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Abstract

We show for the first time that standard model check-
ing allows one to completely verify asynchronous algo-
rithms for solving consensus, a fundamental problem in
fault-tolerant distributed computing. Model checking is a
powerful verification methodology based on state explo-
ration. However it has rarely been applied to consensus
algorithms, because these algorithms induce huge, often in-
finite state spaces. Here we focus on consensus algorithms
based on the Heard-Of model, a new computation model for
distributed computing. By making use of the high abstrac-
tion level provided by this computation model and by de-
vising a finite representation of unbounded timestamps, we
develop a methodology for verifying consensus algorithms
in every possible state by model checking.

1. Introduction

Asynchronous fault-tolerant distributed algorithms are
typically difficult to design; inherent asynchrony and con-
currency make them highly error-prone. The goal of our
research is to alleviate this problematic situation by provid-
ing a means of automatic verification for these algorithms.

Recently, a new computation model for asynchronous
fault-tolerant distributed systems, called the Heard-Of
model (HO model for short), was proposed [8, 9, 19]. The
HO model can capture the synchrony degree and any type of
non-malicious faults in a unified manner, and thus provides
a general framework for designing and reasoning about
fault-tolerant distributed algorithms.

This paper presents our attempt to mechanically ver-
ify HO model-based algorithms. Specifically, we focus
on algorithms for solving consensus, a fundamental prob-
lem in fault-tolerant distributed computing. Consensus not
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only captures the difficulty related to fault-tolerance in dis-
tributed systems — it is also a basic building block that han-
dles failures for solving other agreement problems such as
atomic broadcast or group membership [6, 17, 32].

As a verification approach, we use model checking. In
model checking a system to be verified is first represented
as a finite state machine and then verified against a temporal
logic specification through state exploration. A remarkable
advantage of model checking over other formal verification
methods is that it is fully automatic and its application re-
quires no user supervision or expertise in mathematical rea-
soning.

Although model checking has been widely practiced,
there is little work on applying it to the verification of asyn-
chronous distributed algorithms for consensus. A plausible
reason for this is that these algorithms induce huge, often
infinite, state spaces, thereby severely limiting the useful-
ness of model checking techniques. Sources that yield in-
finite state spaces include unbounded round numbers and
unbounded message channels, which are both typical for
asynchronous distributed systems/algorithms.

By restricting to finite models with a fixed number of
processes and a fixed number of rounds, one could apply
standard model checking to asynchronous consensus algo-
rithms. Clearly, this approach can only be used for detect-
ing errors that manifest themselves in early rounds; nothing
conclusive can be obtained if no errors are detected. In pre-
vious work [16, 20, 24], therefore, model checking was not
used as a stand alone method, but in conjunction with other
mathematical proof techniques.

Our approach presented in this paper is different from
the previous work in that it does not rely on any other for-
mal verification techniques than model checking. As a re-
sult, the verification can be carried out in a fully automatic
manner. Also, we fix the number of processes but do not
impose any restrictions on the number of rounds; thus our
verification is complete in the sense that it verifies the be-
havior of algorithms in every possible state. To the best of
our knowledge, this is the first time standard model check-
ing allows one to completely verify asynchronous consensus
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algorithms.
We should remark that this becomes possible largely due

to the high abstraction level provided by the HO model.
In the HO model, for example, the computation consists
of asynchronous communication-closed rounds where ev-
ery message sent but not received in the same round is lost.
Thus, when model checking HO model-based algorithms,
one no longer has to explicitly consider messages buffered
in the channels. However, the state space can be infinite
when the algorithm uses timestamps, because the number
of rounds is unbounded. To cope with this problem, we de-
vise a technique for representing infinite combinations of
timestamp values as finite representatives. We also develop
several optimization techniques. These techniques enable
one to apply standard model checking to a class of non-
trivial consensus algorithms including Paxos [21].

Unlike mathematical proving, our approach can only be
applied to the case where the number of processes is fixed
to a small value and thus, it cannot provide a correctness
proof for the general case. On the other hand, our approach
is fully automatic and, if the design fails to satisfy a desired
property, can produce a counterexample, which is particu-
larly important in finding subtle errors. Both approaches are
therefore complementary.

This paper is structured as follows. Section 2 describes
the HO model and the consensus problem. Section 3 briefly
explains the concept of model checking. Section 4 shows
how one can model check HO model-based consensus algo-
rithms by taking a particular algorithm as an example. Sec-
tion 5 introduces two optimization techniques. Section 6 de-
scribes a technique for representing, as a finite state space,
the behavior of a consensus algorithm that uses unbounded
timestamps. Section 7 summarizes related work. Section 8
concludes the paper and points out future work.

2. The HO Model and the Consensus Problem

2.1. The HO Model

We consider a distributed system consisting of � pro-
cesses. Let � � ���� ��� � � � , ��� be the set of the pro-
cesses. We assume a communication-closed round compu-
tation model, called the Heard-Of (HO) Model [9]. The HO
model generalizes the asynchronous round model in [13]
with some features of [15] and [31]. The two notable fea-
tures of the HO model are that (1) synchrony degree and
fault model are encapsulated in the same abstract structure,
namely the Heard-Of (HO) sets, and (2) the notion of faulty
component has totally disappeared; instead, only the effects
of faults are specified in the form of transmission faults.

In the HO model an algorithm runs in rounds. Each
round consists of three parts: send, receive, and state tran-
sition. Every process sends messages to all or a subset of

processes, then receives the messages sent to it, and finally
makes a state transition based on the current state and the
messages it received. We refer to the collection of the states
of the � processes as a configuration.

We denote by������ �� �� �� the set of processes from
which �� receives a message in round �: ������ �� is the
“heard of” set of �� in round �. A transmission fault refers
to the situation where �� �� ������ �� while �� sent (or was
supposed to send) a message to �� in round �.

There can be various reasons for transmission faults. For
example, messages may have been lost because they missed
a round due to the asynchrony of communication and pro-
cessing. Process or link faults can also cause transmission
faults. The key is that the HO model captures the synchrony
degree and faulty components in a unified manner by means
of the HO sets, without attributing transmission faults to
specific causes.

2.2. The Consensus Problem

The consensus problem is recognized as a fundamental
problem to solve when one has to design a fault-tolerant dis-
tributed system. In this problem, each process is assumed to
have a proposed value at the beginning of the algorithm ex-
ecution and is required to eventually decide on some value.
In the HO model the problem is specified by the following
three conditions:

Integrity Any decision value is the proposed value of some
process.

Agreement No two processes decide differently.

Termination All processes eventually decide.

It should be noted that the termination property requires that
all processes decide, since there is no notion of faulty pro-
cesses in the HO model. Discussion of the reason for this
specification can be found in [8, 9].

We assume that a process chooses its proposed value
from a set � and that each process �� has a special vari-
able �� whose domain is � � ��� where ? is a special value

Algorithm 1 The OneThirdRule algorithm [9]
1: Initialization:
2: �� � � , initially �� � �� is the initial value of �.�

3: Round �:
4: ��� �

5: send ��� � to all processes

6: � �
� �

7: if �	
��� ��� 
 ���� then
8: if the values received, except at most ����

�
�, are equal to � then

9: �� �� �
10: else
11: �� �� smallest � received
12: if more than ���� values received are equal to � then
13: DECIDE(� )
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that is not contained in � . � is an arbitrary set of totally
ordered elements. Variable �� is initially � and �� decides
on a value � � � by setting �� to �. By convention, we
denote the assignment of � to �� by DECIDE��� and omit an
explicit reference to �� in the pseudo-codes presented in this
paper.

As a running example, we consider the OneThirdRule al-
gorithm [9] (Algorithm 1). A notable feature of this simple
algorithm is that it can solve consensus in a single round in
favorable circumstances where enough processes propose
the same value. A similar structure is shared by the algo-
rithms proposed in [5] and in [29], and by Fast Paxos [24].
Each round � starts with the send part denoted by 	�� . Each
process � then receives messages from processes (implicit
in Algorithm 1). Finally, processes execute the state transi-
tion part denoted by 
 �

� .
Since the HO model represents the degree of synchrony

and fault model by the HO sets, system’s characteristics
can be captured by a predicate over the collections of sets
������ �����	��

. It is well known that no deterministic
consensus algorithm is possible in pure asynchronous sys-
tems prone to failures [14]. In general, therefore, consensus
algorithms based on the HO model are intended to work
when a certain predicate holds. The OneThirdRule algo-
rithm, for example, assumes the following predicate:

��
 � �� ��
 � � ���� ��
� � ��
	�	�� � � 

������� �
� � �
� 
 ����� � �
 
 ������ ��� �� � ��
	�

(1)

When the transition part 
 �
� is executed, the messages avail-

able guarantee that the predicate on the HO sets hold. This
predicate ensures that (i) the existence of some round �

in which all processes hear of the same set of more than
two-thirds of the processes, and (ii) for each process ��, the
existence of some round ����� �
� in which �� hears of
more than two-thirds of the processes. Round �
 allows ev-
ery process �� to adopt the same value for ��� at the end of
this round, while round ��� ensures that �� decides in that
round, since �� can receive the same value from more than
�
	� processes. It should be noted that this predicate is
only required for termination. Agreement is not violated no
matter how bad the HO sets are.

It depends on the underlying system model whether a
given predicate can be implemented or not. In [19], two al-
gorithms are proposed that implement predicate (1) in sys-
tems that alternate between good (synchronous) periods and
bad (asynchronous) periods.

In contrast to agreement and termination, integrity is
trivially satisfied and this is usually the case for most con-
sensus algorithms. Thus we limit our discussion to the ver-
ification of agreement and termination. Also, we will not
explicitly verify the possibility that the same process makes
different decisions in different rounds, because it is straight-

forward to modify any algorithm to avoid such a situation.

3. Symbolic Model Checking

Model checking is the process of exploring a finite state
transition system to determine whether or not a given tem-
poral property holds. Formally a finite state transition sys-
tem is a 3-tuple �	� �� �� where 	 is a set of states, � is a
set of initial states, and � � 	 � 	 is a transition relation.
A computation path is defined as an infinite sequence of
states �
� ��� � � � such that ���� ����� � � for any � � �. In
the process of model checking, a given temporal property is
evaluated with respect to all the initial states.

The major problem with model checking is that the state
spaces arising from practical problems are often extremely
large, generally making exhaustive exploration not feasible.
One of the most successful approaches to this problem is the
use of symbolic representations of the state space. In sym-
bolic model checking [25], boolean functions represented
by Binary Decision Diagrams (BDDs) are used to represent
the state space, instead of, for example, explicit adjacency-
lists. This can reduce dramatically the memory and time re-
quired because BDDs represent many frequently occurring
boolean functions very compactly.

We use the NuSMV Version 2 model checker [10].
NuSMV is a reimplementation of CMU SMV [25], and
is one of the latest and most successful model checkers.
Performance comparisons with the SMV family and other
model checkers can be found for example in [12, 22].

NuSMV takes a program written in its own input lan-
guage as input and outputs the verification results for given
temporal specifications. A NuSMV program consists of
variables that have finite domains. The set of states, 	, is
the Cartesian product of these domains. Each valuation to
these variables corresponds to a unique state in 	. To avoid
confusion, we refer to the variables occurring in NuSMV
programs as program variables and the variables used in
HO model-based algorithms as process variables.

NuSMV supports CTL as a temporal specification logic.
Here we only use two temporal operators, �� and ��.
The formula ��� holds in state � if � holds in all states
along all computation paths starting from �, while the for-
mula��� holds in state � if � holds in some state along all
computation paths starting from �.

A given CTL formula is evaluated with respect to all the
initial states as follows: First, the set of all reachable states
is computed by performing a forward search from the set of
the initial states. In the next step, the set of states where the
given temporal property holds is computed. This is done by
recursively computing the state set satisfying each CTL sub-
formula with a backward search from the reachable states.
Finally, whether the set obtained contains all initial states
is determined. If it contains all the initial states, then the
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system meets the correctness property.
The time complexity of CTL model checking is ���� � �

��	�� ����� where �� � is the total number of subformulas of
the given CTL formula � . An optimization can be made if �
is of the form of ��� where � contains no temporal oper-
ator. In this case the first step (that is, reachability analysis)
suffices to check that formula. In NuSMV the -AG option
enables this optimization, making it possible to skip the re-
maining, time-consuming steps. In this work we always use
this option whenever it can be applied.

4. The Proposed Model Checking Approach

In this section we show how one can model the behavior
of an HO model-based consensus algorithm as a finite state
transition system so that model checking can be applied to
the verification of the algorithm. The OneThirdRule algo-
rithm is used as a running example. Figure 1 shows the
NuSMV program for this algorithm when � � �.

4.1. Program Variables

Program variables determine the state space 	. Since
different configurations must be distinguished in 	, we need
program variables that correspond to the process variables.

Some of the process variables usually have � as their
domain (see Algorithm 1). Since � can be arbitrarily large,
it is necessary to represent it by a set of small size. Since
integrity usually trivially holds and at most � distinct val-
ues can be proposed at a time, we substitute a set of � val-
ues �
� �� � � � � �� for � . In other words, the elements of
�
� �� � � � � �� can be viewed as symbolic values represent-
ing any of at most � distinct values taken from � .

For the OneThirdRule algorithm, for instance, the fol-
lowing program variables are used to define the state transi-
tion system:


 �� � �
� �� � � � � �� (� � 
� �� � � � � �).


 �� � �
� �� � � � � �� � ��� (� � 
� �� � � � � �).

In Figure 1 these variables are declared in lines 7–8. The
value ? is represented as 0 to avoid type conflicts.

Using these variables we construct the state transition
system �	� �� �� as follows. A state in 	 represents a con-
figuration at the beginning of a round. The set � of initial
states contains all configurations that correspond to round
one. A transition ��� ��� � � exists iff �� represents the
configuration that can be yielded by a round of algorithm
execution from the configuration represented by �.

In addition to these program variables, we use NuSMV’s
input variables to represent the HO sets. Input variables are
not part of the state transition system; technically they are
existentially quantified out when computing transitions. An

1 MODULE main

2 VAR

3 p1: proc(p1, p2, p3, p4); p2: proc(p1, p2, p3, p4);

4 p3: proc(p1, p2, p3, p4); p4: proc(p1, p2, p3, p4);

5
6 MODULE proc(p1, p2, p3, p4)

7 VAR

8 x: {1, 2, 3, 4}; d: {1, 2, 3, 4, 0};

9 IVAR

10 h1 : boolean; h2 : boolean; h3 : boolean; h4 : boolean;

11 ASSIGN

12 init(d) := 0;

13 next(d) :=

14 case

15 h1 & h2 & h3 & (p1.x = p2.x) & (p1.x = p3.x) : p1.x;

16 h1 & h2 & h4 & (p1.x = p2.x) & (p1.x = p4.x) : p1.x;

17 h1 & h3 & h4 & (p1.x = p3.x) & (p1.x = p4.x) : p1.x;

18 h2 & h3 & h4 & (p2.x = p3.x) & (p2.x = p4.x) : p2.x;

19 1: d;

20 esac;

21 next(x) :=

22 case (h1 & h2 & h3) | (h1 & h2 & h4)

23 |(h1 & h3 & h4) | (h2 & h3 & h4):

24 case

25 h1 & h2 & (p1.x = p2.x) : p1.x;

26 h1 & h3 & (p1.x = p3.x) : p1.x;

27 h1 & h4 & (p1.x = p4.x) : p1.x;

28 h2 & h3 & (p2.x = p3.x) : p2.x;

29 h2 & h4 & (p2.x = p4.x) : p2.x;

30 h3 & h4 & (p3.x = p4.x) : p3.x;

31 h1 & (!h2 | p1.x <= p2.x) & (!h3 | p1.x <= p3.x)

32 & (!h4 | p1.x <= p4.x) : p1.x;

33 h2 & (!h1 | p2.x <= p1.x) & (!h3 | p2.x <= p3.x)

34 & (!h4 | p2.x <= p4.x) : p2.x;

35 h3 & (!h1 | p3.x <= p1.x) & (!h2 | p3.x <= p2.x)

36 & (!h4 | p3.x <= p4.x) : p3.x;

37 h4 & (!h1 | p4.x <= p1.x) & (!h2 | p4.x <= p2.x)

38 & (!h3 | p4.x <= p3.x) : p4.x;

39 1: x;

40 esac;

41 1: x;

42 esac;

Figure 1. NuSMV program for the OneThirdRule
algorithm (� � �)

input variable can take any value of its domain and no con-
straints can be imposed on the value. The HO set for process
�� is represented by � boolean input variables ����� ����, � � � ,
���� such that ���� � ���� iff �� belongs to the HO set for
�� in the current round. These � input variables for �� are
declared under the keyword IVAR in lines 9–10 in Figure 1.

4.2. Representing Algorithms

Since the initial states of the state transition system rep-
resent the configurations when an algorithm starts, process
variables are initialized as specified in a given algorithm
(see line 12 in Figure 1). In NuSMV, if no initial value is
assigned to a variable, that variable can take any value in its
domain in the initial state. For the case of the OneThirdRule
algorithm, this applies to the variables ��, because a process
can propose any value in � .

The program variables (i.e., �� and ��) are updated along
with the execution of the algorithm. The state of a process �
at the beginning of round ��
 is determined from its HO set
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����� �� and the states of all the processes at the beginning
of round � (the messages sent by a process in round � are
determined by its state at the beginning of round �). Hence
the new value of a program variable at the next state can
be represented as an expression over the program variables
and ���� . By convention, we use a primed variable to refer to
the value of a variable at the next state. In Figure 1, ��� and
��� (i.e., the next state values of �� and ��) are specified by
the case statements in lines 13– 20 and in lines 21 – 42,
respectively (x, d, next(x), next(d), and p�.x refer
to ��, ��, ���, �

�
�, and ��).

4.3. Verification

We first discuss the verification of agreement. Agree-
ment is expressed in CTL as follows:

�� ��������� (CTL 1)

where ��������� 
�
�

�������

�
��� ����
��� ����� �����

�
.

We were able to check that this CTL formula holds when
� is up to seven. The running time and the size of the state
spaces are shown in Table 1. This and all subsequent mea-
surements in this paper were performed on a Windows XP
machine with a 1.66GHz Intel T2300 CPU and 1.5Gb mem-
ory. Time data was collected using timeit.exe in Win-
dows 2003 Server Resource Kit and averaged over 10 runs.

To verify termination, the finite state transition system
needs to be extended to represent the required predicate on
HO sets. Since we are interested in the situation where pred-
icate (1) holds (see Section 2.2), it is necessary to limit the
scope of verification to the computation paths where the
rounds �
 and ��� ��� � �� occur. This can be done by
introducing � � 
 boolean program variables. With these
variables, even if two states correspond to the same config-
uration of process states, it is possible to distinguish them
depending on whether they already experienced the rounds
�
 and/or ��� .

Let � and ��� � � � � �� be these new variables. They are
initially �����. Variables � and �� are used to record that
the rounds �
 and ��� have occurred, respectively. The tran-
sitions of the values of these variables are represented as
follows:

�� �

�������
������

����
�

	��	��	��

�

�
�

� �
���	�

����� 
 � � � 
 �����



�

���	�	�

������ 
 � � � 
 ������
	

� ���������

��� �

��
�

���� � 

�

	��	��	��

�

�
�

�
���	�

����

�� ���������

where �� and ��� are the values of � and �� at the next state.
Using these variables, the following CTL formula can be

obtained which states that all the processes will eventually
decide provided that predicate (1) holds:

��
�
��� 
 � � � 
 ���� �� �����������

�
(CTL 2)

where ����������� 
� ��� ���� 
 � � � 
 ��� �����
We should remark that adding such auxiliary variables

enlarges the state space. For example, when � � �,
the number of the reachable states grows from �	� ��� to
���� ���. Table 1(a) shows the relationships between � and
the time and space needed for model checking.

5. Optimizations

5.1. Optimizing Agreement Verification

The performance of agreement verification may be im-
proved by slightly modifying the modeling proposed in Sec-
tion 4. The idea behind this optimization is to split the
model checking problem into two subproblems: (1) check-
ing that no two processes decide differently in the same
round, and (2) checking that no process decides a value dif-
ferent from the value decided in earlier rounds. If agree-
ment is verified by solving these two problems, the � pro-
gram variables �� �� � 
� �� � � � � �� can be omitted from
the NuSMV program. Instead, we introduce a new program
variable � with domain �
� � � � � ������ to record the deci-
sion value. That is, the value of � is a value decided before
the current round (� �� if no decision has been made yet).

Subproblem (1) can be solved even without using �. Let
�� be the value that process �� decides in the current round.
As stated in Section 4.2, this value can be represented by
an expression over ���� and program variables. No two pro-
cesses decide differently in the current round iff the follow-
ing formula evaluates to true:

���������� 
�
�

�������

�
��� ����
��� ����� �����

�

Variable � is used in solving subproblem (2). Suppose
that no two processes decided differently in any of the ear-
lier rounds. Then, in the current round no process makes
a decision different from the value already decided iff the
following formula evaluates to true:

���������� 
�
�

�����

�
��� ����
������� ����

�

As a result, agreement can be expressed by the following
CTL formula:

������������� 
 ����������� (CTL 3)
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Table 1. Time required for verification (OneThirdRule)
(a) Without optimizations

� � � � � � � � � � � �

Agreement (CTL 1) 0.0sec 0.5sec 7.5sec 5min34sec
# reachable states 652 4480 ����� ������� � ��

�

Termination (CTL 2) 0.3sec 7.1sec 5min53sec NA
# reachable states ��� ���� 	����	 NA

(b) With optimizations
� � � � � � � � � � � �

Agreement (CTL 3) 0.0sec 0.1sec 7.4sec 5min30sec
# reachable states 
���	�� � ��

�
������� � ��

��
��

��
 � ��

��
������
 � ��

��

Termination (CTL 4) 0.2sec 2.7sec 40sec NA
# reachable states ��� ���� 	����	 NA

This optimization requires a slight modification of the
NuSMV programs: It requires ���� to be declared as a vari-
able, instead of an input variable, because NuSMV does
not allow CTL specifications to contain input variables. Al-
though this modification blows up the number of reachable
states, it does not directly affect the performance of model
checking.

As shown in Table 1(b), the effect of this optimization
is not very tangible for the OneThirdRule algorithm. On
the other hand, it worked well for the algorithm presented
in Section 6. The results for this algorithm will be shown
later.

5.2. Optimizing Termination Verification

Here we introduce an important optimization technique
for speeding up the verification of the termination property.
As can be seen in Table 1, checking termination requires
much more execution time than checking agreement.

This is mainly due to the difference in the CTL formulae
used to represent the two properties. The agreement prop-
erty is specified by�� ���������. As stated in Section 3,
if a CTL formula is of the form�� � where � contains no
temporal operator, then it can be verified simply by reacha-
bility analysis, which is the very first step performed in the
process of model checking in NuSMV. The idea of the pro-
posed optimization is to represent the termination property
as a CTL formula of this form.

This optimization can easily be implemented when one
wants to verify that a consensus algorithm terminates by the
end of the round where some specific condition holds on
HO sets. For the OneThird-Rule algorithm, we claimed in
Section 2.2 that a process �� makes a decision at the latest by
the end of round ��� (see predicate (1) in Section 2.2). The
program variable �� evaluates to true iff the current state cor-
responds to the end of round ��� or later (see Section 4.3).
Thus, instead of��

�
���
� � �
���� �� �����������

�
,

the termination property can also be verified by checking
the following CTL formula:

��
�
��� 
 � � � 
 ���� �����������

�
(CTL 4)

As shown in Table 1(b), this technique allowed us to check
termination with much less execution time.

6. Model Checking Consensus Algorithms with
Unbounded Timestamps

To solve consensus, existing algorithms often incorpo-
rate one or more of the following features:


 Execution in phases, each of which consists of multiple
rounds.1


 A coordinator process used to orchestrate each phase.


 Timestamps used to record the phase number when
some event happened, such as an update of an estimate
of the decision value.

For example, Paxos [21] and the Chandra-Toueg �� con-
sensus algorithm [6] use all the three features.

By introducing additional program variables, the model
checking approach presented in Sections 4 and 5 can be
extended to incorporate the first two features. Specif-
ically, when a phase consists of � rounds, the current
round can be expressed by program variable ��with domain
��� 
� � � � ��� 
�, such that the current round is � � ��
for some phase  �� 
�.2 The coordinator of a process
�� is represented by program variable !����� with domain
�
� �� � � � � ��. For more details see [33].

1In [6] and [21], a round is decomposed in phases. “Round” and
“phase” are swapped here to use the classical terminology [13].

2�� � � � � represents rounds �, � � �, �� � �, �� � �, etc.;
�� � �� � represents rounds �, �� �, �� � �, ��� �, etc.

142142



On the other hand, timestamps are far more difficult to
deal with. In asynchronous systems there is no bound on
the phase number; thus the domain of these timestamps is a
set of non-negative integers �. In this case, clearly, possible
process states are infinite.

As an illustrative example, let us take the LastVoting al-
gorithm (Algorithm 2) [9], which follows the basic line of
the Paxos algorithm. This algorithm uses exactly one time-
stamp ��� for each process ��.

The LastVoting algorithm runs in phases and each phase
 consists of four rounds 	 �	, 	 ��, 	 �
, 	 . The co-
ordinator of process � in phase  is denoted as "�������  �
in the pseudo-code. The selection of coordinators is done
outside of the algorithm. That is, the algorithm itself does
not impose any restrictions on the value of "�������  �.
Thus, for example, we can have multiple coordinators in
the same phase.

The timestamp ��� is updated to the current phase num-
ber when a process �� receives an estimate of the decision
value from the coordinator in round � � � (see lines 20–
21). The timestamp value is used in round � �	 by the co-
ordinator to select the most recently updated estimate value
(lines 11–13). It is also used for a process to decide whether
to reply an ack to the coordinator in round � �
 (lines 24–
25); the process sends an ack if its timestamp represents the
current phase. In Section 6.1 we address the problem of
representing ��� with a finite number of states.

6.1. Finite Representation of Unbounded Time-
stamps

Typically the ways of using a timestamp in consensus
algorithms are limited only to: (i) setting it to the current
phase number, (ii) arithmetically comparing it with another
timestamp, and (iii) checking if it equals the current phase
number. The behavior of these algorithms therefore de-
pends on, rather than their actual values, (a) the relative or-
der of pairs of timestamps and (b) whether the values equal
the current phase number or not. Also, the timestamp val-
ues never exceed the current phase number, since they are
initially set to zero. These observations lead us to the fol-
lowing simple representation.

Let ��� �
 � � � #� denote a timestamp used by the
algorithm under consideration. # is the total number of the
timestamp variables. For the LastVoting algorithm, # � �
because each process has a single timestamp. We repre-
sent the values of these timestamps using # program vari-
ables ����� � � � � ���� , such that ���� � ��� 
� � � � � #�, as
follows. If ��� is not equal to the current phase number and
is the �th smallest value in



����������, then ���� is set to

�� 
. If ��� represents the current phase, on the other hand,
then ���� is set to # .

When # � 	, for example, (���, ���, ���) = (10, 100,

Algorithm 2 The LastVoting algorithm (Algorithm à la
Paxos) [9]
1: Initialization:
2: �� � � , initially �� ��� is the initial value of �.�
3: ����� � � � 	�
, initially �
4: ������� a Boolean, initially false
5: ������ a Boolean, initially false
6: ��� � �, initially 


7: Round � � 
�� � :
8: ��� �

9: send ��� � ���� to ����������
��������� �� is the coordinator of � in phase �.�

10: � �
� �

11: if � � ���������� and number of �� � �� received 
 ��� then
12: let � be the largest � from �� � �� received
13: ����� �� one � such that �� � �� is received
14: ������� �� true

15: Round � � 
�� � :
16: ��� �

17: if � � ���������� and ������� then
18: send ������� to all processes

19: � �
� �

20: if received ��� from ���������� then
21: �� �� � ; ��� �� �

22: Round � � 
�� � :
23: ��� �

24: if ��� � � then
25: send ����� to ����������

26: � �
� �

27: if � � ���������� and number of ����� received 
 ��� then
28: ������ �� true

29: Round � � 
� :
30: ��� �

31: if � � ���������� and ������ then
32: send ������� to all processes

33: � �
� �

34: if received ��� from ���������� then
35: DECIDE���
36: if � � ���������� then
37: ������ �� false
38: ������� �� false

25) is represented as ������ ����� ����� � ��� 	� 
� if 
�� is
the current phase number; otherwise as ������ ����� ����� �
��� �� 
�. Similarly, ����� ���� ���� � �
�� 
�� 
��� is repre-
sented as ������ ����� ����� � ��� �� 	� if the current phase
is phase 
��; otherwise as ������ ����� ����� � ��� �� 
�.

Clearly, if ������ � � � � ���� � corresponds to
����� � � � � ����, then (a) for any �� �, the relative order
between ���� and ���� coincides with that between ��� and
��� , and (b) for any �, the timestamp ��� is equal to the
current phase number iff ���� � # .

As shown below, the transition of ���� can be concisely
specified in the form of propositional constraints. Symbolic
model checking allows one to directly impose these con-
straints on the transition relation or the reachable states. For
presentation purposes, we assume that the algorithm under
consideration does not update timestamp values in the last
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round of any phase, which is the case for the LastVoting al-
gorithm. This property makes the representation of the tran-
sition even simpler; it can easily be generalized, however, to
the case where the property does not necessarily hold.

In the initial states, every ���� is set to zero. Since ���
is initially zero, it is clear that the values of ���� correctly
represent ��� in the initial states.

The transition of ���� is specified by the conjunction of
four constraints. Two of these constraints involve symbol
!�� �
 � � � #�, which represents the expression over
program variables that evaluates to true iff the value of ��� in
the next state, denoted by ����,

3 is equal to the phase number
in the next state. The expression for !�� will be derived from
the algorithm later. Here we assume that the expression is
available.

Now suppose that in the current state the values of ����
correctly represent ��� as described above. Then, the fol-
lowing two constraints guarantee that (a) for any �� �, the
order between ����� and ����� matches that between ���� and
���� and (b) for any �, ����� � # iff ���� is the current phase
number (in the next state):

1. For any �� � �� �� �� such that !�� � !�� � �����, the
relative order between ���� and ���� is maintained in
the next state; that is,

�
�����������

�
��!�� 
 �!����

�
����� � ���� � ����� � ������

����� $ ���� � ����� $ ������


����� � ���� � ����� � ������
��

2. For any �, ����� � # iff !�� � ����; that is,
�

�����

�
!�� � ������ � #�

�
�

Given that the ordering of ���� coincides with the order-
ing of ���, the remaining two constraints shown below en-
sure that ���� � � � 
 �� # holds iff ��� is the �th smallest
value in



����������:

3. ���� � � for some �, unless all ���� are # ; that is,

����� �� # � � � � � ���� �� #�
� ����� � � � � � � � ���� � ��

4. There is no “gap” between ����� �� #� and ����� �� #�
that are consecutive in value. Formally,

�
�����������

�
����� $ ���� 
 ���� �� #�

�
�

������� ���

����� � 
 � �����
	

3Remember that a primed variable is used to refer to the next state value
(see Section 4.2).

Since the values of ���� correctly represent those of ��� in
the initial states, these four constraints (1) to (4) inductively
guarantee the correct correspondence between ���� and ���
in every reachable state. Figure 2 shows these four con-
straints expressed in the tool language, where # � 	 and
p�.ats and p�.cp refer to ���� and !��. The TRANS key-
word is used to declare the constraints on the transition rela-
tion (constraints (1) and (2)), while the INVAR keyword is
used to specify the constraints on the reachable states (con-
straints (3) and (4)).

6.2. Model Checking the LastVoting Algorithm

The expression !�� can be derived from the consensus
algorithm. For the LastVoting algorithm, it is obtained as
follows (see lines 15–21 of Algorithm 2):

!�� 
�
�
��� �� �� 
 ����� � ��

�

�
�
��� � �� 


�

������

�
���� 
 �!����� � ��


�!����� � �� 
 !������
�	

where �� and !����� represent the current round and ��’s
coordinator, respectively (see Section 5.2 and the beginning
of Section 6). In words, !�� evaluates to true iff ��� has al-
ready been updated to the current phase number (remember
# � �) or is updated in the current round � � � as a re-
sult of the reception of a message from its coordinator. The
two disjuncts of the right-hand side of the above formula
respectively represent these two conditions.

When � � 	 and � � �, we were able to prove that
the agreement property of the LastVoting algorithm is never
violated. Table 2 shows the time needed for model checking
and the size of the state spaces.

The LastVoting algorithm is supposed to terminate at the
end of a phase  
 � � such that :

�!
 � ��	� � ��	% � ��� 
� �� 	� 

�����!
� � 
 � 	�� � �
�� 
 �����!
� � 
 � 
�� � �
��

�!
 � "�������  
�� 
 �!
 � ����� � 
 � %��

We successfully verified for the case � � � that the termi-
nation property holds if such a phase  
 occurs, using the
techniques described in Sections 4.3 and 5.2. More specif-
ically, we introduced � auxiliary variables to define an ex-
pression ���� ����� that evaluates to true iff phase  
 has
occurred. This allows us to assert termination by either of
the following two CTL formulae:

������� ������ �� ������������ (CTL 5)

������� ������ ������������ (CTL 6)

Table 2 shows the time needed to verify these two formulae.
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1 TRANS
2 ((!p1.cp & !p2.cp) -> ((p1.ats = p2.ats -> next(p1.ats) = next(p2.ats)) &
3 (p1.ats < p2.ats -> next(p1.ats) < next(p2.ats)) & (p1.ats > p2.ats -> next(p1.ats) > next(p2.ats))))
4 & ((!p1.cp & !p3.cp) -> ((p1.ats = p3.ats -> next(p1.ats) = next(p3.ats)) &
5 (p1.ats < p3.ats -> next(p1.ats) < next(p3.ats)) & (p1.ats > p3.ats -> next(p1.ats) > next(p3.ats))))
6 & ((!p2.cp & !p3.cp) -> ((p2.ats = p3.ats -> next(p2.ats) = next(p3.ats)) &
7 (p2.ats < p3.ats -> next(p2.ats) < next(p3.ats)) & (p2.ats > p3.ats -> next(p2.ats) > next(p3.ats))))
8
9 TRANS

10 (p1.cp = (next(p1.ats) = 3)) & (p2.cp = (next(p2.ats) = 3)) & (p3.cp = (next(p3.ats) = 3))
11
12 INVAR
13 ((p1.ats != 3) | (p2.ats != 3) | (p3.ats != 3)) -> ((p1.ats = 0) | (p2.ats = 0) | (p3.ats = 0))
14
15 INVAR
16 (((p1.ats < p2.ats) & (p2.ats != 3)) -> ((p1.ats + 1 = p2.ats) | (p1.ats + 1 = p3.ats)))
17 & (((p1.ats < p3.ats) & (p3.ats != 3)) -> ((p1.ats + 1 = p2.ats) | (p1.ats + 1 = p3.ats)))
18 & (((p2.ats < p1.ats) & (p1.ats != 3)) -> ((p2.ats + 1 = p1.ats) | (p2.ats + 1 = p3.ats)))
19 & (((p2.ats < p3.ats) & (p3.ats != 3)) -> ((p2.ats + 1 = p1.ats) | (p2.ats + 1 = p3.ats)))
20 & (((p3.ats < p1.ats) & (p1.ats != 3)) -> ((p3.ats + 1 = p1.ats) | (p3.ats + 1 = p2.ats)))
21 & (((p3.ats < p2.ats) & (p2.ats != 3)) -> ((p3.ats + 1 = p1.ats) | (p3.ats + 1 = p2.ats)))

Figure 2. Constraints specifying timestamps ���

6.3. Other Consensus Algorithms

In addition to the LastVoting algorithm, we model
checked several consensus algorithms that use unbounded
timestamps, including:


 The rotating coordinator version of the LastVoting al-
gorithm. This version is different from the origi-
nal LastVoting in that the coordinator is determin-
istically chosen based on the phase number; i.e.,
"��������  � � �������������� for any �� � �. Ta-
ble 2 shows the results of model checking this algo-
rithm (denoted by LastVoting��).4


 The algorithm of Dwork, Lynch, and Stockmeyer for
benign faults [13]. In this algorithm each process has
at most � timestamps, thus resulting in # � ��.


 A variant of Paxos [7].

 Two variants of FastPaxos [7]. These algorithms im-

prove the original FastPaxos algorithm by merging fast
rounds and ordinary rounds.

For almost all of these algorithms, the proposed approach
successfully handled the cases up to � � �. Some of these
results can be found in our technical report [33].

6.4. Comparison with Existing Model Checking
Techniques

To demonstrate the benefits of using our technique, we
compare it with the following two methods:

4Although the number of reachable states of LastVoting�� was much
smaller than LastVoting, verifying LastVoting�� took similar or even longer
time. A possible reason for this is that the size of Binary Decision Dia-
grams (BDDs) generated in the process of model checking was similar in
both cases.

Method 1 By imposing an upper bound on the phase num-
ber, timestamps are treated as usual process variables,
instead of using the technique proposed in this section.

Method 2 This method is the same as Method 1, except
that bounded model checking [11] is used, instead of
ordinary Binary Decision Diagram (BDD)-based sym-
bolic model checking. The idea of bounded model
checking is to search a counterexample of length up
to a given bound. This bounded version of the model
checking problem is reduced to the propositional satis-
fiability problem (SAT), and can thus be solved by SAT
methods rather than BDDs. Since NuSMV supports
bounded model checking as well as ordinary symbolic
model checking, we used it in our experiment with
ZChaff [26] as a SAT solver.

Figure 3 shows the results of using these methods for ver-
ifying the agreement property of the LastVoting algorithm.
In this experiment CTL 1 was used as the specification of
agreement. From the results, it can be seen that Method 1
exhibited much better performance than Method 2. Com-
pared with our proposed method, however, it runs faster
only for a few first phases. More importantly, verification
based on a fixed number of phases cannot be used to en-
sure that the consensus algorithm is correct even for a small
�. This is in contrast to our approach, which explores all
possible states of the algorithm.

7. Related Work

Not much research exists regarding the application of
model checking to asynchronous consensus algorithms. In
[20], a shared memory-based randomized consensus al-
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Table 2. Time required for verification (LastVoting and LastVoting��)
(a) Without optimizations

LastVoting LastVoting��

� � � � � � � � � � � �

Agreement (CTL 1) 2.1sec 2min29sec 2.7sec 3min36sec
# reachable states ��
	��
 � ��

�

������ � ��

� 463842 ��	��� � ��
�

Termination (CTL 5) 3min37sec NA 1min18sec NA
# reachable states ����	�� � ��

�

���
�� � ��

� 546831 ������� � ��
�

(b) With optimizations
LastVoting LastVoting��

� � � � � � � � � � � �

Agreement (CTL 3) 1.9sec 1min59sec 3.5sec 6min10sec
# reachable states ������� � ��

�
����
�� � ��

��
��
���� � ��

�
������� � ��

��

Termination (CTL 6) 4.5sec 2min58sec 4.2sec 4min1sec
# reachable states ����	�� � ��

�

���
�� � ��

� 546831 ������� � ��
�

gorithm, proposed by Aspnes and Herlihy [1], was ver-
ified. The authors of [20] separated the algorithm into
a probabilistic component and a non-probabilistic compo-
nent. They applied standard probabilistic model checking
techniques to the probabilistic component. In the verifica-
tion of the non-probabilistic part, whose state space is in-
finite, they relied on proof techniques that reduce the ver-
ification problem to small problems that can be solved by
model checking.

In [16] and [24], model checking was used for debug-
ging purposes in developing TLA specifications for the Disk
Paxos algorithm and the Fast Paxos algorithm. The mod-
els that were model checked consisted of two or three pro-
cesses and a small number of rounds [23]. Such small-sized
models cannot be used to assure the correctness of the algo-
rithms but are useful for detecting simple bugs.

In [35], automatic verification was applied to opti-
mistically terminating consensus (OTC), an abstraction
for a single phase with “full-information” exchange of a
coordinator-based algorithm. The termination of the con-
sensus algorithm and the selection of a coordinator are not
handled. The objective of [35] was to automatically dis-
cover one phase that can be extended to full algorithms. Our
approach differs from [35] in many aspects. For example,
our approach can verify the entire consensus algorithm, in-
cluding the verification of the termination property.

In [18], a synchronous consensus algorithm proposed
in [2] was analyzed with a real-time model checker for the
case � � 	.

The applications of formal verification methods other
than model checking to consensus algorithms can be found
in, for example, [27, 28, 30].

8. Concluding Remarks

In this paper, we presented a model checking approach
for verifying HO model-based consensus algorithms. A no-
table technique that we devised is the finite representation
of unbounded timestamps. This allows us to use existing
powerful technologies for finite state space exploration to
verify algorithms having infinite state spaces.

Our approach is different from previous attempts to ap-
ply formal verification methods to asynchronous consensus
algorithms in at least one of the following two aspects: (1)
Our approach relies only on standard model checking tech-
niques and thus the verification is fully automatic, and (2)
our approach is complete in the sense that it verifies the be-
havior of consensus algorithms in every possible state. This
is, to our knowledge, the first time standard model checking
allows one to completely verify asynchronous consensus al-
gorithms.

As future research, we will try to extend our techniques
to be able to handle a larger number of processes. For ex-
ample, as observed in [4], the structure of agreement pro-
tocols may exhibit various types of symmetries. Exploiting
these symmetries to reduce the state space can be an inter-
esting topic. However, from a practical point of view � � 	
(for Paxos/LastVoting) and � � � (for OneThirdRule) are
usually sufficient: in practice, replication with strong con-
sistency is restricted to a small number of replicas. Note
that we were also able to model check an algorithm with
conditions of type ������ ��� � �
� for � � �. The result
was obtained for the UniformVoting algorithm [9], an al-
gorithm that can be viewed as a multi-valued deterministic
version of the well-known randomized consensus algorithm
by Ben-Or [3]. Moreover, we model checked algorithms
under development and discovered bugs. These bugs were
already discovered with � � 	.
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Figure 3. Performance of verifying models with bounded phases. The horizontal axis indicates the
number of phases model checked. The vertical axis represents the time used to verify the agreement
of the LastVoting algorithm.

The verification of lower level algorithms (algorithms
that implement communication predicates for HO based al-
gorithms, or that implement failure detectors for failure de-
tector based algorithms) also deserves further study. We
have started working on the verification of such algorithms
for HO predicates: we applied real-time model checking
to one of the predicate implementations proposed in [19]
and obtained preliminary results on its timeliness proper-
ties [34].
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