocols that enables the snap-

shot isolation level.

The obtained results prove that the

performance of this approach is better than a programmed
check at the middleware layer, even if this check is accom-
plished immediately as in the examples of this paper. Our
solution is easily portable from one SQL-based DBMS to
another, and it is easily adapted to any database replication
protocol that uses the constant interaction approach.
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