
Recovering from Distributable Thread Failures with Assured

Timeliness in Real-Time Distributed Systems

Edward A. Curley IV

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Binoy Ravindran, Chair

Peter M. Athanas

Amitabh Mishra

E. Douglas Jensen

February 2, 2007

Blacksburg, Virginia

Copyright 2007, Edward A. Curley IV

Recovering from Distributable Thread Failures with Assured Timeliness in

Real-Time Distributed Systems

Edward A. Curley IV

(ABSTRACT)

This thesis considers the problem of recovering from failures of distributable threads with

assured timeliness. When a node hosting a portion of a distributable thread fails, it causes

orphans—i.e., thread segments that are disconnected from the thread’s root. A termination

model is considered for recovering from such failures. In this model the orphans must be

detected and cleaned up, and failure-exception notification must be delivered to the farthest,

contiguous surviving thread segment for resuming thread execution. Two real-time schedul-

ing algorithms (AUA and HUA) and three distributable thread integrity protocols (TPR,

D-TPR and W-TPR) are presented. We show that AUA combined with any of the protocols

presented bounds the orphan cleanup and recovery time, thereby bounding thread starvation

durations and maximizing the total thread accrued timeliness utility. The algorithms and

the protocols are implemented in a real-time middleware that supports distributable threads.

The experimental studies with the implementation validate the algorithm/protocols’ time-

bounded recovery property and confirm their effectiveness.

Acknowledgments

I would like to thank Dr. Binoy Ravindran for all his guidance and assistance while working

on this project. I would also like to thank Jonathan Anderson for the use of his distributable

thread framework implementation and all his technical expertise in setting up the testbed

for the experiments outlined in this report.Without their support, this would not have been

possible.

iii

Contents

1 Introduction 1

1.1 Contributions: Time-Bounded Thread Maintenance and Recovery 4

2 Models and Objectives 8

2.1 Distributable Thread Abstraction . 8

2.2 Timeliness Model . 11

2.3 System Model . 13

2.3.1 Networks . 14

2.4 Failure Models . 15

2.5 Thread Recovery and Cleanup . 16

2.6 Objectives . 17

3 The AUA Algorithm 18

3.1 Rationale . 18

3.2 Algorithm Overview . 19

3.3 Distributable Deadlines . 24

4 The HUA Algorithm 25

4.1 Rationale . 25

4.2 Feasibility . 28

4.3 Algorithm Overview . 29

4.4 Algorithm Properties . 32

iv

5 The TPR Protocol 35

5.1 Assumptions . 35

5.2 Overview . 35

5.3 Thread Polling . 36

5.4 Recovery . 39

5.4.1 Recovery Modes . 39

5.4.2 Recovery Process . 39

5.5 Orphan Cleanup . 44

5.5.1 Ordered Cleanup . 45

6 The D-TPR Protocol 46

6.1 Overview . 46

6.2 Polling . 47

6.3 Break Detection . 48

6.4 Recovery . 49

6.5 Cleanup . 51

7 The W-TPR Protocol 54

7.1 Assumptions . 54

7.2 Description . 55

7.2.1 Downstream Head Movement . 56

7.2.2 Upstream Head Movement . 58

7.2.3 Cleanup . 59

8 Experimental Evaluation 61

8.1 Tempus . 62

8.1.1 Single Node Experiments . 63

8.2 DRTSJ and the RTSJ-Metascheduler . 66

8.2.1 Single Node Experiments . 66

8.2.2 Multi-Node Experiments . 73

v

9 Conclusions and Future Work 82

Bibliography 84

vi

List of Figures

1.1 Distributable Threads . 2

2.1 Distributable Threads, Segments, and Sections. Derived from [14] 9

2.2 Example Step TUFs . 11

5.1 TPR Operation — Healthy Thread . 37

5.2 High-level State Diagram — Root Segment (Single-head) 40

5.3 High-level State Diagram — Section . 40

5.4 TPR Operation — Unhealthy Thread Entering Recovery 41

5.5 TPR Operation — Unhealthy Thread Entering Recovery (muli-head) 42

5.6 High-level State Diagram — Root Segment (Multi-head) 42

5.7 Delivery locations of ORPHAN and ORPHAN HEAD messages 43

6.1 D-TPR Operation — Healthy Thread . 47

6.2 D-TPR Operation — Unhealthy Thread . 50

7.1 W-TPR Segment State Diagram for . 55

7.2 W-TPR Operation — Healthy Thread . 56

7.3 W-TPR Operation — Unhealthy Invocation 58

7.4 W-TPR Operation — Unhealthy Return . 59

8.1 Thread Scheduling States . 62

8.2 Deadline Satisfaction Ratio . 63

8.3 Deadline Satisfaction Ratio (detail) . 64

vii

8.4 Accrued Utility Ratio . 64

8.5 Deadline Miss Load . 65

8.6 Non-Best effort time Interval (NBI) . 68

8.7 Handler Completion Time . 69

8.8 Accrued Utility Ratio . 70

8.9 Deadline Miss Ratio . 71

8.10 Handler Completion Time with Dependencies 72

8.11 Non-Best effort time Interval (NBI) with Dependencies 73

8.12 Total Thread Cleanup Times . 74

8.13 Failure Detection Times . 75

8.14 New-Head Notification Times . 76

8.15 Thread Completion Times . 76

8.16 Non-Best-effort time Interval (NBI) . 78

8.17 D-TPR Thread Cleanup Times . 79

8.18 W-TPR Thread Cleanup Times . 79

8.19 D-TPR Thread Completion Times . 80

8.20 W-TPR Thread Completion Times . 81

viii

List of Tables

1.1 Real-Time CORBA Distributed Scheduling Cases [28, Section 3.8] 3

3.1 Variables in AUA . 20

3.2 Operations used in AUA . 20

4.1 Variables in HUA . 29

4.2 Operations used in HUA . 30

5.1 TPR Messages . 38

6.1 D-TPR Messages . 47

7.1 W-TPR Messages . 57

ix

Chapter 1

Introduction

Many distributed systems are most naturally reasoned about in terms of asynchronous con-

current sequential flows of execution within and among objects. The distributable thread

programming model supported in OMG’s recent Real-Time CORBA 1.2 standard (abbrevi-

ated here as RTC2) [28] and Sun’s upcoming Distributed Real-Time Specification for Java

(DRTSJ) standard [17] directly provides that as a first-class abstraction. Distributable

threads first appeared in the Alpha OS [26, 16] and later in The OSF Research Institute’s

MK7.3 OS [30].

A distributable thread is a single thread of execution with a globally unique identifier that

transparently extends and retracts through local and remote objects. Thus, a distributable

thread is an end-to-end control flow abstraction, with a logically distinct locus of control

flow which moves within and among objects and nodes, often through the use of Remote

Procedure Calls (RPCs) and Remote Method Invocations (RMIs). For the remainder of this

thesis, distributable threads will be referred to simply as threads, except as necessary for

clarity.

1

Object A Object DObject B

DT1

Object C

DT2

DT3

1-Way

Invocation

Figure 1.1: Distributable Threads

A thread carries its execution context as it transits node boundaries, including its scheduling

parameters (e.g., time constraints, execution time), identity, and security credentials. Hence,

threads require that Real-Time CORBA’s Client Propagated model be used, not the Server

Declared model. The propagated thread context is used by node schedulers for resolving all

node-local resource contention among threads for node’s physical (e.g., CPU, I/O) and logical

(e.g., locks) resources, and for scheduling threads to optimize system-wide timeliness. Thus,

threads constitute the programming abstraction for concurrency and scheduling. Figure 1.1

cited from [28] shows the execution of threads.

The Real-Time CORBA specification envisions four distributed scheduling “cases”, summa-

rized in Table 1. This thesis explicitly supports distributed scheduling schemes corresponding

to Case 1 (in the case of local use of the AUA and HUA protocols) and Case 2 (for distributed

threads). While the Real-Time CORBA specification does not address thread integrity con-

cerns in any detail, it might be argued that the thread integrity protocols discussed in this

thesis amount to forms of distributed resource management (specifically in the presence of

partial failures) properly classified under Cases 3 or 4.

Experience with Operating Systems and middleware that directly provide the thread ab-

straction show that providing the distributable thread programming abstraction can reduce

application development and maintenance costs. This is in contrast with situations where a

2

Table 1.1: Real-Time CORBA Distributed Scheduling Cases [28, Section 3.8]
Case 1 Scheduling decisions take place independently on each

node.
Case 2 Scheduling decisions take place independently on each

node, subject to time constraints which propagate be-
tween nodes with application activities.

Case 3 Scheduling decisions are made by a distributed schedul-
ing algorithm with instances on each node. Local sched-
uler instances collaborate to achieve or approximate
global optimality.

Case 4 Scheduling is hierarchical, with higher-level schedulers
above case 1 or 2 instances which seek to improve re-
source allocation decisions with some global knowledge.

similar trans-node, control flow abstraction must be implemented from scratch by the pro-

grammer using lower level abstractions such as RPCs/RMIs, OS threads, locks, etc., and

end-to-end properties of the flows have to be maintained such as assuring satisfaction of

end-to-end time constraints, ensuring the integrity of the sequential operation flow through

distributed node and link failure detection and recovery, and ensuring system safety through

distributed deadlock detection and recovery.

This thesis focuses on real-time distributed systems that operate in environments with dy-

namically uncertain properties. These uncertainties include both transient and sustained

resource overloads (due to context-dependent activity execution times), arbitrary arrival

patterns for application activities, and arbitrary node/link failures.1 Nevertheless, such sys-

tems require the strongest possible assurances on activity timeliness behavior that are feasible

under the circumstances. Another important distinguishing feature of most of these systems

is their relatively long activity execution time magnitudes, compared to those of conventional

real-time subsystems—e.g., in the order of milliseconds to minutes. Some examples of such

dynamic systems that motivate our work (from the defense domain) include phased array

1We consider only a crash (fail/stop) failure model in the case of node failures.

3

radars [12]), surveillance aircraft [13, 11, 3]), and network-centric warfare systems [10, 2]).

These dynamic systems have traditionally been designed as hard, real-time systems, requir-

ing worst-case load and failure models. Designers and users of these systems have found that,

due to the long lifetimes of these systems, the increasingly dynamic execution environment,

and the flexible way they are employed in real-world situations, the deterministic worst-case

analysis performed at design and implementation time enforces unacceptable bounds on the

use of the system.

1.1 Contributions: Time-Bounded Thread Maintenance

and Recovery

When nodes transited by distributable threads fail, this may cause threads that span the

nodes to break by dividing them into several pieces. Sections of a thread that are discon-

nected from the thread’s node of origin (called the thread’s root-node), are called orphans.

In order to provide the abstraction of a continuous reliable thread, orphan sections of the

thread must be detected and aborted, resources held by them must be released and rolled

back to safe states, and a failure exception must be delivered to the farthest execution point

of the surviving portion of the thread—i.e., the farthest contiguous thread section from the

thread’s root. Then, the computation may be allowed to continue. This thesis focuses on

such a termination exception handling model, as that is consistent with most concurrent

programming paradigms (e.g., Ada, Java).2

As real-time threads are subject to time constraints, orphan cleanup and removal must

be done in a timely manner. For example, cleanup and removal of orphans of a failed

2Under a continuation model, the orphan sections may be allowed to continue execution transparently,
after cleanup has completed. A discussion of termination versus continuation (or “resumption”) models is
beyond the scope of this thesis. See [9] for a complete treatment of this topic.

4

low urgency/low importance thread must cause minimal interference to high urgency/high

importance threads. On the other hand, if orphans of a failed low urgency/low importance

thread hold resources which are blocking high urgency/low importance threads, then the

cleanup activity must have execution eligibility that reflects the urgency/importance of the

blocked threads. Furthermore, once a failure occurs, the time interval between detection of

the thread failure and the recovery of the thread must be bounded. In this instance, we

assume recovery to be the delivery of failure notification (e.g., exception) to the farthest,

contiguous surviving thread section. If this time interval is unbounded, broken threads cause

starvation—e.g., threads blocked on resources held by orphans may never be unblocked if

those orphans are never cleaned up.

In the model considered herein, it is explicitly assumed that thread overruns are at best

wasteful, and at worst degrade system safety. Thus, the scheduling algorithm must ensure

that overruns do not occur. Similarly, this model assumes that the application-specified

abort code (if any) is unexceptionally the correct response to overrun or failure conditions.

If the application wishes to schedule request new, complex, and less restricted handler, it is

free to spawn such an activity as a separate thread.3

We present two real-time scheduling algorithms called Abort-Assured Utility Accrual Schedul-

ing Algorithm and Handler-Assured Utility Accrual Scheduling Algorithm (AUA and HUA, re-

spectively) and three thread integrity protocols called Thread Polling with Bounded Recovery

(or TPR), Decentralized Thread Polling with Bounded Recovery (or D-TPR), and Wireless

Thread Polling with Bounded Recovery (or W-TPR). The algorithms and protocols are de-

signed to achieve the above objectives in an appropriate manner for the RTC2/DRTSJ dis-

tributable threads programming model. End-to-end time constraints are specified for threads

using Jensen’s Time/Utility Function (or TUF) [15] time constraint model, which generalizes

3These assumptions are not always the correct ones for all systems.

5

the classical deadline time constraint and decouples thread urgency from thread importance.

This decoupling facilitates thread scheduling that favors more important threads over less

important ones, irrespective of their urgency. This is particularly important during overloads

when all threads cannot be completed. Threads may be created at arbitrary times, and may

span nodes that are subject to arbitrary crash failures.

AUA and HUA are shown to achieve optimal total accrued utility during the special case

of underloads and no failures, and maximize the total utility to the extent possible during

overloads and failures. It is further established that AUA, in conjunction with TPR, D-TPR, or

W-TPR, bounds cleanup and recovery times, thereby bounding thread starvation durations.

The experimental measurements from the implementations of AUA, TPR, D-TPR, and W-TPR

in RTC2-like real-time middlewares validate the algorithm/protocol properties and confirm

their effectiveness.

Thread integrity protocols (Thread Polling [6, 27], Node Alive [14], and their adaptive

versions [14]) and real-time scheduling algorithms (DASA [4], D OVER [20], EDF [23],

LBESA [24], etc.) have been developed in the past . However, to the best of our knowl-

edge, no thread integrity solution—i.e., a stand-alone protocol or one that is coupled with a

scheduling algorithm — exists which provides end-to-end time-bounded cleanup and recov-

ery. It is precisely this open research problem which is addressed by this thesis. Thus, our

central contribution is time-bounded cleanup and recovery for LAN and MANET networks

provided by the AUA algorithm when used in conjunction with the TPR, D-TPR, and W-TPR

protocols.

The rest of the thesis is organized as follows: In Chapter 2, the models of the work are

discussed and the algorithm/protocol objectives are stated. Chapter 3 presents the AUA

algorithm, Chapter 4 presents the HUA algorithm, Chapter 5 presents the TPR protocol,

Chapter 6 presents the D-TPR protocol, and Chapter 7 presents the W-TPR protocol. In

6

Chapter 8, AUA, HUA, and the thread integrity protocols are evaluated . The thesis is

concluded and future work is identified in Chapter 9.

7

Chapter 2

Models and Objectives

2.1 Distributable Thread Abstraction

Distributable threads execute in local and remote objects by location-independent invoca-

tions and returns. A thread begins its execution by invoking an object operation. The

object and the operation are specified when the thread is created. The portion of a thread

executing an object operation is called a thread segment and a maximal set of contiguous

segments on a single node is called a thread section. Thus, a thread can be viewed as being

composed of a concatenation of thread sections across one or several nodes.

To avoid confusion, the notation Si,j will be used to denote the section i of thread j and

si,j will be used to denote the segment i of thread j. Thus, a thread can be viewed as a

concatenation of thread segments or as a concatenation of thread sections.

DTj = {Si,j : 1 ≤ i ≤ N}

DTj = {si,j : 1 ≤ i ≤ n}

8

In the notation above, n is the number of segments in the thread, N is the number of sections

in the thread, and j is the distributed thread identifier.

A thread’s initial segment is called its root (s0) and its most recent segment is called its head

(sn). In healthy threads the head of a thread is the only segment that is active. The first

segment in a section results either from an invocation from another node or the creation of

distributed thread. The last segment in a section is either the execution point of the thread

or is a section that has performed a remote invocation and is waiting on a return. Figure

2.1 illustrates threads, sections, and segments.

Figure 2.1: Distributable Threads, Segments, and Sections. Derived from [14]

Figure 2.1 shows four distributed threads where each thread starts with the section labeled

“Section 0”, its root-section. Sections within the figure that contain a “·” are sections which

contain the thread’s head. This figure shows how a distributed thread propagates over several

nodes.

In the context of a distributable thread, each remote invocation is composed of two segments:

(si) and (si+1). The predecessor segment makes a remote invocation on a remote object

9

and the segment that is created to execute that remote invocation on the remote object

is called the successor. In most instances, the predecessor will be located on a different

node from the successor. In this regard, nodes participating in a remote invocation have

a predecessor/successor relationship with respect to the distributable thread making the

remote invocation.

In Figure 2.1, the predecessor node of Node 2 (with respect to Thread 1) is Node 1. Likewise,

the predecessor section of Section 3 of Thread 1 is Section 2 of Thread 1. Conversely, the

successor section of Section 3 of Thread 1 is Section 4. In the current model, each section

can only have at most one predecessor and at most one successor. The head section has no

successor, the root segment has no predecessor, and all other segments have both.

Threads may be created at any node at any time. Upon arrival at a node, threads are

assumed to present to the scheduler execution time estimates of normal code and cleanup

code (or exception handler code) for segments of the thread at that node. While execution

time estimates of normal code may be violated at run-time (e.g., due to context dependence),

estimates of cleanup code may not as they are assumed to be non-context-dependent.

When a single failure occurs, the thread is temporarily or permanently split into two smaller,

connected sets of sections. A section (Si) is connected to another section (Si+1) if both

sections can communicate with each other (i.e., Si+1 can send and receive messages from

Si and Si can send and receive messages from Si+1). Disconnected sections are those that

cannot communicate successfully both upstream and downstream (e.g., Si is unable to receive

messages from Si+1).

For the purposes of this thesis, these sets of connected sections will be referred to as pieces .

A piece of a distributed thread is a maximal set of contiguous, connected sections in which

the first section in the set is disconnected from or has no predecessor and the last section in

10

the set is disconnected from or has no successor. Therefore, a root section will always be the

first segment of a piece and the head section will always be the last segment of a piece.

A piece is composed of three components, a root-ward section (Sl), a head-ward section

(Sr), and zero or more middle sections (Sm). Sl must be connected to some section Sx : x =

min(r, l + 1) and disconnected from Sl−1. Likewise, Sr must be connected to some section

Sy : y = max(l, r − 1) and disconnected from Sr+1. The set of middle sections may be

denoted Sm = {Si : l < i < r, Si can communicate fully with both Si+1 and Si−1}. A piece of

a thread can be defined as Pl,r = Sl

⋃
Sr

⋃
Sm. As it is assumed that every section is always

connected to itself, it is possible to have a piece composed of a single section where Sl ≡ Sr.

The set of distributed threads within a system shall be denoted T = {Tk : 1 ≤ k ≤ n}.

2.2 Timeliness Model

We specify the time constraint of each thread using a TUF. A TUF specifies the utility of

completing a thread as a function of its completion time. Figure 2.2 shows downward “step”

shaped TUFs.

-
Time

6Utility

0

Figure 2.2: Example Step TUFs

A TUF decouples importance and urgency of a thread—i.e., urgency is measured as a dead-

line on the X-axis, and importance is denoted by utility on the Y-axis. This decoupling

(see Figure 2.2) is a key property of TUFs, as a thread’s urgency is typically orthogonal to

its relative importance—e.g., the most urgent thread can be the least important, and vice

11

versa; the most urgent can be the most important, and vice versa. The more commonly used

priority/deadline approaches fail to make this distinction.

A thread Ti’s TUF is denoted as Ui (t). A classical deadline is unit-valued—i.e., Ui(t) =

{0, 1}, since importance is not considered. Downward step TUFs (Fig. 2.2) are a general-

ization of classical deadlines where Ui(t) = {0, {n}}. We focus on downward step functions,

and denote the maximum, constant utility of a TUF Ui (), simply as Ui.

Each TUF has an initial time Ii, which is the earliest time for which the TUF is defined, and

a critical time Xi, which, for a downward step TUF, is its discontinuity point. We assume

that Ui (t) > 0,∀t ∈ [Ii, Xi] and Ui (t) = 0,∀t /∈ [Ii, Xi] ,∀i.

In the policy we present, if a thread’s critical time is reached and its execution has not been

completed, a failure-exception is raised, and exception handlers are released for cleaning up

all partially executed thread sections (by releasing system resources). The handlers’ time

constraints are also specified using TUFs.

When a thread Ti arrives after the failure of a thread Tj but before the completion of T h
j , HUA

may exclude Ti from a schedule until T h
j completes, resulting in some loss of the best-effort

property. To quantify this loss, we define the concept of a Non Best-effort time Interval (or

NBI):

Definition 1. Consider a scheduling algorithm A. Let a thread Ti arrive at a time t with

the following properties: (a) Ti and its handler together with all threads in A’s schedule at

time t are not feasible at t, but Ti and its handler are feasible just by themselves;1 (b) One

or more handlers (which were released due to thread failures before t) have not completed

their execution at t; and (c) Ti has the highest PUD among all threads in A’s schedule at

time t. Now, A’s NBI, denoted NBIA, is defined as the duration of time that Ti will have to

1If A does not consider a thread’s handler for feasibility (e.g., [24, 5]), then the handler’s execution time
is regarded as zero.

12

wait after t, before it is included in A’s feasible schedule. Thus, Ti is assumed to be feasible

together with its handler at t + NBIA.

As an example, we will describe the NBI of DASA and LBESA. Both DASA and LBESA will

examine Ti at t, since a task arrival is always a scheduling event for them. Further, since

Ti has the highest PUD and is feasible, they will include Ti in their feasible schedules at t

(before including any other tasks), yielding a zero worst-case NBI. For the same reason, the

best-case NBI for DASA and LBESA are both zero.

The NBI of AUA and HUA will be described in further detail in Chapters 3 and 4, respectively.

2.3 System Model

We consider a system model wherein a set of processing components generically referred to

as nodes are interconnected via a network. Each node executes thread sections. The order

of executing sections on a node is determined by the scheduler residing at the node. We

consider RTC2’s Case 2 approach [28] for thread scheduling. According to this approach,

node schedulers use the propagated thread scheduling parameters and independently sched-

ule thread sections on respective nodes to optimize the system-wide timeliness optimality

criterion. Thus, scheduling decisions made by a node scheduler are independent of other

node schedulers. Though this results in approximate, global, system-wide timeliness, RTC2

supports the approach due to its simplicity and capability for coherent end-to-end scheduling.

The approach’s effectiveness is illustrated in Alpha OS [16] and Tempus middleware [21].2

2RTC2 also describes Cases 1, 3, and 4, which describe non real-time, global and multilevel distributed
scheduling, respectively [28]. However, RTC2 does not support Cases 3 and 4.

13

2.3.1 Networks

Two network models are considered in this thesis. The first is a single hop network model

(e.g., a LAN), where nodes are interconnected through a hub or a switch. This model pre-

sumes the existence of a reliable message transport with worst case message delivery latency

D for administrative level communications. All other, non-administrative communications

will contend for the network links. Such contentions must be resolved and packets must be

scheduled on network links using a packet scheduling algorithm. We do not consider any

particular algorithm for scheduling packets; the scheduling algorithms and thread integrity

protocols presented are independent of any such algorithm.

We denote the set of nodes as Pi ∈ P, i ∈ [1, m]. We assume that all node clocks are

synchronized using a protocol such as [25]. We consider an arbitrary, crash failure model for

the nodes—i.e., any node can fail at any time and when it does so, it simply halts.

The second network model consists of a set of nodes, denoted N = {n1, n2, n3, ...}, com-

municating through bidirectional wireless connections. A basic unicast routing protocol is

assumed to be available for packet transmission. Examples of unicast routing protocols in-

clude DSR [18] and OLSR [7]. MAC-layer packet scheduling is assumed to be done by a

CSMA/CA-like protocol (e.g., IEEE 802.11). Node clocks are synchronized using an algo-

rithm such as the one described in [29]. Nodes may dynamically join/leave the network or

may fail by crashing, links may fail transiently or permanently, and messages may be lost;

all arbitrarily.

14

2.4 Failure Models

This thesis will limit its consideration of failures to catastrophic (fail-stop) node failures and

communication failures.

A node will be considered to have failed when it is assumed to be permanently disconnected

from the rest of the network. The node becomes disconnected when it can neither send nor

receive messages from any other node. The term “permanently” implies that once the node

has been partitioned from the rest of the network, it will never again be able to communicate

with any other node.

A communication failure occurs when any message does not reach its desired destination.

Failure of a message to reach its destination can occur for a number of reasons: a physical

break in the communication medium, communication buffer overflow, parity error, etc. De-

pending on how many consecutive errors occur, the set of errors may be labeled persistent

or transient. A relatively low number of continuous communication errors would be consid-

ered a transient error as it is assumed to be temporary. As the number of sequential errors

increases, the error may be considered persistent and therefore permanent. The criteria by

which an error is deemed transient or permanent is application specific. In terms of real-time

applications, this criteria can be associated with the application’s time constraints.

This thesis avoids the assumption that communication errors are bidirectional. If a commu-

nication error occurs between node A and node B, communications from node B to node A

may not fail. This is of particular importance in wireless systems where message delivery

failures are common and may not be considered “errors”.

15

2.5 Thread Recovery and Cleanup

We consider thread recovery to be the process of notifying the farthest contiguous surviving

thread segment that it may continue execution and we define orphan cleanup as the process

of aborting and executing handlers for all orphans. The total “orphan cleanup and recovery

time” is the maximum time required by the protocol to perform both recovery and orphan

cleanup after a failure is detected.

Ordered cleanup within the context of a non-distributable thread, such as is provided by

exception processing, is the Last-In-First-Out (LIFO) cleanup of the procedure calls on a

thread’s stack. In the case of distributable threads, the “stack” is distributed across the

system, including both local and remote invocations. Therefore, it stands to reason that

ordered cleanup for a distributable thread would be the LIFO cleanup of remote invocations

on a distributable thread’s stack. However, as distributable threads are subject to errors

that may make portions of the DT’s stack inaccessible (communication/node failures), a

more appropriate definition for ordered cleanup of a distributed thread is required.

We define ordered cleanup as the LIFO cleanup of contiguous portions of the distributed

thread’s stack. Another way of describing this is that each thread piece (as described in

section 2.1) will be cleaned up in a LIFO-ordered fashion, starting with the farthest down-

stream segment and working upstream (towards the root). This strays slightly from the

non-distributed definition of ordered cleanup as no guarantee is provided regarding order-

ing between pieces. However, given the possible ways a thread can be partitioned, it is an

acceptable divergence.

Ordered cleanup helps prevent deadlock when using remote resources. It also strengthens

the distributable thread abstraction by more closely mimicking the cleanup process of single-

node threads. Providing ordered cleanup also gives the application programmer a consistent

16

and familiar failure model to work with so that they might more easily deal with errors

unique to distributable threads.

2.6 Objectives

Our objectives are to 1) maximize the total thread accrued utility, 2) bound the orphan

cleanup and recovery time, and 3) provide best-effort ordered-cleanup of orphans. Note

that maximizing the total utility subsumes meeting all TUF critical times as a special case.

When all critical times are met (which is only possible during underload), the total utility is

the optimum possible. During overload, we seek to maximize the total utility to the extent

possible, since not all critical times can be met.

17

Chapter 3

The AUA Algorithm

3.1 Rationale

In order to attain bounded recovery time for distributable threads, it is necessary to have

a scheduling algorithm which guarantees a bound on the time required by each orphaned

thread section to detect and conduct cleanup operations. Without this guarantee, it would

be possible for a broken thread to leave the system in an unsafe state. In particular, it would

be possible for a single thread to have multiple, uncoordinated points of execution for an

unbounded amount of time. In order to facilitate this guarantee, we have developed the AUA

scheduling algorithm, described in section 3.2.

The AUA scheduling algorithm is a hybrid approach, seeking to maximize the total (summed)

utility for all tasks in the system, subject to the guarantee that execution of those blocks

of code designated as cleanup handlers will always complete by their TUF critical time (or

deadline). As such, traditional “hard real-time” analysis techniques may be applied to this

(typically small) subset of the application code. In particular, these guarantees are exploited

18

by the thread integrity protocols presented in the later chapters.

The engineering choice made in the design of AUA to provide deterministically feasible

cleanup handlers is motivated by a desire to enforce system safety. Other approaches to

executing cleanup code include amortizing the cleanup code into other system operations or

delaying cleanup of the affected resources until they are needed by other tasks. The approach

described in the AUA algorithm avoids the nondeterministic delays implied by these other

methods. The guarantee, however, comes at a not insignificant cost, requiring deterministic

analysis of the abort handlers, and therefore possibly over-aggressive rejection of tasks.

AUA traces its lineage to the Dependent Activity Scheduling Algorithm (DASA) introduced

by Clark [4], and is equivalent to DASA if no abort handlers are introduced.1

3.2 Algorithm Overview

The AUA algorithm is presented in two parts, an event handler in Algorithm 1 and the

core scheduling logic in Algorithm 2. When a thread section/handler pair is introduced to

the system, the scheduler first checks to see if the handler’s execution can be guaranteed

within the time constraint. If not, the thread section/handler pair is rejected and no new

schedule is created. If the new handler is accepted, its last-chance time (LCT) to commence

execution is calculated by subtracting its Worst Case Excecution Time (WCET) from its

deadline, allowing the scheduler to plan for the last moment at which the abort handler can

be guaranteed to execute to completion.

In order to describe AUA, we introduce the notation given in Table 3.1 and the functions

given in Table 3.2.

1This is not meant to imply that DASA is unable to handle aborts. While both DASA and AUA handle
aborts, they do so using different approaches.

19

Table 3.1: Variables in AUA
Tr current set of accepted, unscheduled threads
Tc current handlers accepted in the system

Trnew new arriving thread
Tcnew new arriving thread handler
Ti.DL the thread’s deadline for Ti ∈ Tr

Ti.UD potential utility density of the thread / handler pair
Ti.Dep the task that Ti is dependent on
Ti.LCT the latest time at which the handler of Ti is guaranteed to complete

before its deadline
σ the current ordered schedule

σcopy temporary copy of current schedule. Used when updating schedule

Table 3.1 shows many of the variables used in the description of AUA. Thread variables are

denoted by an uppercase T and schedule variables are denoted by a lowercase sigma. These

conventions are also used in the operations described in Table 3.2.

Table 3.2: Operations used in AUA

inSchedule(T, σ) return a boolean value indicating whether T is in schedule σ
headOf(σ) return the first thread in schedule σ

sortByUD(σ) return a new schedule sorted by non-increasing utility den-
sity (UD)

insertByEDF(T, σ) insert thread T into ordered list σ by Earliest Deadline First;
if there are already entries with the same deadline, T is in-
serted before them

remove(T, σ) remove T from the ordered list σ if T is in σ
feasible(σ) return a boolean value indicating schedule σ’s feasibility. For

σ to be feasible, the predicted completion time of each thread
in σ must never exceed its deadline

setLCT(t) set a timer to wake up the scheduler at time t

When the algorithm is invoked, it first computes a deadline ordered schedule of all the

cleanup handlers accepted into the system. Then, depending on the scheduling event, it will

do one of three things: attempt to add a handler to the system and create a new schedule,

remove a handler from the system and create a new schedule, or schedule the handler with

20

Algorithm 1: AUA Algorithm
Data: Tr, Tc, event
Result: selected thread to execute, Texe

σ ← ∅ ;1

for Ti ∈ Tc do σ ← insertByEDF(Ti, σ) ;2

switch event do3

case removing handler Tcrem4

remove(Tcrem, σ) ;5

Tc ← Tc − Tcrem ;6

Texe ← AUA UA Optimization(Tr, Tc, σ) ;7

case adding handler Tcnew8

σcopy ← insertByEDF(Tcnew, σ) ;9

if feasible(σcopy) then10

Tc ← Tc ∪ Tcnew ;11

Tcnew.LCT ← Tcnew.DL- Tcnew.ExecT ime ;12

σ ← σcopy ;13

end14

Texe ← AUA UA Optimization(Tr, Tc, σ) ;15

case LCT Timeout16

Texe ← headOf(σ);17

18

end19

return Texe ;20

the earliest deadline for execution.

Scheduling events in AUA include: 1.) the arrival of a thread/handler pair, 2.) the completion

of a thread, 3.) the completion of a handler, 4.) a resource request, 5.) a resource release,

6.) and the arrival of a handler’s last-chance time (LCT). For clarity, Algorithm 1 presents

only those events which directly impinge on AUA’s performance. See [21] for a thorough

description of resource request/grant event processing in the Metascheduler.

Once the event-specific actions have been executed, AUA proceeds to the utility accrual (UA)

optimization step (shown in Algorithm 2).

As shown in Algorithm 2, thread sections are inserted into a schedule using a mechanism

very similar to the DASA algorithm. In fact, this mechanism only differs from DASA when

21

handlers are associated with threads. Therefore, when no handlers are submitted to the

schedule, AUA acts in the same way DASA acts. This leads directly to Theorem 1.

Theorem 1. If a set of threads, Tr, having no handlers associated with it, is independently

scheduled by DASA and AUA, the resulting schedules will be identical.

Proof. AUA calculates the PUD of a thread in the same way DASA does. AUA analyzes

threads in the same decreasing PUD order as DASA. AUA uses the same feasibility criteria as

DASA. AUA orders feasible threads using EDF, just as DASA does. Because the two algorithms

only differ when handlers are present, theorem 1 holds true.

Algorithm 2: AUA UA optimization
Data: Tr, Tc, σ
Result: selected thread to execute, Texe

Thandler ← headOf(σ);1

setLCT(Thandler.LCT);2

for Ti ∈ Tr do3

Ti.DEP ← getDep(Ti);4

Ti.UD ← computeUD(Ti);5

end6

σtmp ← sortByUD(Tr);7

for Ti ∈ σtmp do8

if not inSchedule(Ti, σ) then9

σcopy ← insertByEDF(Ti, σ);10

if feasible(σcopy) then σ ← σcopy ;11

end12

end13

Texe ← headOf(σ);14

return Texe ;15

If σ is not empty, the setLCT() function sets a timer that will wake the scheduler when

the next LCT arrives. The dependencies and utility density (UD) of each thread are then

calculated using getDep() and computeUD(), respectively. Dependencies and utility densities

are calculated in AUA in the same way they are calculated in DASA. The function sortByUD()

22

then uses the utility density to create a list of all the threads in the system sorted in non-

increasing order by UD. AUA goes through this list in order and attempts to insert each thread

into a feasible, deadline ordered list using procedure insertByEDF(). Finally, AUA returns the

thread Texe, which is the task within the feasible schedule with the earliest deadline.

The computeUD() function sums the utilities of a thread and its dependencies. The function

then divides the sum of utilities by the sum of execution times for a thread and its de-

pendencies. This yields the aggregate utility density the system can expect from executing

the thread and all threads upon which it depends. Utility density is used as a heuristic for

selecting the most valuable tasks to execute. The getDep() function returns the thread that

holds the resource that Ti is requesting.

The insertByEDF() function inserts a task and its dependencies into a deadline ordered list.

Initially, the function makes a copy of the schedule and inserts the new thread, Ti, into

the schedule copy. The dependency chain is then iterated through and each dependency’s

deadline is tightened before the dependency is added to the schedule copy. The function

returns the copy of the schedule without making any changes to the original.

AUA’s NBI is described in theorems 2 and 3.

Theorem 2. The worst-case NBI of AUA is +∞.

Proof. AUA will examine Ti at t, since a thread arrival at any time is a scheduling event under

it. However, AUA is a TUF/UA algorithm in the classical admission control mould and will

reject Ti in favor of previously admitted threads, yielding a worst-case NBI of +∞.

Theorem 3. The best-case NBI for AUA is zero.

Proof. The best-case NBI for AUA occurs when a handler has been released, but it and all

other accepted handlers are feasible with the newly arriving thread and its handler. In this

23

case, the newly arriving thread will be immediately included in a feasible schedule, resulting

in an NBI of zero.

3.3 Distributable Deadlines

AUA can be used to enforce ordered cleanup. As described above, AUA keeps track of the

expected execution times of all admitted cleanup handlers. Using this information, AUA has

the ability to create a new, shorter deadline for each downstream section.

The AUA algorithm calculates the new deadline dnew such that, dnew = dold−
∑n

i=1 Ci where

Ci is the worst-case execution time of an admitted task abort handler and n is the number

of cleanup handlers admitted for the section. AUA is then able to pass this new deadline off

to the distributable thread framework for propagation downstream.

Propagating a shorter deadline will cause all downstream sections to have a smaller LCT,

forcing all downstream sections to begin cleanup before the upstream sections, thus ordered

cleanup behavior is enforced.

24

Chapter 4

The HUA Algorithm

4.1 Rationale

Since the task model is dynamic—i.e., when threads will arrive at nodes, and how many

sections a thread will have are statically unknown, future scheduling events1 such as new

thread arrivals cannot be considered at a scheduling event. Thus, section schedules must be

constructed on the system nodes solely exploiting the current system knowledge. Since the

primary scheduling objective is to maximize the total thread accrued utility, a reasonable

heuristic is a “greedy” strategy at each node: Favor “high return” thread sections over low

return ones, and complete as many of them as possible before thread termination times, as

early as possible (since TUFs are non-increasing).

The potential utility that can be accrued by executing a thread section on a node defines a

measure of that section’s “return on investment.” We measure this using a metric called the

Potential Utility Density (or PUD) originally introduced in [5]. On a node, a thread section’s

1A “scheduling event” is an event that invokes the scheduling algorithm at a node.

25

PUD measures the utility that can be accrued per unit time by immediately executing the

section on the node.

However, a section may encounter failures. We first define the concept of a section failure:

Definition 2 (Section Failure). Consider a section Si of a distributable thread Ti. We say

that Si has failed when (a) Si violates the termination time of Ti while executing, thereby

raising a time constraint-violation exception on Si’s node; or (b) a failure-exception noti-

fication is received at Si’s node regarding the failure of a section of Ti that is upstream or

downstream of Si.

For convenience, we also define the concept of a released handler :

Definition 3 (Released Handler). A handler is said to be released for execution when its

section fails according to Definition 2.

Since a section’s best-case failure scenario is the absence of a failure for the section, the

corresponding section PUD can be obtained as the utility accrued by executing the section

divided by the time spent for executing the section. The section PUD for the worst-case

failure scenario (one where the section fails, per Definition 2) can be obtained as the utility

accrued by executing the handler of the section divided by the total time spent for executing

the section and the handler.2 The section’s PUD can now be measured as the minimum of

these two PUDs, as that represents the worst-case.

Thus, on each node, HUA examines thread sections for potential inclusion in a feasible

schedule for the node in the order of decreasing section PUDs. For each section, the algorithm

examines whether that section and its handler can be feasibly completed (we discuss section

2Note that, in the worst-case failure scenario, utility is accrued only for executing the section’s handler;
no utility is gained for executing the section, though execution time is spent for executing the section and
its handler.

26

and handler feasibility in section 4.2). If infeasible, the section and its handler are rejected.

The process is repeated until all sections are examined, and the schedule’s first section is

dispatched for execution on the node.

A section Si that is rejected can be the head of Si’s thread Ti; if so, Si is reconsidered for

scheduling at subsequent scheduling events on Si’s node, say Ni, until Ti’s termination time

expires.

If a rejected section Si is not a head, then Si’s rejection is conceptually equivalent to the

(crash) failure of Ni. This is because, Si’s thread Ti has made a downstream invocation after

arriving at Ni and is yet to return from that invocation (that’s why Si is still a scheduling

entity on Ni). If Ti had made a downstream invocation, then Si had executed before, and

hence was feasible and had a feasible handler at that time. Si’s rejection now invalidates

that previous feasibility. Thus, Si must be reported as failed and a thread break for Ti at Ni

must be reported to have occurred to ensure system-wide consistency on thread feasibility.

The algorithm does this by interacting with the TPR protocol.

This process ensures that the sections that are included in a node’s schedule at any given

time have feasible handlers. Further, all the upstream sections of their distributable threads

also have feasible handlers on their respective nodes. Consequently, when any such section

fails (per Definition 2), its handler and the handlers of all its upstream sections are assured

to complete within a bounded time.

Note that no such assurances are afforded to sections that fail otherwise—i.e., the termination

time expires for a section Si, which has not completed its execution and is not executing

when the expiration occurs. Since Si was not executing when the termination time expired,

Si and its handler are not part of the feasible schedule at the expiration time. For this

case, Si’s handler is executed in a best-effort manner—i.e., in accordance with its potential

27

contribution to the total utility (at the expiration time).

4.2 Feasibility

Feasibility of a section on a node can be tested by verifying whether the section can be

completed on the node before the section’s distributable thread’s end-to-end termination

time. Using a thread’s end-to-end termination time for verifying the feasibility of a section of

the thread may potentially overestimate the section’s slack, especially if there are a significant

number of sections that follow it in the thread. However, this is a reasonable choice, since

we do not know the total number of sections of a thread. If the total number of sections of

a thread is known a-priori, then better schemes (e.g., [19]) that distribute the thread’s total

slack (equally, proportionally) among all its sections can be considered.

For a section’s handler, feasibility means whether it can complete before its absolute ter-

mination time, which is the time of thread failure plus the relative termination time of the

section’s handler. Since the thread failure time is impossible to predict, a reasonable choice

for the handler’s absolute termination time is the thread’s end-to-end termination time plus

the handler’s termination time, as that will delay the handler’s latest start time as much as

possible. Delaying a handler’s start time on a node is appropriate toward maximizing the

total utility, as it potentially allows threads that may arrive later on the node but with an

earlier termination time than that of the handler to be feasibly scheduled.

There is always the possibility that a new section Si is released on a node after the failure of

another section Sj at the node (per Definition 2) and before the completion of Sj’s handler on

the node. As per the best-effort philosophy, Si must immediately be afforded the opportunity

for feasible execution on the node, in accordance with its potential contribution to the total

utility. However, it is possible that a schedule that includes Si on the node may not include

28

Sj’s handler. Since Sj’s handler cannot be rejected now, as that will violate the commitment

previously made to Sj, the only option left is to not consider Si for execution until Sj’s handler

completes, consequently degrading the algorithm’s best-effort property. In Section 4.4, we

quantify this loss.

4.3 Algorithm Overview

HUA’s scheduling events at a node include the arrival of a thread at the node, completion of

a thread section or a section handler at the node, and the expiration of a TUF termination

time at the node. To describe HUA, we define the variables and auxiliary functions used in

tables 4.1 and 4.2, respectively.

Table 4.1: Variables in HUA
Sr the current set of unscheduled sections including any newly ar-

rived sections
Si a section within the system
Sh

i handler for Si

Ti the thread to which a section Si and Sh
i belong

σr the EDF-ordered schedule constructed at the previous schedul-
ing event

σ the new EDF-ordered schedule
Ui(t) Si’s TUF, which is the same as that of Ti’s TUF
Uh

i (t) Sh
i ’s TUF

Si.X Si’s termination time, which is the same as that of Ti’s termi-
nation time

Si.ExecT ime Si’s estimated remaining execution time
H the set of handlers that are released for execution on the node

(per Definition 3), ordered by non-decreasing handler termina-
tion times. H = ∅ if all released handlers have completed

Algorithm 3 describes HUA at a high level of abstraction. When invoked at time tcur, HUA

first updates the set H (line 3) and checks the feasibility of the sections. If a section’s earliest

29

Table 4.2: Operations used in HUA

updateHandlerSet() inserts a handler Sh
i into H if the scheduler is invoked

due to Sh
i ’s release; deletes a handler Sh

i from H if the
scheduler is invoked due to Sh

i ’s completion.Insertion of
Sh

i into H is at the position corresponding to Sh
i ’s termi-

nation time.
notifyFail(Si) declares Si as failed .

IsHead(S) returns true if S is a head; false otherwise.
headOf(σ) returns the first section in σ.

sortByPUD(σ) returns a schedule ordered by non-increasing section
PUDs. If two or more sections have the same PUD, then
the section(s) with the largest ExecT ime will appear be-
fore any others with the same PUD.

Insert(S,σ,I) inserts section S in the ordered list σ at the position
indicated by index I; if entries in σ exists with the index
I, S is inserted before them. After insertion, S’s index
in σ is I.

Remove(S,σ,I) removes section S from ordered list σ at the position
indicated by index I; if S is not present at the position
in σ, the function takes no action.

feasible(σ) returns a boolean value indicating schedule σ’s feasibil-
ity. σ is feasible, if the predicted completion time of each
section S in σ, denoted S.C, does not exceed S’s termi-
nation time. S.C is the time at which the scheduler is
invoked plus the sum of the ExecT ime’s of all sections
that occur before S in σ and S.ExecT ime.

predicted completion time exceeds its termination time, it is rejected (line 3). Otherwise,

HUA calculates the section’s PUD (line 3). To compute a section’s PUD, HUA determines

the PUDs for the best-case and worst-case failure scenarios and determines the minimum of

the two.

The sections are then sorted by their PUDs (line 3). In each step of the for -loop from

line 3 to line 3, the section with the largest PUD and its handler are inserted into σ, if it

can produce a positive PUD. The schedule σ is maintained in the non-decreasing order of

section termination times. Thus, a section Si is inserted into σ at a position that corresponds

30

to Si.X in σ’s non-decreasing termination time order. Sh
i is similarly inserted into σ at a

position corresponding to Si.X + Sh
i .X.

Algorithm 3: HUA: High Level Description
input: Sr, σr, H; output: selected thread Sexe;1
Initialization: t := tcur; σ := ∅; HandlerIsMissed := false;2

updateHandlerSet ();3

for each section Si ∈ Sr do4

if feasible(Si)=false then5

reject(Si);6

else Si.PUD = min

„
Ui(t+Si.ExecTime)

Si.ExecTime
,

Uh
i (t+Si.ExecTime+Sh

i .ExecTime)

Si.ExecTime+Sh
i .ExecTime

«
;

7

end
σtmp :=sortByPUD(Sr);8

for each section Si ∈ σtmp from head to tail do9

if Si.PUD > 0 then10

Insert(Si, σ, Si.X);11

Insert(Sh
i , σ, Si.X + Sh

i .X);12

if feasible(σ)=false then13

Remove(Si, σ, Si.X);

Remove(Sh
i , σ, Si.X + Sh

i .X);14

if IsHead(Si)=false and Si ∈ σr then15

notifyTPR(Si);16

end
end

else break;17

end
if H 6= ∅ then18

for each section Sh ∈ H do19

if Sh /∈ σ then20
HandlerIsMissed := true;21
break;22

end
end

end
if HandlerIsMissed := true then23

Sexe :=headOf(H);24

else
σr := σ;25

Texe:=headOf(σ);26

end
return Sexe;27

After inserting a section Si and its handler Sh
i , the schedule σ is tested for feasibility. If

σ becomes infeasible, then Si and Sh
i are removed from σ (lines 3–3). If a section Si that

is removed from σ is not a head and belonged to the schedule constructed at the previous

scheduling event, then the TMAR protocol is notified regarding Si’s failure (lines 3–3).

31

If one or more handlers have been released but have not completed their execution (i.e.,

H 6= ∅; line 3), the algorithm checks whether any of those handlers are missing in the

schedule σ (lines 3– 3). If any handler is missing, the handler at the head of H is selected

for execution (line 3). If all handlers in H have been included in σ, the section at the head

of σ is selected (line 3).

Note that each section’s PUD is calculated assuming that it is executed at the current

position in the schedule. This would not be true in the output schedule σ, and thus affects

the accuracy of the PUDs calculated. Actually, we are calculating the highest possible PUD

of each section by assuming that it is executed at the current position. Intuitively, this

would benefit the final PUD, since the section with the highest PUD is always selected at

each insertion on σ (line 3). Also, the PUD calculated for the dispatched section at the head

of σ is always accurate.

With n sections, HUA’s asymptotic cost is O(n2) (for brevity, we skip the analysis). Though

this cost is higher than that of many traditional real-time scheduling algorithms, it is justified

for applications with longer execution time magnitudes such as those that we focus on here.

(Of course, this high cost cannot be justified for every application.)

4.4 Algorithm Properties

We first describe HUA’s bounded-time completion property for exception handlers:

Theorem 4. If a section Si fails (per Definition 2), then under HUA with zero overhead, its

handler Sh
i will complete no later than Si.X + Sh

i .X (barring Sh
i ’s failure).

Proof. If Si violates the thread termination time at a time t while executing, then Si was

included in HUA’s schedule constructed at the scheduling event that occurred nearest to t,

32

say at t′, since only threads in the schedule are executed. Thus, both Si and Sh
i were feasible

at t′, and Sh
i was scheduled to complete no later than Si.X + Sh

i .X. Similar argument holds

for the other cases:

If Si receives a notification on the failure of an upstream section S̄i at a time t, then all

sections from S̄i to Si and their handlers are feasible on their respective nodes, as otherwise

the thread execution would not have progressed to Si (and beyond if any). Thus, Sh
i is

scheduled to complete by Si.X + Sh
i .X.

If Si receives a notification on the failure of a downstream section S̄i at a time t, then all

sections from Si to S̄i and their handlers are feasible on their respective nodes, as otherwise

the thread execution would not have progressed to S̄i. Thus, Sh
i is scheduled to complete no

later than Si.X + Sh
i .X.

Next, we describe HUA’s NBI:

Theorem 5. HUA’s worst-case NBI is t+max∀Sj∈σt

(
Sj.X + Sh

j .X
)
, where σt denotes HUA’s

schedule at time t.

Proof. The time t that will result in the worst-case NBI for HUA is when σt = H 6= ∅.

By NBI’s definition, Si has the highest PUD and is feasible. Thus, Si will be included in

the feasible schedule σ, resulting in the rejection of some handlers in H. Consequently,

the algorithm will discard σ and will select the first handler in H for execution. In the

worst-case, this process repeats for each of the scheduling events that occur until all the

handlers in σt complete (i.e., at handler completion times), as Si and its handler may be

infeasible with the remaining handlers in σt at each of those events. Since each handler in

σt is scheduled to complete by max∀Sj∈σt

(
Sj.X + Sh

j .X
)
, the earliest time that Si becomes

feasible is t + max∀Sj∈σt

(
Sj.X + Sh

j .X
)
.

33

Thus, HUA’s NBI interval [0, max∀Sj∈σt Sj.X + Sh
j .X] lies in between that of DASA/LBESA’s

[0] and AUA’s [+∞]. Note that HUA and AUA bound handler completions; DASA/LBESA do

not.

Theorem 6. The best-case NBI for HUA is zero.

Proof. The best-case NBI for HUA occurs when a handler has been released, but it is feasible

with the newly arriving thread and its handler. In this case, the newly arriving thread will

be immediately included in a feasible schedule, resulting in an NBI of zero.

HUAproduces optimum total utility for a special case:

Theorem 7. Consider a set of threads with step TUFs and no node failures. Suppose there

is sufficient processor time for meeting the termination-times of all thread sections and their

handlers on all nodes. Now, a system-wide EDF schedule is produced by HUA, yielding

optimum total utility.

Proof. Because each thread is inserted into a deadline-ordered list by HUA the resulting

schedule will be an EDF schedule.

34

Chapter 5

The TPR Protocol

5.1 Assumptions

The Thread Polling with Bounded Recovery(TPR) protocol was designed to effectively moni-

tor thread integrity of distributed threads within a relatively reliable network. As such, TPR

focuses less on recovering from communication errors and is more concerned with identifying

and recovering from catastrophic node failures. TPR provides tunable parameters to mitigate

the effects of unreliable communications, but it was not designed for efficient operation in

such an environment. TPR assumes a reliable communication framework for administrative

messages with a maximum latency of D.

5.2 Overview

The TPR protocol is an extension of the Alpha TMAR protocol described in [14] and is

instantiated in a software component called the Thread Integrity Manager (TIM). Every

35

node which hosts distributable threads has a TIM component, which continually runs TPR’s

three-phase polling operation.

The TIM on each node is responsible for maintaining the health of each segments locally

hosted, determining the integrity of all threads rooted locally, and coordinating any cleanup

required for those threads. A TIM responsible for a non-root segment, then, manage the

segment’s health by responding to health update information sent by the root TIM. If health

information fails to arrive for a given amount of time, the local TIM declares the segment

an orphan and the segment commences autonomous cleanup. Once this occurs, the thread

segment is effectively disconnected from the remainder of the thread’s distributed call-graph

and stack (as described earlier in section 2.5, and control is returned to application code in

the context of an exceptional cleanup handler.

The operations of the TIM are considered to be administrative operations, and they are

conducted with scheduling eligibility that exceeds all application threads. As a consequence,

we ignore the (comparatively small, and bounded) processing delays on each node in the

analysis below.

5.3 Thread Polling

In the first phase, the root node of a given thread regularly broadcasts an ROOT ANNOUNCE

message to all nodes within the system. The ROOT ANNOUNCE message is sent every Tp, or

polling interval. Figure 5.1 illustrates the polling process for a healthy thread.

In the second phase, all nodes that are hosting segments of that given thread respond to the

ROOT ANNOUNCE with a segment acknowledgment (SEG ACK) message. Table 5.3 describes

the contents of the SEG ACK and other messages used in TPR.

36

ROOT SEGMENT1 SEGMENT2 SEGMENT3

ROOT_ANNOUNCE

ROOT_ANNOUNCE

SEG_ACK

SEG_ACK

SEG_ACK Worst-Case

Message Delay D

SEG_HEALTH

SEG_HEALTH

SEG_HEALTH

Polling

Interval T
p

Health Evaluation

Interval T
h

Figure 5.1: TPR Operation — Healthy Thread

Lemma 8. Under TPR, if a section Si does not receive a ROOT ANNOUNCE message within

tp + D, then either the root node has failed or the segment has become disconnected. Si is

thus orphaned.

Proof. Since ROOT ANNOUNCE message is sent every tp, and D is the worst-case message

latency, every healthy section of a healthy thread will receive ROOT ANNOUNCE within

tp + D.

In the last phase, the root node waits for the health evaluation interval Th to expire before

examining the information it has received from the SEG ACK messages to determine the

status of the thread (broken or unbroken).

Lemma 9. Under TPR, the root node will detect a broken thread within tp + th, where

th ≥ 2D.

Proof. The worst-case scenario for detecting a broken thread occurs when a node fails imme-

37

Table 5.1: TPR Messages

Message Contents From/To
ANNOUNCE list of all DTs rooted on sender node root node to all nodes in system
SEG ACK list of all segments located on

sender that are parts of DTs rooted
on receiver

all nodes with segments of DT to
DT root node

SEG HEALTH list of all healthy segments located
on receiver

DT root node to nodes with healthy
segments of DT

PAUSE ID of DT to be paused root node to all nodes in system
PAUSE ACK ID of DT that was paused head node to root node
UNPAUSE ID of DT to be unpaused root node to all nodes in system
NEW HEAD segment ID of new head root node to node with new head
KILL SEG segment ID of old head root node to node with old head
KILL ACK ID of DT whose head was orphaned node with old head to root node
ORPHAN list of all segments to be orphaned

on a node
root node to a node hosting orphans

ORPHAN HEAD segment ID of orphan head root node to node hosting furthest
downstream segment of unbroken
piece of thread

diately after sending a SEG ACK. Thus, the root node will miss discovering the thread break

within th of the ROOT ANNOUNCE broadcast, and must wait for the next thread health

evaluation time th to elapse to detect the break. The next health evaluation time will start

no later than one tp. The lemma follows.

If the thread is determined to be unbroken, the root sends health update (SEG HEALTH)

messages to all segments of the thread, refreshing them. If there is a break in the thread,

the root node refreshes only segments of the thread deemed healthy and enters the recovery

state to deal with the break.

Lemma 10. Under TPR, every healthy section of a healthy thread will receive a SEG HEALTH

message at a maximum interval of tp + th + D.

Proof. A root node broadcasts a ROOT ANNOUNCE message every tp and determines a

38

thread’s status after th. Following this, it sends a SEG HEALTH message to all healthy

sections of the thread. Since the worst-case message latency is D, every healthy section

of a healthy thread will receive a SEG HEALTH message within th + D of the receipt of a

ROOT ANNOUNCE message. The lemma follows.

5.4 Recovery

Recovery coordinated by TPR is considered to be an administrative function, and carries

on above the level of application scheduling. While recovery proceeds, the thread-polling

activities continue concurrently. This allows the protocol to recognize and deal with multiple

simultaneous breaks, and even simultaneous cleanup operations.

5.4.1 Recovery Modes

Recovery can be conducted in one of two modes. The first mode is single-head mode and

the second is muli-head mode. As their names imply, single-head mode allows at most one

head for a given distributed thread and muti-head mode allows for more than one head to

exist at a time. The important distinction between the two is that single-head recovery

provides asynchronous, autonomous recovery for thread segments while multi-head recovery

allows for synchronous, ordered cleanup. This difference will be expounded upon in the TPR

Recovery Process section.

5.4.2 Recovery Process

Recovery from a thread break proceeds through four steps: (1) Pausing the thread and

waiting for pause acknowledgment; (2) Determining which section will be the new head;

39

(3) Notifying the new head section that it may continue to execute; and (4) Unpausing the

thread.

Update

Graph

Announce

Compute

Health

Wait

ROOT_ANNOUNCE

Message Sent Announce timeout

Graph updated

SEG_ACK

Message

Received

SEG_HEALTH

Message Sent

Health

timeout

Unpausing

Paused

Notify New

Head

Healthy

Remove

Old head

Pausing

Unhealthy

Event /

PAUSE msg

sent

PAUSE_ACK

Received

NON-HEAD

msg sent

Receive

NON-HEAD

ACK

NEW_HEAD

msg sent

UNPAUSE

sent

PAUSE_ACK

timeout

No break

Figure 5.2: High-level State Diagram — Root Segment (Single-head)

Figure 5.2 illustrates the states experienced by an individual thread during single-head re-

covery from the standpoint of its root segment. The state of the TPR protocol at any given

time can be described as the set of one state from the left of the figure and one state from

the right. The left half of the figure represents the states used for the polling mechanism

and the right half of the figure represents the states used for recovery. When the protocol is

not recovering from a perceived error, the recovery state is “Healthy”.

Figure 5.3: High-level State Diagram — Section

Figure 5.3 illustrates the states a section will traverse under the TPR protocol. These are

separate from the protocol/root states shown in figure 5.2.

40

In the first step (see Figure 5.4), the recovery operation broadcasts a PAUSE message and

waits. The recovery thread continues waiting until it either receives a PAUSE ACK message

from the current head of the thread or a user-specified amount of time lapses without a

PAUSE ACK message being received. In the second step, the recovery operation analyzes

the thread’s distributed call-graph and finds the farthest contiguous thread segment from

the root. This segment will be the new head. If the old head still exists after this step,

the recovery thread must terminate the old head and wait for an acknowledgement that this

action has been completed. In the third step, the recovery thread sends a NEW HEAD message

to the node hosting the new head. In the fourth step, the recovery thread broadcasts an

UNPAUSE message to all nodes within the system. The recovery operation then terminates,

and the thread is considered healthy.

ROOT SEGMENT1 SEGMENT2 SEGMENT3

ROOT_ANNOUNCE

SEG_ACK

SEG_ACK
Segment Health

Refresh Timeout

T
o

SEG_HEALTH

Health Evaluation

Interval T
h

X

PAUSE

PAUSE_ACK

NEW_HEAD

UNPAUSE

New Head

Proceeds

Orphaned

Segment Enters

Cleanup Handler

Figure 5.4: TPR Operation — Unhealthy Thread Entering Recovery

Lemma 11. Once a thread failure is detected, TPR activates a new thread head within

tp + th + 4D.

Proof. By Lemma 9, the root will detect a broken thread within tp + th. Subsequently, the

thread is paused within 2D (D for sending PAUSE and D for receiving PAUSE ACK), and

41

a new head is activated within another 2D (D for sending NEW HEAD and D for sending

UNPAUSE). The lemma follows.

Figure 5.5: TPR Operation — Unhealthy Thread Entering Recovery (muli-head)

In multi-head recovery, the protocol performs steps (1) and (2) in the same manner as

single-head recovery (see figure 5.5). However, multi-head recovery does not wait for ac-

knowledgement that the old head has been cleaned-up before proceeding (see Figure 5.6).

Figure 5.6: High-level State Diagram — Root Segment (Multi-head)

Instead, the protocol sends ORPHAN messages to all segments no longer connected to the

root in the thread’s call-graph. This ensures that when the old head has finished cleanup,

42

its preceding segments will be ready to begin their own cleanup. If multiple breaks have

occurred, ORPHAN HEAD messages will be sent to all segments (excluding the new head

segment) directly preceding a break Figure 5.7 shows where the messages will be delivered

for this specific break (’x’ denotes ORPHAN HEAD and ’o’ ORPHAN). When a segment receives

the ORPHAN HEAD message, it will begin execution of cleanup code. As a result, a single

thread may have several heads performing cleanup in addition to the true head of the thread,

which is performing normal task execution; hence the name multi-head recovery.

Figure 5.7: Delivery locations of ORPHAN and ORPHAN HEAD messages

Multi-head recovery mode allows TPR to perform timely, ordered cleanup in the face of

multiple node failures. TPR’s single-head mode of recovery only specifies a single point of

execution to perform cleanup activities. This single point of execution then propagates itself

back towards the root and stop when it reaches the thread break. In the case of multiple

breaks, segments in between breaks will not begin cleanup until their respective LCTs. The

multiple points of cleanup execution allow TPR to avoid this situation.

Once the new head has been notified, the point of execution returns to application code

exactly where the new head made its last remote invocation. An exception is returned

to indicate that a thread integrity failure has occurred, and it is the responsibility of the

application programmer to determine how the application should handle the exception.

43

5.5 Orphan Cleanup

When a segment has not been refreshed for a specified amount of time, the segment is

flagged as an orphan, ready for cleanup. If the protocol is in single-head mode, the orphan

will begin cleanup immediately. If the protocol is in multi-head mode, the orphan will begin

cleanup only if it is an orphan-head. Otherwise, the orphan will wait to begin cleanup until

its successor segment tells it to begin.

Until the LCT of abort handlers, cleanup code is scheduled and run in the same way any

application code is run, meaning that cleanup code is subject to interference from other

application threads up until the handler’s LCT has been reached. This pushes the cleanup

bound all the way out to the thread’s deadline.

Orphan cleanup serves both to remove segments that follow a break in the distributable

thread (called thread trimming) and to remove the entirety of threads that have lost their

root.

Theorem 12. If threads are scheduled using HUA or AUA then every unhealthy section Si

will detect that it is an orphan and clean up within tp + th + D + Si.X + Sh
i .X.

Proof. Lemma 10 implies that every unhealthy section Si will detect that it is an orphan

within tp + th + D. Theorem 4 implies that Si’s handler will complete within Si.X + Sh
i .X,

once Si fails per Definition 2. Definition 2 subsumes the case of Si receiving a notification

regarding the failure of an upstream section, which implies that Si has become an orphan.

The theorem follows.

44

5.5.1 Ordered Cleanup

In conjunction with AUA ordered cleanup may be accomplished using single-head recovery,

but it requires that the timing constraints be appropriately tuned to the network the ap-

plication will be running on. Each orphan in a distributable thread will be blocked until

it either receives notification from its downstream successor segment or its LCT arrives.

When multiple breaks occur it is impossible for the segment to receive notification from its

successor. Therefore, the only way for single-head recovery to perform ordered cleanup in a

multiple break situation is by supplying the appropriate timing constraints to AUA.

Theorem 13. Threads maintained using TPR in multi-head recovery mode will perform

ordered cleanup when cleanup is necessary.

Proof. As TPR with muti-head recovery ensures that the only points of execution are those

furthest downstream for any given piece of a thread, ordered cleanup is assured.

For multi-head recovery, ORPHAN messages are sent to all orphaned segments preparing

them for cleanup. Cleanup is only allowed to begin with the delivery of an ORPHAN HEAD

message, which is only delivered to the segment that is farthest downstream in a thread piece.

Therefore, cleanup within a piece can only begin on the farthest downstream segment, the

orphan-head. Once cleanup has finished on the the orphan-head, its point of execution is

transferred upstream to the orphan-head’s predecessor via a remote return. As communi-

cations are assumed to be reliable except in the case of node failure, cleanup is guaranteed

to continue propagating upstream through the entire thread piece, which complies with the

definition of ordered cleanup specified at the end of Chapter 2.

45

Chapter 6

The D-TPR Protocol

6.1 Overview

There were no assumptions made on the reliability of the communication network while

designing this TMAR protocol. Thus, the Decentralized Thread Polling with Bounded

Recovery TMAR protocol (D-TPR) is able to effectively perform recovery in a wide variety

of environments.

D-TPR was designed to satisfy the need for a light-weight, decentralized TMAR protocol. It

is based on Thread Polling as described in [6, 27], but instead of the root being responsible

for identifying breaks, pair-wise communication between predecessor and successor nodes

allow the protocol to determine if and where a break occurs in a more decentralized manner.

Figure 6.1 shows a sequence diagram for the healthy operation of D-TPR. It an be seen that

D-TPR has several characteristics in common with TPR and the original Thread Polling (e.g.

polling cycles, orphan timeouts, etc.)

46

Figure 6.1: D-TPR Operation — Healthy Thread

6.2 Polling

At every polling interval, the TIM on each node identifies the segments that are locally

hosted. The TIM then sends a POLL message to each of its predecessor and successor nodes.

Note that each node can host segments of several threads so a single node may have several

predecessor and successor nodes.

Table 6.1: D-TPR Messages

Message Contents From/To
POLL List of local segmentID and remote

segmentID pairs. Remote segment-
IDs are either predecessor or succes-
sor segments to local segment

travel back and forth between pre-
decessor and successor nodes

NEW HEAD timed out segment and predecessor
segment

node with upstream timeout to pre-
decessor node

ENDORPHAN timed out segment and successor
segment

node with downstream timeout to
successor node

ORPHANPROP orphaned segment and successor
segment

node with orphan segment to suc-
cessor node

Each POLL message (see Table 6.2) is a list of entries, where each entry contains a type,

the local segment ID the entry corresponds to, and a remote segment ID. If the entry type

47

is SUCCESSOR, the remote segment ID will correspond to the successor segment of the local

segment in the entry. Similarly, the remote segment ID of PREDECESSOR corresponds to

the predecessor segment of the local segment in the entry. In this way, the node receiving

the POLL message is able to discern (downstream or upstream) the message’s origin and

thus from which direction the segment has been deemed healthy. This distinction becomes

important for break detection and is discussed further in the following section.

6.3 Break Detection

When an invocation is made, the protocol creates two timers set to application specified

timeouts. One timer is established for the downstream segment and the other is established

for the upstream segment. The TIM on the node making the invocation (upstream side)

creates a downstream-invocation timer that will cause a timeout when polling messages

have not been received from downstream frequently enough. The TIM on the node hosting

the remote object to which the invocation is being made (downstream side) creates an

upstream-invocation timer that will cause a timeout when polling messages are not received

from upstream frequently enough.

When a POLL message is received from upstream, the upstream-invocation timer is reset

to some application specific time and resumes counting down. The same is true of the

downstream-invocation timer when a POLL message is received from downstream.

A “break” is declared when either the upstream or downstream-invocation time reaches zero.

Recovery is different depending on which timer experiences the timeout

Lemma 14. Consider a section Si and its successor section Sj. Under D-TPR, if Sj’s node

fails, or Si becomes unreachable from Sj (but not necessarily vice versa), then Si will detect

a thread break between Si and Sj within tp + D.

48

Proof. D-TPR’s worst-case scenario for detecting this thread break occurs when Sj’s node

crashes immediately after Sj sends the POLL message to Si (and the network successfully

delivers that POLL to Si), or when Si becomes unreachable from Sj immediately after Si

receives Sj’s POLL message. Consequently, Si will miss discovering the thread break when it

receives the POLL, and must wait for the lack of the next POLL from Sj to detect the break.

The next POLL will be sent no later than one tp, the lack of the receipt of which will be

detected by Si no later than one D. The lemma follows.

Lemma 15. Consider a section Sj and its predecessor Si. Under D-TPR, if Si’s node fails,

or Sj becomes unreachable from Si (but not necessarily vice versa), then Sj will detect a

thread break between Si and Sj within tp + D. Sj and its downstream sections are now said

to be orphaned.

Proof. The proof is similar to that of Lemma 14.

6.4 Recovery

If the upstream-invocation timer expires, the protocol assumes that the upstream segment

is unreachable and declares the local segment associated with the timer to be an orphan.

The protocol then attempts to accomplish two things: first, force the upstream segment to

become the new head of the thread; and second, force the downstream segment to become

an orphan.

In order to force the upstream segment to become the new head , the protocol sends a

NEW HEAD message upstream and ceases upstream POLL messages, which refresh the up-

stream segment. If the upstream node receives the NEW HEAD message, the upstream seg-

ment will immediately begin behaving like a new head . If the upstream node does not receive

49

Figure 6.2: D-TPR Operation — Unhealthy Thread

the message, the upstream segment’s downstream-invocation timer will expire (due to the

stopped POLL messages) forcing the segment to become the new head .

In order to force the downstream segment to become an orphan, the protocol sends an

ORPHANPROP message downstream and modifies its downstream POLL messages to include

an orphan status. The downstream node will either receive the ORPHANPROP message and

become an orphan, or the downstream segment’s timer will expire forcing it to become an

orphan. When a segment becomes an orphan it propagates the ORPHANPROP message in

order to have all orphans correctly identified more quickly.

When a segment’s downstream-invocation timer expires, the protocol assumes that the down-

stream segments are unreachable and declares itself the new head of the thread. The new

head then sends an ENDORPHAN downstream and ceases downstream refresh polling. In this

way, the downstream segment will either receive the ENDORPHAN notification and become

and orphan or it’s upstream timer will expire, making the segment an orphan.

Lemma 16. Under D-TPR, if a thread break occurs between Si and its successor Sj, then Si

will become the new head within tp + 2D. Since the new head of a thread is always directly

50

upstream from a break, D-TPR therefore activates a new head within tp + 2D.

Proof. A thread break between Si and Sj can occur in primarily two ways: (I) Sj’s node fails,

or Si becomes unreachable from Sj; and (II) Si’s node fails, or Sj becomes unreachable from

Si. Lemma 14 identifies Case (I). Thus, Si will detect the thread break within tp + D, and

immediately after, Si will declare itself as the new head, within tp +D. Case (II) is identified

in Lemma 15. Thus, Sj will detect the break within tp + D and will send a NEW HEAD

message to Si. Upon receipt of this message, Si will declare itself as the new head, within a

total of tp + 2D (after break detection), which is the worst-case. Lemma follows.

Lemma 17. Under D-TPR, if a thread break occurs between Si and its successor Sj, then Sj

will identify itself as an orphan within tp + 2D.

Proof. Proof is similar to that of Lemma 16. A thread break between Si and Sj can occur

in primarily two ways: (I) Si’s node fails, or Sj becomes unreachable from Si; and (II) Sj’s

node fails, or Si becomes unreachable from Sj. Case (I) is identified in Lemma 15. Thus, Sj

will detect the break within tp + D and will immediately declare itself as an orphan, within

tp + D. Case (II) is identified in Lemma 14. Thus, Si will detect the thread break within

tp +D, declare itself as the new head, and send an ENDORPHAN message to Sj. Upon receipt

of this message, Sj will declare itself as an orphan, within a total of tp + 2D (after break

detection), which is the worst-case. Lemma follows.

6.5 Cleanup

An orphan begins executing abort code only if it has been granted execution permission by

being designated an orphan-head. This can happen in one of three ways:

51

1. The current head of the thread becomes an orphan;

2. A non-head orphan is returned to by an orphan-head and becomes a new orphan-head;

3. An orphan’s downstream-invocation timer expires forcing it to become a new orphan-

head.

Theorem 18. Under D-TPR/HUA, if a thread break occurs between a section Si and its

successor Sj, then all orphans from Sj till the thread’s current head Sj+k, for some k ≥ 1,

will be aborted in the LIFO-order—i.e., from Sj+k to Sj—and will complete by tp + (2 +

k)D + σk
α=0(Sj+α.X + Sh

j+α.X), unless a section Sj+α becomes unreachable from Sj+α+1, 0 ≤

α ≤ k − 1.

Proof. Let the thread’s execution sequence be: 〈· · ·Si, Sj, Sj+1, · · · , Sj+k〉. From Lemma 17,

Sj will identify itself as an orphan within tp+2D. Following this, the ORPHANPROP message

will be propagated from Sj to Sj+k within kD. Thus, Sj+k will become the first orphan-head

and thus the first orphan to be aborted, followed by Sj+k−1, Sj+k−2, until Sj, following the

LIFO-order, since Sj+k−α is always returned to by Sj+k−(α−1), 0 ≤ α ≤ k by the thread’s

execution sequence.

By Theorem 4, a section Sα’s handler will complete within Sα.X + Sh
α.X, once it is an

orphan-designate. Thus, all sections from Sj to Sj+k will complete within tp + 2D + kD +

σk
α=0(Sj+α.X + Sh

j+α.X). Theorem follows.

If a section Sj+α becomes unreachable from Sj+α+1 (0 ≤ α ≤ k−1), then Sj+α’s downstream

invocation timer will expire before that of Sj+α+1, designating Sj+α as an orphan-head before

Sj+α+1 — the theorem’s exception.

Theorem 19. , Under D-TPR/HUA, if a thread breaks, then the thread’s orphans will com-

plete within a bounded time.

52

Proof. This theorem follows from Theorem 18, except for the case when a section Sj+α

becomes unreachable from Sj+α+1 (0 ≤ α ≤ k − 1) after a break occurs between Si and its

successor Sj. If Sj+α becomes unreachable from its successor Sj+α+1, then Sj+α’s downstream

invocation timer will expire within tp + D (similar to Lemma 14, where Si ≡ Sj+α and

Sj ≡ Sj+α+1), designating Sj+α as orphan-head. By Theorem 4, now Sj+α will cleanup

within tp + D + Sj+α.X + Sh
j+α.X. Theorem follows.

53

Chapter 7

The W-TPR Protocol

7.1 Assumptions

W-TPR is designed to provide bounded maintenance and recovery for Distributed Threads

within a Mobile Ad-Hoc Network (MANET). It is assumed that communications in a MANET

are unreliable and may be prone to transient failures. Therefore, W-TPR is designed to be

more robust against these types of failures than the other TMAR protocols discussed in this

thesis.

W-TPR exploits the fact that a thread is only adversely affected by a thread break if the

head attempts to move across that break. The other TMAR protocols discussed in this thesis

detect a break and assume the break will be permanent so they preempt the possibility of the

head crossing the break by eliminating segments beyond the break point. W-TPR assumes

that breaks are not permanent.

Because the underlying network is unreliable, it is assumed that W-TPR will be employed

with a distributable thread framework which provides some reliability measures. In the case

54

of DRTSJ, W-TPR is provided with the ability to modify the rate and duration for resending

invocation requests and return messages.

7.2 Description

W-TPR is similar to D-TPR in the fact that they are both decentralized protocols designed

for mobile ad-hoc networks. W-TPR differs from the D-TPR protocol primarily in the way

thread-breaks are determined. In D-TPR, breaks are recognized when communication be-

tween two consecutive nodes of a thread fails for longer than some application specified

threshold time. In W-TPR, breaks are never actually recognized. Instead, W-TPR recognizes

when communication errors affect either an invocation or a return (head movement) and

provides maintenance accordingly.

Figure 7.1 shows the states and state transitions a segment can expect to go through in

the W-TPR protocol. It is worthwhile to note that no breaks are ever declared and that

a segment becomes an orphan only if it receives the ORPHAN message from an upstream

segment. Segments assume they are healthy until notified otherwise.

Figure 7.1: W-TPR Segment State Diagram for

55

7.2.1 Downstream Head Movement

During an invocation, a thread segment Si makes a call on a remote object, which causes a

second segment, Si+1 to be created on the remote node. In order for the invocation to be

successful, Si+1 must be created and Si must be made aware of Si+1.

When an invocation is made, an invocation request is sent downstream and the local segment,

Si, begins waiting for invocation verification. This verification can be given in two ways:

the DT framework could notify the local segment of a successful invocation or the local

segment could receive a POLL message from the remote node containing the segment ID of

the remote segment. When the invocation is verified, the local segment is stopped until the

remote segment performs a return (head moves downstream). Figure 7.2 shows an example

of a successful invocation.

Figure 7.2: W-TPR Operation — Healthy Thread

Figure 7.3 shows an unhealthy attempt at an invocation caused by an upstream failure on

56

the left and a downstream failure on the right.

When the invocation is received by the downstream node, the downstream node attempts to

finalize the invocation and begins sending periodic POLL messages to the upstream segment.

When a healthy segment receives a POLL message from an orphan, the healthy segment

returns an ORPHAN message to the orphan. If the orphan is not the orphan-head, the

ORPHAN message is propagated upstream. All W-TPR messages are discribed in detail in

Table 7.2.1.

Table 7.1: W-TPR Messages

Message Contents From/To
POLL segment ID pair of Si and Si−1 downstream node to upstream node
RETURN-ACK segment ID of segment attempting

return
upstream node to downstream node
after return success

ORPHAN segment ID pair of Si (healthy) and
Si+1 (orphan)

The protocol resends the invocation request until either the invocation is verified or the

protocol deems that communication with the downstream node is not possible. If commu-

nication with the downstream node is not possible, the local segment maintains head status

and the application is notified that the invocation failed. The TIM also sends an ORPHAN

message downstream in the event that a partial invocation was accomplished. Figure 7.3

shows an unhealthy attempt at an invocation caused by an upstream failure on the left and

a downstream failure on the right.

Lemma 20. Under W-TPR, the location of a thread’s head is ambiguous for at most tn.

Proof. Directly follows discussion.

57

Figure 7.3: W-TPR Operation — Unhealthy Invocation

7.2.2 Upstream Head Movement

When the head is moving from the local node to an upstream node (i.e. remote return), the

local node begins waiting for return verification from the upstream node. When the return

message is received by the upstream node, the upstream node sends a return verification

message downstream to the local node. If the verification is not received within Tr, the

return timeout (see Figure 7.4), the protocol forces the return message to be resent. This

process is repeated until the handshake successfully completes or the segment on the local

node violates its timing constraint. Even in the presence of upstream communication errors,

the downstream segment never becomes an orphan. Since the segment has already finished

executing and has a healthy return value, it would be fruitless to abort this segment before

delivering its return value.

58

Lemma 21. Under W-TPR, a thread’s head is never disconnected from the rest of the thread

and no new head activation is required.

Proof. Follows directly from the previous discussion. By Lemma 20, after tn, the head moves

downstream after a fully successful invocation. Any fully successful invocation can execute

a return. If the upstream node becomes unreachable when the downstream node executes

a return, the downstream section has completed its execution (hence it is returning) and is

therefore not an orphan.

Figure 7.4: W-TPR Operation — Unhealthy Return

7.2.3 Cleanup

A segment becomes an orphan when it receives the ORPHAN message in response to one of

its POLL messages. When the ORPHAN message is received, the segment propagates that

message downstream and waits for a return from its downstream segment before starting

cleanup. Cleanup begins when the furthest orphaned segment is notified that it is an orphan.

59

Theorem 22. Under W-TPR if a section Si makes an unsuccessful invocation to its (poten-

tial) successor section Sj (i.e., Sj will be Si’s successor had if the invocation was successful),

then all orphans that can potentially be created from Sj till the thread’s furthest orphaned

section Sj+k, k ≥ 1, will be aborted in the LIFO-order and will complete within a bounded

time under HUA, as long as no further failures occur between Sj and Sj+k.

Proof. By Lemma 20, after tn, Si retains the head status since the invocation was unsuc-

cessful, and an ORPHAN message is propagated to all downstream sections till Sj+k. The

rest of the proof follows that of Theorem 19.

Note that Theorem 22 holds only if no further failures occur between Sj and Sj+k. If such a

failure were to occur, then the ORPHAN message may not be propagated or an orphan-head

may not be able to return to a non-head orphan. D-TPRcan detect such failures due to its

continuous pairwise polling operation, whereas W-TPR is unable to do so precisely due its

“on-demand” polling approach.

Theorem 23. , Under W-TPR/HUA, if orphans are created for a thread as in Theorem 22,

then all the orphans will complete within a bounded time, as long as no further failures occur

between Sj and Sj+k.

Proof. Follows from Theorem 22.

60

Chapter 8

Experimental Evaluation

During the development of this project, two distributed thread frameworks were used for

experimental evaluation. The initial framework was the Tempus middleware developed here

at Virginia Tech by Peng Li.The second framework used was the DRTSJ reference imple-

mentation developed in part here at Virginia Tech by Jonathan Anderson.

Each Distributed Thread Framework (referred to herein simply as framework) used in this

project required two basic capabilities. Each framework had to provide some way of per-

forming thread propagation across a network and some kind of Case 2 (per node) scheduling

mechanism.

The following sections describe each framework and provide the experimental results obtained

from them.

61

8.1 Tempus

Tempus is a custom distributed middleware environment developed at Virginia Tech’s Real-

Time Systems Laboratory. This environment consists of an implementation of the dis-

tributable threads abstraction in the C programming language and a pluggable scheduling

framework called the Metascheduler [22], which facilitates the composition of user-defined

scheduling policies such as AUA.

Within Tempus, the Metascheduler and the DT framework became somewhat integrated

allowing for the Metascheduler to provide support for scheduling situations unique to dis-

tributed threads–e.g, PAUSE. In Figure 8.1, we present the various scheduling states sup-

porting the distribution middleware. When a thread enters a PAUSE or BLOCK state, the

scheduler is able to resolve resource contention and dependencies while respecting local mu-

tual exclusion invariants. Furthermore, the PAUSE state is explicitly governed to allow coor-

dinated control of all sections of a thread.

Ready Running

Terminal

Exit

resume_task

preempt_task

Normal

Abort

abort_task

BLOCK

UNPAUSE

BLOCK

PAUSE

UNBLOCK

PAUSE

Blocking call

Pause

Msg

Unpause

Msg

Return from

Blocking call

Pause

Msg
Unpause

Msg

Pause

Msg

NEW_HEAD

Msg

Figure 8.1: Thread Scheduling States

For this framework, only AUA and the TPR protocol were implemented.

62

8.1.1 Single Node Experiments

The experiments presented below were performed on a small testbed of Intel Pentium III-

based PC’s running QNX Neutrino 6.2.1. The interconnects consisted of commodity 10

megabit/sec interfaces on a switched Ethernet network. Each machine hosted an instance

of the Tempus middleware and Metascheduler scheduling framework.

A number of experiments were carried out to establish the behavior of the AUA scheduling

approach in a single node context. We measured the Accrued Utility Ratio (AUR), Deadline

Satisfaction Ratio (DSR), and Deadline Miss Load (DML) produced by our implementation

under a variety of load and task structure conditions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
e
a
d
lin

e
 S

a
ti
s
fa

c
ti
o
n
 R

a
ti
o
 (

D
S

R
)

Application Task Offered Load

Abort:Normal 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 8.2: Deadline Satisfaction Ratio

Deadline Satisfaction Ratio: The DSR metric is defined as the number of tasks which

complete by their deadline divided by the total number of tasks. DSR is therefore convenient

for comparison to traditional deadline-driven scheduling approaches. As with our AUR

measurements, we conducted experiments to profile deadline satisfaction over a range of load

conditions. On the horizontal axis, the offered application task load is ramped from zero to

200% of available CPU capacity. Up to a certain load—when the system is “underloaded”—

every deadline is satisfied. As the load increases beyond the “deadline miss load” (presented

63

in detail below), an increasing number of tasks fail to complete by their deadlines.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.8 0.85 0.9 0.95 1 1.05 1.1

D
e
a

d
lin

e
 S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

Application Task Offered Load

Abort:Normal 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 8.3: Deadline Satisfaction Ratio (detail)

Upon closer inspection (see Figure 8.3), it can be seen that the highest load at which AUA

misses no deadlines is a function of the currently accepted load of abort handlers. Intuitively,

this is the correct behavior since AUA effectively reserves schedule to ensure that cleanup

handlers are feasible in the presence of any offered application load. The data show that AUA

is nevertheless able to degrade gracefully as the load increases, continuing to meet significant

fractions of the time constraints despite operating in overload.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
c
c
ru

e
d
 U

ti
lit

y
 R

a
ti
o
 (

A
U

R
)

Normal Task Offered Load

Abort Handler Load
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 8.4: Accrued Utility Ratio

Accrued Utility Ratio: The AUR is defined as the ratio of utility earned by executing

64

tasks successfully divided by the total utility of all tasks in the offered load. This is a direct

measurement of the “value” delivered to the application tasks. The data presented in Figure

8.4 illustrates the accrued utility as the offered load on the scheduler is elevated from 0 to 2.0.

As we have argued above, AUA delivers a 1.0 accrued utility ratio—it satisfies the deadline

of all tasks, irrespective of their utility—when operating in underload. This data bears out

the claim that AUA is equivalent to DASA, and hence EDF, in underloads.

 84

 86

 88

 90

 92

 94

 96

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
e
a
d
li
n
e
 M

is
s
 L

o
a
d

Abort Task Load

Figure 8.5: Deadline Miss Load

Deadline Miss Load : The DML of a scheduler is defined to be the offered load under

which the scheduler begins missing task deadlines. Ideally, the DML would occur at precisely

a load of 1.0; the scheduler would never miss a feasible deadline. Because of implementation-

induced overhead such as context switch latency and time spent in scheduler and operating

system code, it is not possible to achieve this theoretical maximum.

Furthermore, the overhead associated with scheduler and OS logic becomes more pronounced

as task time constraints decrease, becoming very pronounced when the task execution times

are on the same order as scheduling latencies. In addition, we show in Figure 8.5 that the

DML is also adversely affected by the abort load induced by the currently-accepted set of

threads. However, the algorithm performs reasonably well for low abort loads, missing no

deadlines at 95% of theoretical capacity, despite a 30% load for abort reservations.

65

8.2 DRTSJ and the RTSJ-Metascheduler

The Distributed Real Time Specification for Java (DRTSJ) [1] reference implementation is an

implementation of the distributable thread abstraction based on Real-Time Java and Java’s

Remote Method Invocation (RMI) mechanism. The RTSJ-Metascheduler is a scheduling API

developed by Jonathan Anderson, which facilitates the implementation of Real-Time Java

scheduler objects that work with the RTJVM to provide application level scheduling, similar

to the Metascheduler discussed in section 8.1. The RTSJ-Metascheduler will be described in

detail in a forthcoming document.

8.2.1 Single Node Experiments

In order to compare the results of the scheduling algorithms HUA and AUA we implemented

DASA and a simplified variant of HUA called HUA-Non-Preemptive (or HUA-NP). DASA

does not consider handlers for scheduling until failures occur. When a thread fails, DASA

then considers its handler for scheduling just like a regular thread, resulting in zero NBI.

Similar to DASA HUA-NP also does not consider handlers for scheduling until failures occur.

However, when a thread fails, unlike DASA HUA-NP immediately runs the thread handler

non-preemptively till completion, resulting in a worst-case and best-case NBI of one handler

execution time. In this way, HUA-NP seeks to accrue as much utility as possible by excluding

handlers from schedule construction (and thus is more greedy than HUA), while maintaining

an upper bound on handler completion. Thus, DASA and HUA-NP are good candidates for a

comparative study as they represent two interesting end points of the NBI-versus-handler-

completion-time tradeoff space.

Our test application created several periodic threads that consume a certain amount of

processor time, request a shared resource, and periodically check for abort exceptions. Each

66

thread created had a unique execution time, period, and maximum utility. These parameters

were assigned based on three PUD-based thread classes that were used: high, medium, and

low. The classes differed in thread execution times, thread periods, and threads PUDs by

one order of magnitude. The classes, however, differed in handler execution times, handler

periods, and handler PUDs only by a small factor. Within each class, thread execution times

and thread PUDs were higher than that of their handler execution times and handler PUDs,

respectively, by one order of magnitude. For all the experiments, an even number of threads

from each of the three classes were used. Thus, the three classes give the algorithms a rich

mixture of thread properties to exhibit their NBI and handler completion behaviors.

Our metrics to evaluate AUA and HUA included the NBI, Handler Completion Time (HCT),

Accrued Utility Ratio (AUR), and Deadline Miss Ratio (DMR). HCT is the duration between

a handler’s completion time and it’s release time. AUR is the ratio of the total accrued utility

to the maximum possible total utility (possible if every released thread completes before its

termination time). DMR is the ratio of the number of threads that missed their termination

times to the number of released threads.

We manipulated five variables during our experiments: (1) the percentage of failed threads,

(2) system load caused by normal tasks, (3) system load caused by handlers, (4) the ratio

of handler execution time to normal task execution time, and (5) the number of shared

resources within the system. The variables affect the system’s “stress factor” and influence

the four metrics.

We measured the four metrics under a constant value for these variables, except for the

failure percentage, which was varied between 0% and 95%. To vary the failure percentage,

the set of threads that must fail for a given percentage must be repeatable. However, to have

a repeatable set of discrete failures (i.e., not a random distribution), the actual percentage of

failures may be slightly off from the predicted value—e.g., if an experiment had 50 threads

67

and 25% of them needed to be failed, it is impossible to fail 12.5 threads; thus the failure

percentage would be 24% or 26%.

Normal task load was 150%, handler load was 90%, and the ratio of handler execution to

normal execution was 50%. We first focused on zero shared resources and then considered

shared resources.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
B

I
(m

s
)

Thread Failure Percentage

Non-Best effort time Interval (NBI)

AUA
HUA-ND

DASA
HUA-NP

Figure 8.6: Non-Best effort time Interval (NBI)

Figure 8.6 shows the measured NBI of DASA, HUA-NP, AUA, and HUAunder increasing num-

ber of failures. We observe that HUA and AUA provide smaller NBI measurements than DASA

and HUA-NPṪhey have lower NBI than DASA because DASA is unlikely to execute low-PUD

threads like handlers. Thus, it is likely to keep them pending and incur a non-zero NBI due

to scheduler overhead when a high PUD thread arrives. HUA and AUA have smaller NBI

measurements than HUA-NP because HUA-NP will always have a non-zero NBI when a high

PUD thread arrives during its non-preemptive handler execution. Note, the only time HUA

will have a non-zero NBI is when a high PUD thread arrives with such little slack that the

68

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
C

 (
m

s
)

Thread Failure Percentage

Handler Completion Time

AUA
HUA-ND

DASA
HUA-NP

Figure 8.7: Handler Completion Time

pending handlers cannot fit within that slack. AUA will have a non-zero NBI whenever an ar-

riving thread’s handler is infeasible with all currently accepted thread handlers or whenever

an LCT has been reached.

Figure 8.7 shows the average HCTs for AUA HUA DASA, and HUA-NPİn general, DASA’s

HCTs are highest and rather inconsistent, HUA-NP’s are smallest and very consistent, AUAś

are just a little larger than HUA-NP’s, and HUA’s are somewhat consistent, but always within

a certain bound. As DASA was not designed to bound HCTs, it makes sense that its HCTs

would be larger than the other two algorithms. Likewise, it makes sense that HUA-NP would

have the least average HCT as the handler is run to completion when it is released. To allow

more threads to be scheduled, AUA and HUA do not immediately run the handler when it

is released. This delay in running the handler causes HUA’s and AUA’s average HCT to be

higher than HUA-NP’s. However, as both AUA and HUA were designed to provide a finite

bound on HCT, they will generally be smaller than DASA’s.

69

Figures 8.6 and 8.7 also indicate that the trends acquired from our experiments display a

less than smooth response to changes in failure percentage. (Figures 8.8 and 8.9 also display

this behavior.) This is likely due to the way the failure percentage is varied. Since the set of

threads that fail for a given failure percentage is not a strict subset of the set of threads that

fail for a larger failure percentage, it is possible that lower-PUD threads may fail at higher

failure percentages. Thus, algorithms like DASA and HUA-NP may find a more beneficial

schedule at higher failure percentages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

R
 (

%
)

Thread Failure Percentage

AUR

AUA
HUA-ND

DASA
HUA-NP

Figure 8.8: Accrued Utility Ratio

Figure 8.8 shows how the AUR of each algorithm is affected under increasing failures. In

general, HUA will have a lower AUR as it reserves a portion of its schedule for handlers

which generally have lower PUDs or may not even execute. However, as can be seen from

the figure, HUA has an AUR that is comparable to, if not better than that of DASA and

HUA-NP for this thread set. This is because DASA only analyzes handlers that have been

released. This limits DASA’s ability to discern whether it would be more beneficial to abort

70

the thread and run its handler instead. As HUA has no such limitation, it can better decide

whether to run the thread or abort the thread and run its handler. AUA has the lowest AUR

and this is likely due to its limited view of what a handler’s termination time should be,

namely the termination time of the thread.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
a
d
lin

e
 M

is
s
 R

a
ti
o
 (

%
)

Thread Failure Percentage

Deadline Miss Ratio

AUA
HUA-ND

DASA
HUA-NP

Figure 8.9: Deadline Miss Ratio

Figure 8.9 displays the measured DMR under increasing failures. As the number of failures

increases, the number of termination times (or deadlines) missed also increases. This is due to

the added load that handlers put on the system. In the case of DASA, this load is completely

unforeseen and as the handlers have less PUD than most normal threads, DASA may never

schedule them causing their termination times to be missed. Thus, DASA is affected most by

increased failures. While the handler load is also unanticipated for HUA-NP, the effects are

mitigated somewhat due to HUA-NP’s non-preemptive handler execution property. Because

HUA takes the handler load into consideration when forming a schedule, the extra load on

the system affects HUA is smaller than either DASA or HUA-NP˙AUA has the smallest DMR

71

because it was designed to minimize the number of misses.

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

H
C

 (
m

s
)

Number of Shared Resources

Handler Completion Time (with Dependencies)

HUA

Figure 8.10: Handler Completion Time with Dependencies

Figure 8.10 and Figure 8.11 show the average HCT and average NBI of HUA under increasing

number of shared resources. From the figures, we observe that HUA’s HCT and NBI are

unaffected by dependencies that arise between threads due to shared resources. The AUA

plots look similar and are not included in order to avoid redundancy.

72

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

N
B

I
(m

s
)

Number of Shared Resources

Non-Best effort time Interval (with Dependencies)

HUA

Figure 8.11: Non-Best effort time Interval (NBI) with Dependencies

8.2.2 Multi-Node Experiments

Our test application was composed of one master node and four slave nodes. The master

node was responsible for issuing commands to the slave nodes and logging events on a single

timescale. The slave nodes were required to accept commands from the master node and

were responsible for the execution, propagation, and maintenance of threads.

TPR: Our metrics of interest included the Total Thread Cleanup Time, the Failure Detection

Time, New-Head Notification Time, the Handler Completion Time, and the measured NBI.

We measured these during 100 experimental runs of the test application. Each experimental

run spawned a single distributable thread, which propagated to five other nodes and then

returned back through the same five nodes.

For the purposes of evaluating the TPR protocol, we were only concerned with simulating

node failures. Such failures were initiated when the master node sent a FAIL command to a

73

slave node in the system. The slave that received the FAIL command would then proceed to

ignore all incoming communication and disable all outgoing communication. For all intents

and purposes, the failed node would no longer be in the system.

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Experiment Number

Total Thread Cleanup Times

HUA/TPR
Upper Bound

Figure 8.12: Total Thread Cleanup Times

The Total Thread Cleanup Time is the time between the failure of a thread’s node (causing

a section failure) and the completion of the handlers of all the orphan sections of the thread.

Figure 8.12 shows the measured cleanup time for HUA/TPR plotted against its cleanup upper

bound time for the thread set used in our experiments. We observe that HUA/TPRsatisfies

its cleanup upper bound, validating Theorem 12.

In order for the Total Thread Cleanup Time to satisfy the HUA/TPR cleanup bound, TPR

must detect a failure within a certain amount of time as determined by the protocol param-

eters (e.g., polling interval tp). Figure 8.13 shows TPR’s Failure Detection times as measured

during failures in our test application and the upper bound on failure detection time as

calculated using our experimental parameters. As the figure shows, TPR satisfies the upper

74

 4800

 5000

 5200

 5400

 5600

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Experiment Number

Failure Detection Times

HUA/TPR
Upper Bound

Figure 8.13: Failure Detection Times

bound on failure detection.

The variation observed in Figure 8.13 is actually less than the theoretic variation of tp

(1 second for these experiments) as described in Lemma 9. This variation also occurs in

Figure 8.14 for the same reason.

For a thread to recover from a thread break, a new head must be established and orphans

must be notified to clean themselves up. Therefore, the last time that must be bounded

in order for HUA/TPR to achieve an upper limit on orphan cleanup is the time it takes for

the protocol to determine and notify a thread of its new head. We measure this as the

New-Head Notification Time. Figure 8.14 shows TPR’s New-Head Notification Time and the

notification time bound that TPR must satisfy in order to meet the Total Thread Cleanup

bound. We observe that HUA/TPR satisfies the notification time bound.

Figure 8.15 shows the thread completion times of experiments 1) with failures and TPR,

75

 4800

 5000

 5200

 5400

 5600

 5800

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Experiment Number

New-Head Notification Times

HUA/TPR
Upper Bound

Figure 8.14: New-Head Notification Times

 22500

 27500

 32500

 37500

 42500

 47500

 52500

T
im

e
 (

m
s
)

Thread Completion Times

Failures No Failures No Failures Failures

AUA
HUA

Figure 8.15: Thread Completion Times

76

2) without failures and without TPR, 3) without failures and without TPR, and 4) with

failures and without TPR. By measuring the thread completion times under these scenarios,

we measure the overhead of TPR in terms of the increase in thread completion times caused

by the protocol operation.

Thread Completion Time is the difference between the time when a root section of a thread

starts and the time when it completes. As orphan cleanup can occur in parallel with the

continuation of a repaired thread, Thread Completion Time may ignore orphan cleanup

times, making completion times of failed threads shorter than completion times of successful

threads. This behavior is evident in Figure 8.15 as the experiments with failures and with

TPR had the shortest completion times.

One of the most interesting aspects of Figure 8.15 is the contrast between the experiments

without failures. This contrast shows the overhead that TPR incurs when there are no failures

present. Another interesting aspect of the figure is the large completion times for experi-

ments with failures, but without TPR. The DRTSJ platform that we used for implementing

HUA/TPR enforces a simple, tunable failure detection scheme in the absence of a thread

integrity protocol. We purposely chose a large failure detection delay to convey the idea

that the threads would never complete without any kind of failure detection and are subject

to longer than necessary completion times if the detection scheme is naive.

Figure 8.6 shows the NBI of AUA and HUA under increasing number of thread failures.

We observe that AUA has a higher NBI than HUA validating Theorems 5 and 6. This

difference in NBI is due to AUA’s admission control policy [8]: AUArejects threads arriving

during overloads to respect the assurance made to previously admitted threads, irrespective

of thread importance. HUA does not have this policy, and is generally free (limited by its

NBI) to admit threads arriving during overloads that might have higher PUDs.

77

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
B

I
(m

s
)

Thread Failure Percentage

Non-Best effort time Interval (NBI)

AUA
HUA

Figure 8.16: Non-Best-effort time Interval (NBI)

The variation of the NBI observed in Figure 8.16 is due to the way failures were experimen-

tally created. The sets of failed threads were identical for all experiments at the same failure

percentage. But, they were not a strict subset of the sets of failed threads for experiments

with higher failure percentages.

D-TPR and W-TPR: All figures presented below show results collected for tests scheduled using

HUA. The differences between AUA and HUA are well documented so, to avoid redundancy,

tests using AUA have not been included here.

Figures 8.17 and 8.18 show the measured cleanup times for HUA/D-TPR and HUA/W-TPR,

respectively. The cleanup times are plotted against the protocols’ cleanup upper bound times

for the thread set used in our experiments. From the figures, we observe that both HUA/D-

TPR and HUA/W-TPR satisfy their cleanup upper bound, thereby validating Theorems 19

and 23.

78

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Experiment Number

Total Thread Cleanup Times

HUA/D-TPR
Upper Bound

Figure 8.17: D-TPR Thread Cleanup Times

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
s
)

Experiment Number

Total Thread Cleanup Times

HUA/W-TPR
Upper Bound

Figure 8.18: W-TPR Thread Cleanup Times

79

Figures 8.19 and 8.20 show the thread completion times of experiments 1) with failures and

D-TPR/W-TPR, 2) without failures but with D-TPR/W-TPR, 3) without failures and without

D-TPR/W-TPR, and 4) with failures but without D-TPR/W-TPR. By measuring the thread

completion times under these scenarios, we measure the overhead each protocol incurs in

terms of the increase in thread completion times.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

T
im

e
 (

m
s
)

D-TPR Thread Completion Times

Failures No Failures No Failures Failures

D-TPR

Figure 8.19: D-TPR Thread Completion Times

Figure 8.19 shows the completion times for experiments with and without D-TPR. We

observe that the completion times of successful threads without D-TPR is smaller than that

with D-TPR. This is to be expected as D-TPR incurs a non-zero overhead. However, we also

observe that the completion times of failed threads with D-TPR are shorter than even the

completion times of successful threads without D-TPR. This is because, orphan cleanup can

occur in parallel with the continuation of a repaired thread, allowing the repaired thread to

finish without waiting for all orphans to run to completion. A successful thread, on the other

hand, must wait for all sections to finish before it can complete, increasing its completion

80

time. Figure 8.19 also shows that failed threads with D-TPR complete much more quickly

than failed threads with no D-TPR support.

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

T
im

e
 (

m
s
)

W-TPR Thread Completion Times

Failures No Failures No Failures Failures

W-TPR

Figure 8.20: W-TPR Thread Completion Times

Figure 8.20 shows completion times for experiments run with and without W-TPR. As the

figure shows, the measurements taken in the absence of W-TPR are only slightly lower than

the measurements taken in the presence of W-TPR. We observe that W-TPR incurs relatively

little overhead while providing the properties discussed in Chapter 7.

81

Chapter 9

Conclusions and Future Work

We have presented two real-time scheduling algorithm called AUA and HUA and we have

presented three distributable thread integrity protocols called TPR, D-TPR, and W-TPR.

Together, the algorithms and the protocols schedule and provide thread integrity for threads

across a system in the Real-Time CORBA Case II model. In addition, we provide bounds

on the worst-case fault detection and cleanup time for threads experiencing partial failures.

The experimental results presented demonstrate the effectiveness of the scheduling algo-

rithms scheduling a variety of task loads induced by threads created with the DRTSJ dis-

tributable thread framework. Furthermore, we argue that this suite provides a useful frame-

work for implementing resilient distributed computational activities in systems subject to

partial (crash) failures.

The approach presented in this thesis provides assurances about the safety and consistency

of the system by enforcing deterministic behavior for user-provided exception handlers. This

approach is overly constraining for the desired class of systems, but represents a design point

which may be used to understand a sufficient (but not minimally necessary) set of conditions

82

for ensuring deterministic safety while providing graceful degradation in overloads.

This work can be extended in several directions. Examples include relaxing the upper bounds

on communication delays for TPR and D-TPR allowing DTs to share non-CPU resources

under mutual exclusion constraints, allowing DTs to have nested time constrained scopes,

and considering abort handling models where DTs are considered for execution irrespective

of the feasibility of the abort handlers.

83

Bibliography

[1] J. Anderson and E. D. Jensen. The distributed real-time specification for java: Status report.

In JTRES, 2006.

[2] CCRP. Network centric warfare. http://www.dodccrp.org/ncwPages/ncwPage.html.

[3] R. Clark, E. D. Jensen, et al. An adaptive, distributed airborne tracking system. In IEEE

Workshop on Parallel and Distributed Real-Time Systems, volume 1586 of LNCS, pages 353–

362. Springer-Verlag, April 1999.

[4] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie Mellon Uni-

versity, August 1990.

[5] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, CMU, 1990. CMU-CS-

90-155.

[6] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An architectural overview of the Alpha real-

time distributed kernel. In Proceedings of the USENIX Workshop on Microkernels and Other

Kernel Architectures, April 1992.

[7] T. Clausen, P. J. (editors), C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum, and

L.Viennot. Optimized link state routing protocol (OLSR). RFC 3626, October 2003. Network

Working Group.

[8] E. Curley, J. S. Anderson, B. Ravindran, and E. D. Jensen. Recovering from distributable

thread failures with assured timeliness in real-time distributed systems. In IEEE SRDS, pages

267–276, 2006.

84

http:// www.dodccrp.org/ ncwPages/ncwPage.html

[9] A. F. Garcia, C. M. Rubira, A. Romanovsky, and J. Xu. A comparative study of exception

handling mechanisms for building dependable object-oriented software. Journal of Systems

and Software, 59(2):197 – 222, November 2001.

[10] GlobalSecurity.org. BMC3I battle management, command, control, communications and in-

telligence. http://www.globalsecurity.org/space/systems/bmc3i.htm/.

[11] GlobalSecurity.org. E-3 sentry (AWACS). http://www.globalsecurity.org/military/systems/aircraft/

e-3.htm/.

[12] GlobalSecurity.org. E-8 joint surveillance target attack radar system (JSTARS). http://www.

globalsecurity.org/intell/systems/jstars.htm/.

[13] GlobalSecurity.org. Multi-sensor command and control aircraft. http://www.globalsecurity.org/

military/systems/aircraft/e-767-mc2a.htm.

[14] J. Goldberg, I. Greenberg, R. K. Clark, E. D. Jensen, K. Kim, and D. M. Wells. Adaptive

fault-resistant systems (chapter 5: Adpative distributed thread integrity). Technical Report

csl-95-02, Computer Science Laboratory, SRI International, Menlo Park, CA., January 1995.

http://www.csl.sri.com/papers/sri-csl-95-02/.

[15] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model for real-time

systems. In IEEE Real-Time Systems Symposium, pages 112–122, Dec. 1985.

[16] E. D. Jensen and J. D. Northcutt. Alpha: A non-proprietary operating system for large, com-

plex, distributed real-time systems. In IEEE Workshop on Experimental Distributed Systems,

pages 35–41, 1990.

[17] E. D. Jensen, A. Wellings, R. Clark, and D. Wells. The distributed real-time specification for

Java: A status report. In Proceedings of The Embedded Systems Conference, 2002.

[18] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing Protocol for Multihop

Wireless Ad Hoc Networks.

[19] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-time system.

IEEE Trans. on Parallel and Distributed Systems, 8(12):1268–1274, Dec. 1997.

[20] G. Koren and D. Shasha. D-over: An optimal on-line scheduling algorithm for overloaded

real-time systems. In IEEE Real-Time Systems Symposium, pages 290–299, December 1992.

85

http:// www.globalsecurity.org/ space/systems/bmc3i.htm/
http:// www.globalsecurity.org/ military/systems/ aircraft/e-3.htm/
http:// www.globalsecurity.org/ military/systems/ aircraft/e-3.htm/
http://www.globalsecurity.org/intell/systems/jstars.htm/
http://www.globalsecurity.org/intell/systems/jstars.htm/
http:// www.globalsecurity.org/ military/systems/ aircraft/e-767-mc2a.htm
http:// www.globalsecurity.org/ military/systems/ aircraft/e-767-mc2a.htm
http://www.csl.sri.com/ papers/sri-csl-95-02/

[21] P. Li, B. Ravindran, H. Cho, and E. D. Jensen. Scheduling distributable real-time threads in

Tempus middleware. In IEEE Conference on Parallel and Distributed Systems, pages 187 –

194, July 2004.

[22] P. Li, B. Ravindran, et al. A formally verified application-level framework for real-time schedul-

ing on POSIX real-time operating systems. IEEE Trans. Software Engineering, 30(9):613 –

629, Sept. 2004.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time

environment. Journal of the ACM, 20(1):46–61, 1973.

[24] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis, CMU, 1986.

CMU-CS-86-134.

[25] D. L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE/ACM

Trans. on Networking, 3:245–254, June 1995.

[26] J. D. Northcutt. Mechanisms for Reliable Distributed Real-Time Operating Systems — The

Alpha Kernel. Academic Press, 1987.

[27] J. D. Northcutt and R. K. Clark. The Alpha operating system: Programming model. Ar-

chons Project Technical Report 88021, Department of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, February 1988.

[28] OMG. Real-time CORBA 2.0: Dynamic scheduling specification. Technical report, Object

Management Group, September 2001. OMG Final Adopted Specification, http://www.omg.org/

docs/ptc/01-08-34.pdf.

[29] K. Romer. Time synchronization in ad hoc networks, 2001.

[30] The Open Group Research Institute’s Real-Time Group. MK7.3a Release Notes. The Open

Group Research Institute, Cambridge, Massachusetts, October 1998.

86

http:// www.omg.org/ docs/ ptc/01-08-34.pdf
http:// www.omg.org/ docs/ ptc/01-08-34.pdf

