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Abstract

Peer-to-peer overlays allow distributed applications to work in a wide-area, scalable, and fault-

tolerant manner. However, most structured and unstructured overlays present in literature today are

inflexible from the application viewpoint. In other words, the application has no control over the struc-

ture of the overlay itself. This paper proposes the concept of an application-malleable overlay, and the

design of the first malleable overlay which we call MOve. In MOve, the communication characteristics

of the distributed application using the overlay can influence the overlay’s structure itself, with the twin

goals of (1) optimizing the application performance by adapting the overlay, while also (2) retaining the

large scale and fault tolerance of the overlay approach. The influence could either be explicitly specified

by the application or implicitly gleaned by our algorithms. Besides neighbor list membership manage-

ment, MOve also contains algorithms for resource discovery, update propagation, and churn-resistance.

The emergent behavior of the implicit mechanisms used in MOve manifests in the following way: when

application communication is low, most overlay links keep their default configuration; however, as ap-

plication communication characteristics become more evident, the overlay gracefully adapts itself to the

application.
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1 Introduction

Today, peer-to-peer (P2P) overlays fall into two categories - (1) structured (i.e., Distributed Hash Table-

based) overlays such as Pastry and Chord [13, 15], and (2) unstructured (i.e., gossip- or flooding-based)

overlays such as Freenet, Gnutella, KaZaA [5, 11, 20]. These P2P overlays offer reliability in the face of

massive failures and churn (node join and leave), as well as scalability to hundreds and thousands of nodes.

However, both these types of overlays have the common disadvantage that they are inflexible from the

application viewpoint. The rules and invariants for selecting and maintaining neighbor nodes in the overlay,

as well as for resource discovery, are all dictated in a rigid fashion (e.g. using the result of a hash function),

without taking into account the application’s communication patterns. This usually means that the developer

of a distributed application has a limited number of options – either go with the provided overlay, or design a

new overlay from scratch. Furthermore, overlays are application-dependent and Internet-independent [12],

so allowing an application to explicitly influence the overlay is a logical next-step.

In this paper, we propose the concept of an application-malleable overlay. An application-malleable

overlay is defined as an overlay where the communication characteristics of the distributed application using

the overlay can influence the overlay’s structure itself. The twin goals of a malleable overlay are: (1) to

optimize application performance from the overlay, while also (2) retaining the scale and fault tolerance of

the overlay approach.

In order to realize and evaluate our design philosophy, we build a specific malleable overlay called MOve

(for Malleable OVErlay) that combines elements of an unstructured overlay with application characteristics.

In MOve, the structure and behavior of the overlay is influenced both by the underlying default unstructured

overlay, and by application characteristics. The influence could either be (1) explicitly specified by the

application or (2) implicitly gleaned by our algorithms.

In a P2P overlay, each node maintains a separate neighbor list - this is a membership list that specifies

the who knows whom relationship. This neighbor list is partial in the sense that it contains only some

of the nodes in the system [4, 6, 15]. MOve contains algorithms for neighbor list maintenance, efficient

message propagation, and churn-resistance (i.e., resilience to nodes joining and leaving asynchronously).

The most interesting feature of MOve is its emergent behavior. When application communication is low,

MOve autonomically evolves to keep most of the overlay links in the default state so that most of the system
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looks like an unstructured overlay. However, as application communication characteristics become more and

more evident, the overlay autonomically gracefully adapts itself to the application, but without forgetting its

default structure.

To focus our approach on a particular class of applications, we choose collaborative applications, such

as distributed whiteboard platform, an audio/video conferencing service, a replicated data-sharing service,

or a distributed-gaming platform. All these applications rely on the notion of application groups - each

process belongs to one or more groups, and interacts with other processes in common groups. For instance,

the members of the same group may share a distributed state that needs to be updated (the whiteboard, the

game-board, the replicas of a mutable piece of data, etc.). Alternatively, the set of replica managers for a

particular data item would form a group. Managing groups at overlay level allows multiple applications to

take advantage of this optimization without having to explicitly handle it.

MOve allows such group-based applications to influence the underlying overlay, that may be common to

multiple, coexisting, collaborative applications. In the process of the neighbor list maintenance, MOve has

the following two goals: (1) (connectivity) keep a low diameter for the overlay so that unstructured queries

can be quickly propagated; and (2) (volatility-resilience) combat volatility arising from rapid node arrival

and failure (i.e., “churn”).

The basic idea in the MOve approach is to have each node maintain a neighbor list that, by default,

consists of non-application neighbors, i.e., randomly selected neighbors. However, with the formation of

more and more application groups, some of these non-application neighbors are automatically replaced

by application-aware neighbors (shortly: application neighbors). A non-application neighbor may either

change status and turn into an application neighbor (if the neighbor belongs to a common group), or be

replaced by a new application neighbor. We have implemented MOve, and our experiments show (1) that

the system achieves logarithmic overlay path lengths; (2) that it gracefully manages transitions between

application and non-application neighbors as the number of groups increases and decreases. In addition,

MOve shows good scalability and volatility-resilience.

The next section presents research efforts related to the various aspects involved in this context. Then

Section 3 describes a scenario explaining why it is important to have efficient communication within groups

of nodes. Section 4 gives a general overview of our approach, and provides an analysis. Section 5 presents
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some simulation results. Finally, Section 6 discusses the contribution and the future work.

2 Related Work

In the past few years, many research efforts have focused on building overlays for peer-to-peer networks,

essentially for large-scale immutable file-sharing. For this kind of application, predicting which node is

going to communicate with which node is not trivial. Therefore, most algorithms for building overlays do

not take communication patterns into account.

In unstructured (i.e., gossip- or flooding-based) P2P overlays, such as [11] or [16], neighbor lists are

usually built and maintained by randomly selecting a subset of the neighbors’ neighbors.

In structured (i.e., DHT-based) overlays, the who knows who relation is usually defined by means of a

given topology (typically a ring); the position of each node in this given topology is determined by a hash

function on its IP address [13, 15].

Even if some of these previous proposals take into account certain criteria while building the overlay,

(e.g., physical locality in the case of [13]), they do not take into account the application-related relations

between nodes, which can express interaction patterns that may result from the way the overlay is solicited

by the application.

Very few recent research efforts take into account these relations. Semantic overlay networks [7, 18]

exploit the semantic relations between peers (based on the set of files they share). They propose solutions

allowing to improve the efficiency of the search mechanisms for large-scale file-sharing applications, by

creating shortcuts between peers which are semantically close. Efficient search is also the goal addressed by

the path-caching technique, which consists in keeping data references along a given search path, in order to

improve the efficiency of subsequent search operations.

However, for the group-based applications we target in this paper, such as distributed shared whiteboard

(or gaming) platforms, or replicated data-sharing services, search efficiency is not the only property to opti-

mize. In such applications, the members of a same group share some data (a whiteboard, a replicated piece

of data, a game state, etc.), which they all potentially read and write. When a peer writes this shared data, it

is important for the updates to be efficiently propagated to the other members of the group. Consequently,

the peers belonging to a same group have to be close to each other in the overlay (i.e., a few hops away), to
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enable the application to efficiently maintain the consistency of the members’ views of the shared state.

The issue of update propagation in large-scale systems has been studied in [14]. This system proposes

an efficient multicast scheme based on multicast trees built on top of the Pastry overlay. The problem we

address in this paper is different, since every member of the group can be the source of multicast in our target

applications. The approach we propose is also different, since it does not construct a membership mechanism

based on an already existing overlay. Our goal is to build an emergent and adaptive overlay based on patterns

derived from the application usage. To achieve this goal, our work is based on an unstructured overlay.

This provides the ability to dynamically change links to adapt the overlay to the application needs without

breaking the overlay structure (in structured overlays, links have to follow strict rules, usually based on a

hash function).

The closest work related to ours is [9], which addresses the problem of building an adaptive overlay

based on different criteria: topology, semantic proximity, bandwidth, etc. The problem is addressed in a

generic way: the target scale and the target applications are not specified. The issue we address is more

specific: it regards applications that need efficient updates within groups of nodes. Consequently, multiple

criteria have to simultaneously be taken into account and controlled: application-dependent node relations,

but also physical locality, as well as the connectivity of the resulting graph (expressed through the degree of

clustering).

Finally, [17] is a work that has been started concurrently. The goal of [17] is offering an efficient overlay

dedicated to publish/subscribe applications providing the ability to express range-based subscriptions. To

achieve this goal, it focuses on clustering nodes with similar subscriptions.

3 Scenario

To motivate our work, we consider a large scale distributed gaming platform (represented by Figure 1) as

a sample application. This application may involve tens of thousands of nodes spread around the Internet.

For efficiency reasons, the number of neighbors that a peer must know has to be bounded, since the related

information requires monitoring and state updating. Therefore, each node only has a partial view of the

system. However, this should not have a negative impact on the application’s desired properties, such as

connectivity, message propagation efficiency and volatility resilience, which are important for collaborative

applications, such as gaming platforms.
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Connectivity. An overlay is said to be connected if there is a path (succession of edges or links) between

every pair of nodes. This property is very important in an overlay as it provides the guarantee for a node to

be able to communicate with all the other ones in the overlay.

Some particular node (for instance the black node in Figure 1) may have to lookup for a specific game

instance in the platform (e.g., Game A). This game may involve only a small subset of nodes (few tens). The

neighbors contained in this particular node’s neighbor list may not be involved in this particular game. The

platform has to be connected to make it possible for a node to reach somehow (even through a quite long

path) all the other nodes. The lookup of a node that is participating in Game A is application dependent: it

could be done by visiting a website, or querying a custom search engine, or by flooding a search query on

the overlay.

For efficiency purposes, the diameter of the overlay should be as small as possible, even with partial

neighbor lists. To achieve this, the graph formed by the nodes and links needs to have well distributed

degrees. Note that it is enough for a new player to find only one player for the wished game in order to be

able to reach the other ones.

Efficient Message Propagation. While a game is running, the players store object replicas which rep-

resent the current state of the game (depending on the application, this can correspond to a shared white

board, etc). Each time a player plays, his node updates the state of its local game board version (i.e., its

replica). In order for the other players to be able to play, they have to be notified of the changes in the game

board. Therefore, messages need to be propagated in an efficient manner within a group (e.g., Game A or

Game B in Figure 1). To enable efficient message propagation, the overlay should minimize the number of

hops between two peers belonging to the same group.

Volatility Resilience. Among several thousands of nodes spread over the Internet, it is likely that, from

time to time, some nodes fail or get disconnected. At the global level (the entire platform), failures and

disconnections may not lead to break down the whole graph connectivity. At the level of a given game such

events should not stop the game, which means that the remaining players have to remain connected together.

Furthermore, the departure of one player may break some path in the group graph. The longest path between

two nodes (the subgraph diameter) is likely to grow; however, the update propagation mechanism has to stay

6



efficient.

4 Design

To address the issues described in the previous section, we propose the concept of Malleable Overlay that

combines elements of an unstructured overlay with application characteristics. In this section, we describe

the design of MOve, a system which illustrates the proposed concept.

The first purpose of an overlay is to connect nodes together. Therefore, the first property to fulfill is the

connectivity of the constructed graph. On the over hand, Section 3 highlighted the importance of providing

the ability to perform efficient updates among groups of nodes within the overlay. This may be favored

by introducing some clustering. Both connectivity and clustering have to be preserved while taking into

account the dynamic nature of the environment.

Random Graph Benefits. Graph theory shows that random graphs have good properties in terms of

connectivity and degree distribution. For instance, in a random graph, if each node has at least log(N)

uniformly random neighbors (where N is the total number of nodes) the random graph will be connected

with high probability [2]. Estimating the size (i.e., N ) of a large scale dynamic distributed system has also

been addressed in previous studies [10]. In our case, the scale is not infinite (we target thousands to a few

tens of thousands of nodes), therefore safe bounds can be assumed instead. For instance, 50 links per node

will provide a large safety margin to theoretically connect 5×1021 nodes. On the other hand, random graphs

also have the benefit of leading to a good degree distribution. An overlay based on a random graph may take

advantage of this for load distribution. For these reasons, MOve’s algorithms try to keep part of the overlay

close to a random graph.

In our design, nodes maintain a neighbor list, containing links to the node’s neighbors. For each node,

an upper bound (l) is set on the size of the neighbor list. This bound is first set according to an initial

approximation of the network size (while observing the condition l > log(N)). Then, during the execution,

this value can be increased when necessary, if allowed by the available resources (see below).

The neighbor list is composed of two kinds of links: non-application links and application links. Fig-

ure 2 represents a node’s neighbor list.
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Figure 2: The neighbor list on each node
Non-Application Links. Non-application links are responsible for maintaining a global overlay, close to

a random graph, with a low degree of clustering. If the application is in a state that does not need clustering

(e.g., at initialization), the neighbor list will contain only non-application links. Remember that nodes don’t

need full knowledge about the network, and the number of non-application links may vary from node to

node.

Application Links. To cluster together nodes that belong to a group i, each member of the group creates

ki application links to other randomly-chosen members of the same group. This clustering will help fast

propagation of state updates among the members of the group. It will also favor an efficient propagation

of application-level multicast messages. Parameter ki is determined by the application, and it must be at

least dln(|Ri|)e, where Ri is the number of members of group i. Essentially, the goal is to create a strongly

connected graph for group i (i.e., there is a path that connects every pair of nodes).

Replacement Policy. When an application link needs to be created, it will be added to the neighbor list

following four different ways. Assume that we want to create an application link for group i, that points

to node n. If the size of the neighbor list is smaller than l, and if there is no non-application link pointing

to n, then a new link will be added to the list (1). If the size of the neighbor list has already reached l ,

but the node has enough resources available to maintain a larger neighbor list, then the node increases l to

accommodate a new link(2). If the node decides not to grow the list, then a non-application link will be

dropped, and the application link will be added (3). Finally, if there is a non-application link pointing to n,

then it will become an application link (4).
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4.1 Addressing the Connectivity Issue

The tradeoff between the good properties of random graphs and those enabled by favoring clustering be-

tween related nodes can be tuned by setting some bounds. The first bound is the size l of the neighbor list,

which is managed as explained above. The second bound is ki, which limits the number of links that are

involved in the group i. If l −
∑

i ki is large enough (a few tens for the scale we are targeting), i.e., if the

neighbor list contains enough non-application links, the good properties of random graphs are approximated

in spite of the little clustering induced by taking the topology into account. On the other hand, it is important

to notice, that
∑

i ki is in fact greater than the number of application links. This is explained by the fact that

some application links may be shared by multiple groups when group intersections are not empty.

A node joins the overlay (e.g., the black node in Figure 3) by contacting any current overlay member.

If the peer that receives the join request has space available in its neighbor list, it will reply with its current

neighbor list, and will add a link to the joining node to its non-application links. If the neighbor list is full

(which is the case for Nodes A and B on Figure 3), the join request will be forwarded to a randomly chosen

node. The forwarding of a join request is associated with a time to live (TTL). If all nodes that receive the

forwarded request have full neighbor lists, the TTL will reach 0, and the last node to receive the forward will

forcibly add a link to the new node to its non-application links. It will then reply with its current neighbor

list (e.g., Node C). We do this to ensure that the in-degree of a node is always above 0. The new node will

use the received neighbor list to create its own list.

The failure detection protocol is based on the SWIM [6] protocol. Each protocol period, of length T

seconds1 , each node sends a ping message to one of its neighbors. The target node is selected by sequentially

traversing an array that represents the random permutation of the neighbor list. Once the array is completely

1Protocol periods are asynchronous at different process, although it is assumed that they have the same T .
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traversed, a new permutation is computed. The node expects a reply to the ping message within a timeout of

t < T seconds. If the reply is not received on time, an indirect ping is sent to y nodes. These nodes will then

send a ping to the intended target node, and, if they receive a reply, the reply will be sent back to the node

that originated the ping. The intention of the indirect ping is to sidestep transient network problems. If no

reply is received before the next protocol period, the ping target will be suspected of having failed. At the

beginning of each protocol period, any node that has been suspect for one protocol period will be dropped

from the neighbor list, i.e., declared dead.

To achieve an overlay with a low clustering coefficient2 and evenly distributed in-degree, every U proto-

col periods, each node verifies if its non-application membership list has been modified. If no modification

has been made after U periods, it issues a join message to a random node. With the membership list it will

receive as a reply to its join message, the node will try to replace a fraction3 of its own membership list.

Note that the smaller U is, the more aggressive the replacement will be, and the faster the protocol will take

the overlay to a stable low-clustering coefficient.

4.2 Group Communications

As previously explained, when a new application link is created, it will result in the substitution of a non-

application link, unless the node has enough resources to grow its neighbor list. In this way we keep the

maintenance cost constant at the node. On the other hand, an application link can be shared. For instance,

assume Node a belongs to Groups i and j. If Node b joins Groups i and j, it creates a single application link

to a, knowing that this link is shared. A sharing count is maintained for such links.

Random Walk for Application Links. To cope with the dynamic nature of the infrastructure and avoid

pathological topologies that may be induced by failures, it is important to periodically refresh the links. This

is also useful in order to guarantee a small path between any two nodes in a given group. To this effect, we

rely on another result from random graph theory [2]: adding O(n) non-application links to a graph with n

vertices will reduce the diameter to O(log(n)). 4 This result only applies to undirected graphs. Therefore

2The clustering coefficient measures how many neighbors of a node are neighbors among themselves. Lower coefficient means
more randomness in the graph.

3f = 50% in our evaluations
4Although this result was found for Erdos-Reiny random-graphs, and our application links are not trying to achieve a strict

Erdos-Reiny random-graph, the overlay is random enough for the result to hold, as our experiments show.
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we add the restriction that all application links are bidirectional. When an application link is created from

a to b, b will also create a link to a. If node b deletes the link, so will node a. When an application link is

shared, it will be maintained until the sharing count reaches 0. When an application link stops being used

as such, it is changed to a non-application link. This simulates an undirected graph inside the application

group.

The graph is periodically refreshed, by having every node in an application group execute the following

steps:

(1) Launch a random walk to get a new neighbor. The random walk hops at most TTL times, using

application links that belong to the group.

(2) Drop an old link when the new link is created.

Although it is assumed that the timeout to launch the random walk is an application parameter, note that

nodes that belong to a group are not synchronized. Also note that the bidirectionality of the links is always

enforced.

4.3 Analysis

To show the benefits of link-sharing among application links (for the different application groups) and non-

application links, we present an analysis of a variant of the MOve system. This variant does not impose

limits on neighbor list sizes, and allows them to grow indefinitely. Without link-sharing, this indefinite

approach would have the neighbor list size of each node grow linearly as the sum of the number of its

neighbors for each application group the node belongs to, and the number of its non-application neighbors.
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With our MOve approach, the number of links saved is significant, as shown by our analysis below. This

results in a reduction of the overhead induced by link maintenance.

Formally, in an overlay of size N , at a node p, let NbrsN (p) represent the set of application links at p.

Assume that p belongs to k groups Ri (i = 1 to k). Let Nbrs|Ri|(p) represent the set of neighbors that p

has in group Ri. Now, let f(N) = |NbrsN(p)| and for each i = 1 to k, let f(Ri) = |Nbrs|Ri|(p)|. Note

that in our implementation, f(x) = O(log(x)), however our results are more general.

Theorem 1: Assume that: (1) each application group consists of members selected uniformly at random,

(2) at node p, each non-application link for a group is selected uniformly at random among the group

members and (3) at node p, each application link for a group is selected uniformly at random from among

the group members5 Then: (a) the expected number of links saved by MOve is positive and (b) it grows

linearly as the number of non-application links is increased, and (c) it is proportional to the total number of

non-application links if all groups at node p are equi-sized.

Proof: Without the MOve approach, the total expected number of neighbors maintained at node p is: given

by

NbrsWorst−Case(p) = f(N) + Σk
i=1f(Ri) (1)

Now, with the MOve variant we are analyzing, the total expected number of neighbors for a node can be

formally represented as union of k + 1 sets as:

NbrsMOve(p) = |NbrsN (p) ∪ NbrsR1
(p) ∪ NbrsR2

(p) ∪ . . . ∪ NbrsRk
(p)|.

This can be written as:

= |NbrsN (p)| + Σk
i=1|NbrsRi

(p)|

−[(Σk
i=1|NbrsN (p) ∩ NbrsRi

(p)|) + (Σi6=j,1≤i,j,≤k|NbrsRi
(p) ∩ NbrsRj

(p)|)]

+[(Σi6=j,1≤i,j,≤k|NbrsN (p) ∩ NbrsRi
(p) ∩ NbrsRj

(p)|)

+ (Σi6=j 6=l 6=i;1≤i,j,l≤k|NbrsRi
(p) ∩ NbrsRj

(p) ∩ NbrsRl
(p)|)]

− . . .

±|NbrsN(p) ∪k
i=1 NbrsRi

(p)| (2)

5The uniformly at random assumption (3) is reasonable since our neighbor list maintenance protocols achieve such random
neighbor lists.

12



In order to simplify this, consider an individual term of the type

|NbrsA1
∪ . . .∪NbrsAm|, where each Aj is either a unique Ri or N . Now consider an arbitrary neighbor q

of p that is in group A1. Consider the event E that for a given j(6= i), the same neighbor q (1) also belongs

to group Aj and (2) is a neighbor of p in group Aj (i.e., appears in NbrsAj
(p)).

Due to assumptions (2) and (3) in the above theorem, we have that the probability of the above event E

is simply

Pr[E] =
|Aj |

N
·
f(Aj)

|Aj |
=

f(Aj)

N

Thus, the individual term of the type of the type |NbrsA1
∪ . . . ∪ NbrsAm | in fact has a value of:

|NbrsA1
∪ . . . ∪ NbrsAm | = f(A1).Π

m
j=2(

Aj

N
) =

Πm
j=1

(Aj)

Nm−1 (3)

Substituting equation (3) into equation (2) and using equation (1) above, we get

NbrsMOve(p) = NbrsWorst−Case(p)

−
1

N
.[(Σk

i=1(fN (p).fRi
(p)) + (Σi6=j,1≤i,j,≤k(fRi

(p).fRj
(p))]

+
1

N2
.[(Σi6=j,1≤i,j,≤k(fN (p).fRi

(p).fRj
(p)))

+ (Σi6=j 6=l 6=i;1≤i,j,l≤k(fRi
(p).fRj

.fRl
(p)))]

− . . .

±[fN (p).Πk
i=1(fRi

(p))]

By exchanging the Nbrs terms, and taking fN (p) common on the other side, we simplify to calculate the

number of links saved by using MOve as:

NbrsWorst−Case(p) − NbrsMOve(p), which is:

= fN (p).[
1

N
.Σk

i=1fRi
(p) −

1

N2
.Σi6=j,1≤i,j,k(fRi

(p).fRj
(p)) + . . . ±

1

Nk−1
.Πk

i=1(fRi
(p))]

+[
1

N2
.Σi6=j,1≤i,j,k(fRi

(p).fRj
(p)) − . . . ∓

1

Nk−1
.Πk

i=1(fRi
(p))]

= fN (p).[1 − Πk
i=1(1 −

fRi
(p)

N
)] + [Πk

i=1(1 −
fRi

(p)

N
) − 1 + Σk

i=1(
fRi

(p)

N
)]

(4)
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Figure 5: 1: a sends an update message to b. a contains 4 hashes on its hash list, and b contains 3 hashes on its hash
list that coincide with a’s three oldest hashes. 2: the hash included in the message coincides with the newest hash at
b, so b requests an updated blocks transfer. 3: a sends the updated blocks, and in this example part of the update is the
deletion of bytes after offset offset’. 4: after the update is applied, both nodes have the same hash list and version
numbers.

The above result consists of two terms (each within square braces). The second of these two terms can

be shown to be ≥ 0 (by using telescoping), and the first term is clearly positive. Finally, the first term is

linear in fN (p), as desired. This proves (a) and (b). To prove (c) for equi-sized groups at node p, substitute

fRi
(p) = fR(p) for all i in equation (4) above. Then, we get that (NbrsWorst−Case(p) − NbrsMOve(p))

is:

= fN (p).(1 − (1 −
fR(p)

N
)k) + (1 −

fR(p)

N
)k − 1 +

k.fR(p)

N

' fN (p).
k.fR(p)

N
−

k.fR(p)

N
+

k.fR(p)

N

= fN (p).
k.fR(p)

N

This proves (c). �

4.4 Sample Update Propagation Mechanism.

Thanks to the design described above, propagating updates within a group simply consists in sending update

messages over all the outgoing application-links associated to this group. Below we describe a possible

update propagation algorithm.

The update propagation algorithm we propose is designed to propagate and apply updates under a dy-

namic set of nodes and object replicas, and it provides causal consistency [8]. The update is transferred

across members of the group. Although the update mechanism detects update conflicts, the actual resolution

is deferred to the application layer, which receives an alarm with the conflict.
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When a node updates a replica, a secure hash is computed over the entire replica contents, and an object

version number is incremented. The hash is added to a list of hashes of previous replica versions –this list is

ordered chronologically. The node then broadcasts an update message using the application links associated

with the group. The message contains the IP number of the sender, the new version number, and the replica

hash that corresponds to the replica before the update. When a node receives the message it verifies the

version number, if it is lower than the local version number then the message is ignored. If the message is

not dropped, it is forwarded on all outgoing application links that correspond to the group. After forwarding

the update message, the node compares its current replica hash with the one received on the message: if they

are equal then the node will request the upstream node to forward the updated blocks of the replica. If the

hash differs, the node will send its current replica hash to the upstream node. The upstream node will search

for this hash in its hash list, and if found, the upstream node will copy the entire replica to the downstream

node along with the list of hashes, otherwise a conflict alarm will be sent to the application layer. Figure 4.4

shows a common case example.

5 Experimental Evaluation

Our algorithms are implemented in Java, as a discrete event simulation. The GT-ITM [3] random topology

generator, following the stub-transit model, is used to provide an underlying internetwork to our simulations.

Ten transit nodes are used and each stub node joins the overlay. The end-to-end latency of a message

corresponds to the shortest path between the sender and receiver nodes.

Non-Application Link Clustering. For this experiment we used a topology with 520 nodes, a protocol

period for the failure detection mechanism of 1 minute. Parameter U , which determines the number of

protocol periods that a node will allow an unchanged list before randomly refreshing it, has a value of 1.

Each node stores a strict maximum of 50 links. Figure 6 shows how the clustering coefficient changes with

time. After only 50 minutes, the links among the nodes show a very low degree of clustering.

Connectivity. As the number of groups increases and becomes large, there is a possibility of overlay

partitioning. In this experiment, we try to break the connectivity of the overlay by taking it to an extreme

scenario. The basic parameters are the same as in the previous experiment. Figure 7 measures the size of the
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Figure 6: Clustering coefficient vs time.
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Figure 7: The largest connected component is the over-
lay itself, until it reaches an overutilization with 400
groups composed of 50 nodes each.

largest strongly connected component in the overlay. This size is equal to the total number of nodes when

the overlay is not partitioned. We vary the number of groups from 0 to 400 (each group is composed of

50 nodes, the k parameter is set to dln(50)e). As the plot shows, the overlay maintains strong connectivity

until the number of groups approaches 400. In this case, we notice a small decrease in size of the largest

component, which is due to the overlay partition.

Application Link Clustering. For this experiment, we use a 1000 node network and an application run-

ning for 2 hours with one group. In order to evaluate the quality of the graph constructed by the application

links in terms of distance (in hops) between group members, we measure the characteristic path length of

this group [19]. The characteristic path length is the average of the shortest path over all node pairs. The

experiment is run several times varying the group size from 5 to 500 members. The k parameter (i.e., the

number of application links for this group on each node) is set to dln(groupsize)e. Figure 8(a) shows that

the characteristic path length grows slowly with the group size. Even for 500 nodes it is only 3.27. This

shows that the creation of one non-application link at each node of the group, using random walks, achieves

its objective of providing a small number of expected hops between any pair of nodes of the group. Note

also that characteristic path length follows closely the logarithm with base k. Figure 8(b) shows the same

experiment, without network topology, using five thousand nodes and varying the group size up to two

thousand nodes.
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Figure 8: The characteristic path length of a group graph is log(groupsize) as expected. The left plot shows a one
thousand node network, and the right plot a five thousand node network without underlying topology.

Benefits of Link Sharing. When the platform contains many groups, the probability of non-empty group

membership intersections grows. In this case, application links at each node can be shared by multiple

groups; e.g., node A belongs to groups i and j, and its peer, node B, belongs to groups i and j, allowing

them to use only one application link between them for communications related to i and j. However,

different distributions of nodes across groups may give different link sharing benefits. Figure 9(a) shows the

results of simulations upon 520 nodes with 60 groups of 100 nodes each. Nodes are uniformly distributed

across available groups. Parameter k is set to 5. For readability, only 100 nodes are shown in the figure.

The figure shows that the real number of existing application links per node is much lower than the worst

case (which is k times the number of groups to which a node belongs). This is evident since the worst-case

envelope is well above the real-case envelope in the figure. This result is due to link-sharing across group

intersections, which allows the overlay to use fewer application links when it is solicited by the application.

Figure 9(b) repeats the experiment with a different distribution: the nodes are distributed among the groups

following a normal distribution with mean 260 and a standard deviation of 104. This case shows that the

number of application links at each node grows at a lower rate than the worst case, thanks to link sharing.

Update Propagation. This experiment is done on a 5000-node network. No stub-transit topology is used,

and inter-node latency varied randomly between 10ms and 50ms. The goal is to evaluate the scalability of

the subgroup overlay to propagate data and, in this case, the scalability of the proposed update mechanism.

Figure 10 shows little variation in update propagation using 62, 250, 500, 1000, and 2000 members per

group. The latency increase is small thanks to the characteristic path length of the group, which always
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Twisting the Overlay. We have also analyzed how the overlay reacts to the application needs (which may

differ in the number and size of groups to be created). Simulations were run on a 520-node network, with a

varying number of groups having a fixed group size set to 100 (and 5 as k parameter). The results (Figure 11)

show that the total number of links is almost constant, while the border between application links and non-

application links moves. The creation of groups leads to an increase of the number of application links,

which progressively replace the non-application links.

Resilience to Node Failure. In this experiment, after 2 simulated hours, each node was subjected to a crash

with some probability (all crashes occur simultaneously). The probabilities used were 0.10, 0.20, 0.30, 0.50

and 0.70. We measure the size of the largest strongly connected component immediately after killing the

nodes. The points on Figure 12 are each the average over 5 simulations. Below a crash probability of

0.70, the largest strongly connected component is always the size of the remaining overlay (i.e., the overlay

remains strongly connected). With 0.70 death probability, we experienced a small degree of partitioning: 2

or 3 nodes were disconnected on some of the runs.

6 Conclusion

The peer-to-peer approach is getting more and more attractive for building today’s distributed applications,

especially thanks to its very good properties in terms of fault tolerance and scalability. The way the P2P

network (i.e., the P2P overlay) is built is important for P2P application performance. This paper describes

MOve, a malleable overlay that applications can “twist”: while retaining the scale and fault tolerance of the

P2P approach, the overlay adapts, allowing the application communication to be optimized. MOve takes

into account the application topology, which is defined as a set of groups of nodes that are supposed to

have frequent interactions with each other. MOve allows such group-based applications (e.g., collaborative

applications) to influence the underlying overlay, by replacing existing inter-node links with application

links, in order to keep related nodes close to one another, to favor efficient data update propagation. However,

the proposed algorithms still maintain a good connectivity.

Our experiments show that the proposed algorithms, which allow the overlay to adapt to the application,

do enable efficient group communications. We show, on the other hand, that this optimization does not have

a negative impact on connectivity: the graphs remain connected and have a good degree distribution (which
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is generally important for fault tolerance). Furthermore, the proposed refresh mechanism (which allows

each node to periodically renew its list of neighbors) provides a good volatility-resilience.

We intend to further experiment the algorithms presented in the context of a large-scale data-sharing

service using replica groups. We plan to implement MOve within the JuxMem grid data-sharing service [1]

using the update mechanism to perform data replication. This will provide the ability to perform exten-

sive experimental evaluations. Furthermore, it would be interesting to study how to adapt our approach to

structured overlays, e.g. by adding (instead of substituting) application links to existing links of the overlay.
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