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Abstract

We consider the problem of robust node deployment and
fault-tolerant localization in wireless sensor networks for
emergency and first response applications. Signature-based
localization algorithms are a popular choice for use in such
applications due to the non-uniform nature of the sensor
node deployment. But, random destruction/disablement of
sensor nodes in such networks adversely affects the deploy-
ment strategy as well as the accuracy of the correspond-
ing signature-based localization algorithm. In this paper,
we first model the phenomenon of sensor node destruction
as a non-homogeneous Poisson process and derive a robust
and efficient strategy for sensor node deployment based on
this model. Next, we outline a protocol, called Group Se-
lection Protocol, that complements current signature-based
algorithms by reducing localization errors even when some
nodes in a group are destroyed. Finally, we propose a
novel yet simple localization technique, ASFALT, that im-
proves the efficiency of the localization process by combin-
ing the simplicity of range-based schemes with the robust-
ness of signature-based ones. Simulation experiments are
conducted to verify the performance of the proposed algo-
rithms.

1 Introduction

Wireless sensor networks (WSN) are being widely used
in emergency monitoring and first response applications
like natural calamities (storm, hurricanes), forest fires, ter-
rorist attacks, etc. [14, 21, 18, 11]. Such networks are
often referred to as Emergency Sensor Networks (ESN)
[9]. Localization is the problem of determining the po-
sition of each sensor node (mote) after being deployed at
an area of interest. Localization is extremely important in
WSNs as the information collected by the sensor nodes is

of very little use unless it is associated with the location
of occurrence. Distributed localization protocols for WSNs
can be divided into two broad categories namely Beacon-
based methods and Signature-based methods. Beacon-
based methods [20, 1, 15, 3, 7] require a few special nodes
called beacon nodes, which already know their absolute lo-
cations via GPS or manual configuration and are fitted with
high power transmitters. Remaining nodes estimate their
location by first computing distance/angle estimates to the
beacon nodes, and then applying triangulation or multilat-
eration to these distance estimates. Signature-based or bea-
conless schemes [5, 6, 2, 10], on the other hand, assume
that nodes are distributed in a non-uniform fashion over the
deployment area, and use this non-uniform distribution as a
signature to compute location by observing node neighbor-
hoods.

In this paper, we study the problem of localization from
the point of view of ESNs. Sensor node deployment in
emergency applications is highly localized for each point
(over the emergency area) and the size of the node group at
each point depends on the intensity of the monitored event
at that point. Due to such a non-uniformity in node deploy-
ment, signature-based schemes are ideal for localization
in ESNs. Moreover, such schemes eliminate the need for
costly beacon nodes and GPS devices and thus the “single
point of failure” problem. But, one problem with signature-
based schemes is that they assume a fixed node distribu-
tion over the deployment area (throughout the period of the
application) and thus their accuracy is affected by factors
that change the existing node distribution. Nodes over a
deployment area can be arbitrarily destroyed, disabled or
displaced, thus changing the previously fixed node distribu-
tion. Signature-based schemes have to take such distribu-
tion changes into account before localization, else they will
produce inaccurate results.

Here, we attempt to construct signature-based localiza-
tion schemes that are robust against random node destruc-



tion/disablement. We focus on two main factors, namely, 1)
the initial node distribution over the deployment area, and 2)
random node disablement. To provide an efficient distribu-
tion of sensor nodes during an emergency, we need a well-
planned deployment strategy that is not only robust against
the vagaries of the emergency situation but also helps
signature-based localization in a positive way. To achieve
this, we outline an emergency level-based deployment strat-
egy that efficiently distributes the sensor nodes over the
emergency area by dividing the area into various emergency
levels depending on the severity of the emergency at a point.
The process of node destruction during an emergency can
be modeled as a non-homogeneous Poisson process, and the
deployment strategy employs this model to make deploy-
ment decisions. Next, to improve the fault-tolerance of ex-
isting signature-based localization approaches, we propose
an improvement in the form of a Group Selection Proto-
col (GSP). According to this protocol, only healthy or vi-
able groups of nodes are chosen for participation in the lo-
calization process. Although GSP provides improvement
in accuracy, it does not simplify the complex localization
mechanism of signature-based schemes. To overcome this,
we introduce ASFALT, a simple, fault-tolerant localization
scheme that combines the salient features of both beacon-
based and signature-based scheme. ASFALT uses distance
measurements to groups of nodes in its neighborhood and a
simple averaging argument to compute location. Using ex-
perimental results, we show that the performance and local-
ization accuracy of ASFALT are better than that of standard
signature-based algorithms, e.g., [6], especially in situations
of arbitrary disablement/destruction of nodes.

The rest of the paper is organized as follows: the next
section presents the case study of a signature-based local-
ization technique. Section 3 presents the emergency level-
based deployment strategy for ESNs and the Group Se-
lection Protocol (GSP). Section 4 describes ASFALT: our
fault-tolerant localization technique. Section 5 presents the
evaluation results and in Section 6 we review some earlier
research efforts in this direction. Finally, we conclude and
present some directions for future research in Section 7.

2 Case Study: A Signature-based (Beacon-
less) Scheme for Localization

In this section, we present the case study of a signature-
based (beaconless) localization technique proposed by Fang
et al. Interested readers may refer to the complete article [6]
for details.

2.1 Deployment Model and Localization

This localization technique employs a group-based de-
ployment strategy in which the entire deployment area is

first divided into a grid of n points. Then, nodes are de-
ployed in groups of equal sizes at each point on the grid.
The final position of each node after deployment is as-
sumed to follow some non-uniform distribution, e.g., Nor-
mal (Gaussian), with mean as the point of deployment.
Thus, the average deployment distribution of any mote over
the entire region, if there are n groups, is:

foverall(x, y) =
1
n

n∑
i=1

1
2πσ2

e−[(x−xi)
2+(y−yi)

2]/2σ2

The eventual goal is to get distance estimates from the tar-
get node at location θ(x, y) to each of the fixed point on
the grid where nodes are deployed, so that θ(x, y) can be
determined by multilateration. Let a = (a1, . . . , an) be
a vector representing the neighborhood observation of the
target node, i.e., ai number of nodes from group Gi are in
the neighborhood of the target node. Given the number mi

of nodes deployed in each group Gi and the probability dis-
tribution function (p.d.f) of the deployment, the probability
that a is observed by the target node at θ (where Xi is a
random variable representing the number of nodes from Gi

that are neighbors to the target node and all X ′
is are mutu-

ally independent) is,

fn(a|θ) = Pr(X1 = a1|θ) . . . P r(Xn = an|θ)

Let, gi(θ) be the probability that a mote from group Gi can
land within the neighborhood of the point θ. Then,

fi = Pr(Xi = ai|θ) =
(

mi

ai

)
(gi(θ))

ai(1 − gi(θ))
mi−ai

Let zi represent the distance from θ to the point where group
Gi is deployed. It is clear that gi(zi) = gi(θ). Using a
maximum likelihood analysis it can be shown that the above
likelihood function, fi, is maximized when,

gi(zi) =
ai

mi

Now, to compute the value of zi from gi(zi) (zi =
g−1

i (gi(zi))), we need a formulation for gi(zi). Fang et
al. have used complex geometric techniques to formulate
gi(zi) (see [6]). As a result, gi(zi), which is an extremely
complex function, cannot be computed in an online fashion
by the low power sensor nodes. To overcome this problem,
a table-lookup approach is used to find zi given ai and mi,
i.e., gi(zi) is pre-calculated (sampled) in an offline fashion
for discrete values of zi, and stored in the form of a table in
the mote’s memory. Once ai and mi are known, a sensor
node can find the most likelihood value for zi by looking up

the value of gi(zi)
(
= ai

mi

)
from the table. Distances to at

least three or more known points (zi’s) can then be used to
compute θ(x, y) by atomic multilateration.
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Figure 1. Effect of node destruction on the accuracy of signature-based localization approaches. (a)
No nodes destroyed, Node in question at θ(x, y) and |Gi| = mi = ai = 15 (b) No nodes destroyed,
Node in question at θ′(x′, y′) and |Gi| = mi = ai = 8 (c) 7 nodes destroyed, Node in question at θ(x, y),
|Gi| = mi = 15 and ai = 8

2.2 Disadvantages

In ESNs, node distribution can change due to factors like
node destruction/disablement, faulty nodes, etc. contrary to
the static node distribution assumption in signature-based
localization schemes. Figure 1 shows how random node
destruction affects localization in signature-based schemes.
Figure 1(a) is the base line scenario. In this case, the dis-
tance (zi) between θ and the point of group deployment pi

can be computed correctly. But, the above signature-based
method cannot distinguish between cases (b) and (c), i.e.,
when a node at θ actually observes just 8 nodes from group
Gi it will compute the distance between θ and pi as z′i (as
shown in Figure 1(b)). But, it may be the case that it just
hears from 8 nodes from group Gi because the remaining 7
nodes might be disabled and the correct distance is still zi

and not z′i (as shown in Figure 1(c)).

Table 1 shows an approximation of the function gi(zi),
discussed above, as a table of values. Assuming a group
size (mi) of 100, we can see from Table 1 that a difference
of even a single observed node can cause an error of roughly
12m in distance estimation to the corresponding deploy-
ment point. To verify the inaccuracies introduced by such
an approximation we conducted simulation experiments us-
ing the J-Sim [16] simulation environment for wireless sen-
sor networks. In this experiment, we simulate the signature-
based algorithm discussed above and observe the effects of
random node disablement on the localization accuracy of
the algorithm. The deployment area is a 600m × 600m
square grid consisting of 9 points, each having 20 nodes
distributed around it. In each run of the simulation, the final
position of each node is sampled from a two dimensional
Normal distribution (µ = 0, σ = 50, R = 200m) and
the transmission range is fixed at 200m. In each run, k (k
varies from 1 up to 15) nodes per group are destroyed in

Table 1. Table of gi(zi) values, R = 200, σ = 50

zi gi(zi) = ai

mi

1.00 0.864611
2.00 0.864449
3.00 0.864178

...
...

14.00 0.854055
15.00 0.852486

...
...

every group and the location of every node in a particular
group is estimated using the signature-based scheme dis-
cussed above. The results of the experiment are outlined in
the plot in Figure 2. Performance of the algorithm is mea-
sured as an average of the localization errors of all the nodes
in that group. From the plot, we can observe that the average
localization error increases as k increases. Another trend
that we observe in this plot is that at high values of k, the
localization inaccuracy increases less steadily. This shows
that beyond a certain threshold, the disablement of nodes
has little effect on increasing the localization error. More-
over, the average localization error in the case of zero node
destruction (i.e., k = 0) is just under 30m, which is high.
One reason for the low accuracy of this algorithm, even
when k = 0, is because the complex continuous function
gi(zi) is approximated by a table of discrete values. Thus,
to improve the accuracy and efficiency of signature-based
schemes in emergency applications, we need to address two
issues: 1) improve fault-tolerance against disabled nodes
and 2) reduce complexity. Since the accuracy of signature-
based schemes depends on the initial distribution of nodes,



we first need to formulate an efficient strategy for sensor
node deployment in emergency applications. We address
this problem in the following section.
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Figure 2. Plot of Localization vs. Number of
Disabled Nodes

3 Node Deployment in Emergency Situations

Existing scattering-based (by airplane, fire truck, etc.)
deployment strategies have several shortcomings for use
in ESNs. First, deployment areas under severe conditions
have high probability of node destruction as compared to
areas under relatively tranquil conditions. Thus, deploy-
ing equal sized groups or in one big group uniformly over
the entire area will not be very efficient in emergency situa-
tions. Points on the deployment area where the effect of the
emergency is high require more nodes as compared to areas
where the effect of the emergency is less hostile. But, just
randomly deploying high number of nodes at points with
greater emergencies is also not a good idea because the net-
work may end up losing more nodes and the application
may fail. Also, manual deployment is difficult due to the
hostility, inaccessibility and unpredictability at the site of
the emergency. Another problem is that current localization
schemes do not incorporate any nodes or protocols to mon-
itor changes in node distribution after deployment. Thus, a
more rigid analysis is required before deploying nodes over
the emergency area.

3.1 Model for Node Destruction

We model the phenomenon of node destruction at a point
during an emergency as a stochastic time process, which is
a process that can be described by a probability distribution
with domain as the time interval of the process. In other
words, it is a collection of random variables indexed by a
set T (time). This helps to quantify the expected number of
nodes that will be destroyed at a point during the emergency

and the initial number of nodes that should be deployed at
that point as a result. Assume that the emergency area is di-
vided into a rectangular grid. Each dot in the grid represents
a deployment point, say pi.

Definition 3.1 A deployment point is a point on the terrain
where a node (or group of nodes) is planned to be deployed.
The point where a node actually resides after deployment,
not necessarily the same as the deployment point, is called
the resident point.

Let (xi, yi) be the coordinates of the point pi. As-
suming that there are k deployment points p1(x1, y1),
p2(x2, y2), . . ., pk(xk, yk), we have k groups of nodes,
G1, G2, . . . , Gk, where Gi is to be deployed at pi. Since
we are trying to model the effect of external factors on node
survival, we assume that sensor nodes can be disabled only
by external factors like fire, temperature, force, etc. and not
by internal/self factors like battery failures, component mal-
function, etc. Let, ta be the start time of the application and
tb be the end time of the application. Thus, the entire pe-
riod of the application is, ta,b = tb − ta. Each deployment
point, pi, is associated with an emergency level based on the
severity of the emergency condition at that point, as defined
below.

Definition 3.2 An emergency level λi at any instance for
a deployment point i is defined as the average number of
destroyed nodes in group Gi per unit time at that instance
and the corresponding function λi(t) : t → N is called the
generalized emergency level function.

In the above definition, a node is considered destroyed or
disabled if it is not capable of communicating with any of
the neighboring nodes. The probability of the number of
disabled nodes in a group over a fixed period of time can be
expressed as a Poisson distribution because these disable-
ments occur with a known average rate (emergency level)
during that interval and are independent of the time since
the last node disablement. Specifically, the number of nodes
disabled in a group during the period of the application can
be modeled as a non-homogeneous Poisson process. This is
because, the average rate of node disablement (emergency
level) may change over time (between the start and the end
of application) as the effect of the emergency at that point
changes. Thus, the number of nodes disabled in a group
Gi deployed over a deployment point pi in the time interval
(a, b] , given as Ni(b) − Ni(a), is as shown in Eqn. (1),

P [(Ni(b) − Ni(a)) = ki] = f(ki, λ
a,b
i )

=
e−λa,b

i (λa,b
i )ki

ki!
(1)

where ki = 0, 1, . . . |Gi| and λa,b
i is the overall emergency

level for the deployment point i over the time interval (a, b].



As mentioned before, an emergency level at a point can-
not be assumed to be constant throughout the time interval
(a, b]. Emergency level at a deployment point increases over
time if the situation at that point worsens or it can decrease
as the situation subsides. As a result, the overall emergency
level λa,b

i for the deployment point i can be defined in terms
of the generalized emergency level function λi(t) as shown
below,

λa,b
i =

∫ b

a

λi(t)d(t).

3.2 Emergency Level-based Deployment

In this section, we describe a deployment strategy, called
the emergency level-based strategy, that can be used to de-
ploy sensor nodes in an emergency situation. The first issue
that we need to address is how to assign an emergency level
to each deployment point. An emergency scenario is an ac-
cumulation of various events occurring at various points.
Each deployment point is associated with a sequence of
events; each event produces a different rate of destruction.
For example, a forest fire emergency consists of some areas
that are directly under a wall of fire where the destruction
rate is the highest. Some areas where the fire is out but are
still under the effect of burning objects have lower rates of
destruction. While others that are just under the influence
of smoke might have a much lower rate of destruction. The
best way to determine emergency levels for the various de-
ployment points is by repeated controlled experiments. Be-
fore actual deployment, an emergency can be carried out in
a controlled environment and the sequence of events at any
deployment point i can be simulated for a fixed time, say
the time of application ta,b. A fixed large number of nodes,
mmax (explained in Section 3.2.1), are deployed initially in
groups for each point i and the number of destroyed nodes
can be noted. Such experiments can be repeated n times
and the number of destroyed nodes (kj

i ) is measured in each
run j. Given a sample of n measured values of disabled
nodes (k1

i , k
2
i . . . kn

i ) for each deployment point i, we wish
to estimate the value of the emergency level λa,b

i of point i.
Using a Maximum Likelihood Estimation (MLE) analysis,
one can derive the most likely value of the emergency level
for any deployment point i as shown in Eqn. (2).

λMLE
i =

1
n

n∑
j=1

kj
i (2)

Next, we focus on the group size or the total number of
nodes to be deployed at each deployment point.

3.2.1 Determining Deployment Size

Definition 3.3 The deployment size mi for any deployment
point i associated with an emergency level λa,b

i is the num-

ber of sensor nodes to be deployed at that point.

The deployment size mi for a deployment point i depends
on the emergency level λa,b

i at that point and is determined
as follows. The deployment size consists of two compo-
nents. The first, called the standard deployment (ms

i ), is
a fixed application specific constant that is same for ev-
ery group. The next component, called varied deployment
(mv

i ), is determined by the rate of node destruction at the
deployment point and is proportional to the overall emer-
gency level at the point i, i.e., mv

i ∝ λa,b
i . Thus, the de-

ployment size mi at a deployment point i is a combination
of the standard deployment and the varied deployment com-
ponents, i.e., mi = ms

i + mv
i . Intuitively, more number of

sensors are required at deployment points with higher emer-
gency levels as compared to lower ones. According to our
quantification of the deployment size, as the varied com-
ponent of the deployment size is proportional to the emer-
gency level it will make sure that areas with higher emer-
gencies receive a larger deployment size. Moreover, the
varied component mv

i of the deployment size offsets the
effects of node destruction at that point. Let mmax be an
application dependent upper bound on the maximum num-
ber of nodes that can be deployed at any point that depends
on factors like network density, cost of nodes, priority of
coverage etc. Sensor nodes will be deployed at each de-
ployment point in groups of size equal to the deployment
size mi if and only if mi ≤ mmax.

3.2.2 Hierarchical Deployment

Every group Gi consists of at least one node designated
as the group head either prior to deployment or post-
deployment through voting-based techniques. Group heads
(or base stations) have been important components in the
design of efficient monitoring applications right from the
inception of wireless sensor networks. Due to the low com-
putation power and storage capacity of sensor nodes, sensor
network applications normally employ a record and forward
paradigm [19]. In this paradigm, sensor nodes forward data
to their respective group heads as soon as it develops, which
then aggregates it and forwards it up the hierarchy. Because
of such a hierarchical design, group heads are aware of all
the active nodes in the group. Such a hierarchical design can
be used in signature-based localization schemes to decide
which groups have sufficient number of nodes to perform
localization accurately. But, the group head in such a set-
ting can also be a single point of failure. To overcome this
problem, a group can appoint more than one group head de-
pending on factors like size of group, distance between de-
ployment points, type of application, etc. But, to elucidate
the current exposition, we assume without loss of general-
ity that each group consists of a single, always on (i.e., it is
never disabled) group head.



We now summarize the deployment strategy:

1. Divide the deployment area into a fixed set of deploy-
ment points.

2. Assuming that there are k deployment points, assign an
emergency level to each deployment point as discussed
before. Then, prepare k groups of nodes, each of size
determined by the corresponding emergency levels.

3. All of the above information like the group sizes, emer-
gency levels, node distribution (discussed later) etc.,
called predeployment information, is loaded into the
memory of every node before deployment.

4. Finally, deploy each group of nodes at the correspond-
ing deployment point using non-manual techniques
like aerial scattering, dispersion from a fire truck, etc.

3.3 Deployment Distribution

For a group of nodes thrown at a deployment point, the
probability that the final position of a node from the group
is at the deployment point is the highest and the probabil-
ity decreases as we move away from the deployment point.
As a result, the final position (resident point) of the nodes
after deployment can be modeled as a continuous random
variable with a certain fixed non-uniform p.d.f like Normal
(Gaussian) distribution as shown in Eqn. (3). Moreover,
random variates with unknown distributions are often as-
sumed to be Normal (Gaussian), especially in physics and
natural sciences, and thus we can assume that the node dis-
tribution around a deployment point is Normal. For a group
Gi, the mean (µ) of the p.d.f is the corresponding deploy-
ment point pi(xi, yi). The standard deviation (σ) is applica-
tion specific and depends on the coverage required around
the deployment point.

fi(x, y) =
1√
2πσ

e−[(x−xi)
2+(y−yi)

2]/2σ2
(3)

Equation (3) gives the probability that a node in the group
Gi has a final position (x, y). Let Pri(v) be the probability
that a node v selected at random belongs to the group Gi.
Then,

Pri(v) =
mi

m1 + m2 + . . . + mk
(4)

where mi, i = 1 . . . k is the deployment size of the group
Gi. Thus, the overall distribution of a randomly selected
node v, i.e., the probability that the node v is present at the
point (x, y) on the deployment area is:

foverall(x, y) =
k∑

i=1

Pri(v) × fi(x, y) (5)

Equation (5) represents the probability distribution of the fi-
nal position of nodes just at the moment they are deployed.
In theory, the probability that a randomly selected node lies
closer to deployment points with higher emergency levels
is high. But in practice, this may not be true as nodes in
groups near higher emergency levels may also be destroyed
with a higher probability and as a result the actual size of
such groups may be fairly smaller than their original size at
deployment. As discussed in Section 2.2, any scheme that
uses this distribution should account for the loss of nodes
in each group and use the most current group size. Next,
we discuss a very simple and intuitive solution to the above
problem, called the Group Selection Protocol (GSP). GSP,
which is implemented on top of a signature-based localiza-
tion algorithm, monitors changes in node distribution over
the deployment area and helps to improve the accuracy of
the resulting localization schemes.

3.4 Improving Signature-based Localiza-
tion: Group Selection Protocol (GSP)

Let ai be the number of nodes from group Gi that the
target node at point θ(x, y) can hear from and let zi be the
distance from the target node to the deployment point of
group Gi. The problem with the localization algorithm dis-
cussed in Section 2 is that in ESNs, not every observation
ai in {a1, . . . , an} is correct or accurate. Groups where the
node destruction rate is high might not be able to provide
the correct value of ai for localization. One way to over-
come this problem is by being selective in choosing groups
Gi’s (and the corresponding observations ai’s) for the lo-
calization process. We use ai’s from only those groups that
are healthy.

Definition 3.4 The health of a group is quantified by the
number of active nodes in the group. A node is active if it
is able to communicate with at least one other node in the
same group.

In other words, only observations from those groups are
used during localization in which the current health of the
group is at least equal to the standard deployment size (ms

i ).
This modification will reduce the number of zi’s (distances)
available for localization. But, as long as we have at least
3 relatively accurate values of zi’s, localization can be done
efficiently. Absence of at least 3 values for zi will cause
localization to fail, but due to the criticality of the applica-
tions in emergency situations sometimes no location is bet-
ter than an incorrect value. In this protocol, group heads are
used to monitor the health of their corresponding groups.
After deployment, as the ad hoc network comes up, nodes
begin sending initial setup information to their respective
group heads. Using these communications from members
of the group, the group head updates the health of its group.



At regular intervals, the group head broadcasts the current
health of its group. These broadcasts are forwarded by all
nodes up to a certain hop count so that even nodes farther
away can know the health status of a particular group. The
communication between nodes and the group head health
broadcasts can be synchronized with the sleep-wake cycles
of the nodes to save power. The group selection protocol is
as outlined in Algorithm 1.

1: Observe the neighborhood, i.e., {a1, a2 . . . ak| ai is the
number of nodes in group Gi that are in radio range. }

2: Wait and observe health broadcasts (hi) from the group
heads. Update hi to the latest value for each group.

3: for all groups Gi for which hi is known do
4: if The group is healthy, say (hi ≥ ms

i ) then
5: Compute g(zi) = ai/hi.
6: Compute zi from g(zi) by table look-up.
7: end if
8: end for
9: if zi corresponding to at least 3 distinct groups Gi is

known then
10: Compute θ(x, y) by multilateration (using zi’s and

their corresponding pi’s)
11: else
12: print “Cannot do Localization!”
13: end if

Algorithm 1: Group Selection Protocol (GSP)

Although the GSP proposes only minor and intuitive im-
provements to the process of signature-based localization,
it performs better than existing algorithms in dynamic sce-
narios. We verify this claim using simulation experiments
as outlined in Section 5. Simulation results show that GSP
does improve the localization accuracy of signature-based
algorithms when nodes over the deployment area are ran-
domly disabled. Despite this improvement, there are some
glaring problems with current signature-based approaches
that are still left unaddressed by just employing the GSP.
Current signature-based schemes are extremely complex in-
volving hard to compute functions. Simplifying the pro-
cess by using regression-based or table-based approxima-
tion techniques results in loss of accuracy in addition to is-
sues like offline computation and storing the function as a
table in the memory. The GSP provides some improvement
in terms of accuracy relative to standard signature-based ap-
proaches, but does not improve on the complexity of such
schemes. Moreover, GSP does not work well if node de-
struction is not localized to only some deployment points
in the network. To overcome these problems, we propose a
simple fault-tolerant signature-based localization approach
called ASFALT.

4 ASFALT: A Simple Fault-tolerant
Signature-based Localization Technique

In this approach, instead of just observing its neighbor-
hood, the target node computes distances to every node in
its neighborhood. The set of distance estimates from the
target node to all nodes in a particular group is called the
distance vector for that group. This distance vector is a
sample from the two dimensional Normal distribution with
mean as the distance between the target node and the de-
ployment point of the group. Thus, given a distance vector,
the distance from the target to a deployment point can be
easily estimated by computing the mean of the sample.

4.1 Assumptions

We assume that nodes are deployed over the deployment
area using an emergency level-based deployment strategy
(Section 3). Also, any node is efficiently able to estimate
its distance to its one hop neighbors using techniques like
Received Signal Strength Indicator (RSSI), Time of Arrival
(ToA), Time Difference of Arrival (TDoA), etc. [8]. Since
currently we are not modeling any specific emergency, it is
reasonable to assume that nodes are destroyed in a random
fashion within a group. This is different from the number
of nodes destroyed which is still a Poisson process and de-
pends on the rate of destruction at that point. All the sym-
bols and terminology used in this section are same as Sec-
tion 3.

4.2 Localization Scheme

Let M be the target node for which localization has to be
done and let θ(x, y) be the actual position of M . The AS-
FALT localization technique is outlined in Algorithm 2. Let
zi be the actual distance between θ(x, y) and the deploy-
ment point i. Let d1

i , d
2
i . . . dmi

i |dj
i ∈ R be the distances

of the nodes from the deployment point i (dj
i > 0, if the

position of node j is after i on the real line and dj
i < 0 oth-

erwise). Assuming that all mi (ms
i + mv

i ) nodes in Gi are
in the radio range of M , let z1

i , z2
i . . . zmi

i be the distances
of the nodes from M (distance vector). As mentioned be-
fore, the distances in the set {d1

i , d
2
i . . . dmi

i } follow a Nor-
mal distribution and let d̃ be the random variable that takes
values in this distribution. Thus,

E(d̃) = 0 (6)

In other words, the mean of all distances selected from this
distribution is 0. Let Z̃i be the random variable that takes
values in the distribution followed by the distance estimates
in the distance vector for group Gi. Since each zj

i depends



on the corresponding dj
i , from Eqn. (6) we can claim that,

E(Z̃i) = zi (7)

In order to compute θ(x, y), M needs distances zi’s to

1: Observe the neighborhood, i.e., {a1, a2 . . . ak| ai is the
number of nodes from group Gi in radio range. }.

2: for all groups Gi for which ai �= 0 do
3: Compute z1

i , z2
i . . . zai

i .
4: Observe health broadcasts (hi) from the group head.

Update hi to the latest value for the group.
5: end for
6: for all groups Gi for which hi is known do
7: if The group is healthy, say (hi ≥ ms

i ) then
8: if (ai < αi) then
9: Continue; {Sufficient samples not available for

approximating zi}
10: else if (ai ≥ αi) and (ai < βi) then
11: Compute zi = max{z1

i , z2
i . . . zai

i }; {Samples
for approximating zi do not cover the entire dis-
tribution}

12: else if (ai ≥ βi) then

13: Compute zi =
∑ai

j=1
zj

i

ai
{Compute mean}

14: end if
15: else
16: if (ai < βi) then
17: Continue;
18: else

19: Compute zi =
∑

ai

j=1
zj

i

ai

20: end if
21: end if
22: end for
23: if zi corresponding to at least 3 distinct groups Gi is

known then
24: Compute θ(x, y) by multilateration (using zi’s and

their corresponding pi’s)
25: else
26: print “Cannot do Localization!”
27: end if

Algorithm 2: ASFALT Localization Algorithm

at least 3 or more deployment points so that multilatera-
tion can be done correctly. M first observes its neighbor-
hood (a1, a2 . . . ak). Then, M computes the k distance vec-
tors {(z1

1 , z2
1 . . . za1

1 ), (z1
2 , z2

2 . . . za2
2 ) . . . (z1

k, z2
k . . . zak

k )}.
It then computes the corresponding zi by taking the mean
of the corresponding z1

i , z2
i . . . zai

i values, i.e.,

zi =

∑ai

j=1 zj
i

ai
(8)

It is obvious that larger the sample size ai, better is the ap-
proximation for zi. The best approximation is when dis-
tances from all the nodes in a group are available. But, an

entire distance vector may not be available because of two
reasons: 1) the whole group might not be in radio range
(Figure 1(b)), or 2) some nodes in a group may be disabled
(Figure 1(c)). Thus, we need to distinguish between these
two cases and handle them separately. To do this we imple-
ment GSP on top of this algorithm to monitor group health.
If the group is healthy (hi ≥ ms

i ) but still the target node
hears from only a few nodes in a group; this would imply
that not all nodes in that group are in the radio range. Other-
wise, if the group is not healthy (hi < ms

i ), the usefulness
of the observation vector is determined by the number of
nodes visible (ai) and a parameter βi discussed next.

4.2.1 Determining αi and βi

The ASFALT algorithm discussed above requires two pa-
rameters to determine if a distance sample or vector
(z1

i , z2
i . . . zai

i ) for any point i is large enough to approxi-
mate the distance zi correctly. The mean threshold βi for
a group Gi is the minimum number of distance values re-
quired in the distance sample so that it correctly represents
the original distribution of nodes around the deployment
point (Normal). If the size of the observed sample is at least
βi then the algorithm computes the distance zi as the mean
of the distance values in the sample. If the size of the ob-
served sample is less than βi then it means only part of the
group can be heard by the target node and zi is computed as
the largest value of the distances in the sample. Generally,
β = |ms

i |
2 works well for most cases. The minimum thresh-

old αi is the minimum number of distance values in the
sample required to make any reasonable estimation of the
distance zi. If the size of the observed sample is less than
αi, we discard that observation from consideration in the
localization process. This prevents inclusion of erroneous
measurements in the multilateration process. αi is gener-
ally assigned a low value. From our simulation experience,
we observe that αi ≈ |ms

i |
3 works well for most cases.

5 Evaluation

In this section, we present a detailed evaluation of the
GSP and ASFALT mechanisms using the sensor network
simulation tool J-Sim [16] and compare their performance
to the signature-based scheme proposed by Fang et al. [6].
In these experiments, deployment is done over a grid of
600m × 600m, consisting of 9 deployment points 100m
apart as shown in Figure 3(a). Each deployment point has
around 20 nodes deployed around it, following a 2D Normal
distribution with mean (µ) as the corresponding deployment
point and standard deviation (σ) as 50. Since we just want
to observe the effects of node destruction on the accuracy
of localization algorithms, we assume that the deployment
size of every group is same, i.e., mi = ms

i = 20 ∀i. Each
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Figure 3. (a) Simulation setup - topology and node deployment (b) Plot of Localization Error vs.
Number of Destroyed Nodes (c) Plot of Average Estimation Error vs. Transmission Range

group has a single group head. The estimation error is the
Euclidean distance between the actual position and the esti-
mated position of the node and is measured in meters. We
plot the average of the estimation error of all the nodes only
from group 4. This is done to avoid the boundary nodes,
because localization errors in the boundary nodes are gen-
erally high due to lack of sufficient samples for localization.

In the first experiment, we simulate the signature-based
approach, signature-based approach with GSP and the AS-
FALT algorithm in dynamic environments. In each simula-
tion run, k nodes are destroyed from groups 1 and 5 (marked
with dotted circles in Figure 3(a)), and the value of k varies
from 1 up to 15. The simulation setup is not static, i.e,
the node positions are not fixed throughout the experiment.
Nodes in each group are reassigned new positions accord-
ing to the 2D Normal distribution at the start of each sim-
ulation run. The transmission range of each node is fixed
at 200m. The mean threshold βi is 10 and the minimum
threshold αi is fixed at 5 for each group. We also assume
that a group is healthy if its advertised health hi differs from
the original health mi by at most 2. The simulation results
are depicted in Figure 3(b). As we can see from Figure 3(b),
the ASFALT localization approach performs much better as
compared to the other two approaches and the average lo-
calization error of ASFALT increases much less sharply as
compared to the other two. As the number of disabled nodes
per group (for groups 1 and 5) increases the average local-
ization error for all of the 3 algorithms increases. For lower
number of destroyed nodes, the signature-based algorithm
outperforms the GSP. This is obvious, as the GSP does not
consider samples from groups 1 and 5 even when the num-
ber of destroyed nodes is low (but more than 2). The GSP
performs marginally better than the signature-based algo-
rithm when the number of disabled nodes is high. We have
also conducted similar experiments for σ = 100, i.e., nodes
are sparsely distributed around the deployment point. The

trends in the performance of the algorithms is similar to the
one shown in Figure 3(b), but the localization error is com-
paratively higher in this case.

In the second experiment, we observe the effect of radio
range on the performance of ASFALT. The results are as
expected (see Figure 3(c)). When the radio range increases,
each node is able to cover a larger area and thus not only
distance samples of a larger size are available from each
group, but also more groups become available. As a result,
the effect of node destruction is lesser when the node radio
range is higher.

6 Comparison with Related Work

Despite the advances in the area of localization tech-
niques for sensor network, the problem of fault-tolerant lo-
calization has not received much attention. Robust localiza-
tion schemes in the presence of malicious nodes and erro-
neous range measurements exists [12, 13]. But, the problem
of localization in the presence of erroneous measurements
is different from the one in which entire nodes can be dis-
abled after deployment. The most notable work in fault-
tolerant localization was by Tinós et al. [17]. They present
a novel fault tolerant localization algorithm developed for a
system of mobile robots, called Millibots, that measure the
distances between themselves and then use Maximum Like-
lihood Estimation to determine their location. In another re-
lated work, Ding et al. [4] propose a median-based mecha-
nism for reducing the effect of faulty sensor nodes in target
detection and localization algorithms. To the best of our
knowledge, there has been no previous work specifically
addressing efficient and fault-tolerant deployment strategies
and signature-based localization schemes for ESNs.



7 Conclusion and Future Work

In this paper, we have addressed the problem of fault-
tolerant node deployment and signature-based localization
for ESNs. We have outlined an efficient strategy for node
deployment in emergency applications, called the emer-
gency level-based strategy. We have also proposed a sim-
ple enhancement to existing signature-based approaches,
called Group Selection Protocol (GSP), that improves lo-
calization accuracy by monitoring changes in node distri-
bution. Finally, we have proposed ASFALT, a novel yet
simple, fault-tolerant technique for localization in ESNs
that combines the salient features of both traditional range-
based and signature-based approaches. Our simulation re-
sults have shown that ASFALT performs better compared to
other signature-based techniques, especially in situation of
high node destruction.

The improvement provided by GSP and ASFALT comes
at the cost of extra communication (health status adver-
tisement) and computation (distance estimation) overhead.
Further evaluation is needed to compare the complexity
and overhead of the proposed techniques against existing
schemes and we intend to complete this as a part of future
work. Moreover, in this work we assumed an ideal radio
model (circular coverage area) which is not practical. As
a part of future work, we would like to extend the current
work to incorporate more practical radio propagation mod-
els like two-ray ground model, shadowing model, etc.
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