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Abstract—Data aggregation is a fundamental building block
of modern distributed systems. Averaging based approaches,
commonly designated gossip-based, are an important class
of aggregation algorithms as they allow all nodes to pro-
duce a result, converge to any required accuracy, and work
independently from the network topology. However, existing
approaches exhibit many dependability issues when used in
faulty and dynamic environments. This paper extends our
own technique, Flow Updating, which is immune to message
loss, to operate in dynamic networks, improving its fault
tolerance characteristics. Experimental results show that the
novel version of Flow Updating vastly outperforms previous
averaging algorithms; it self adapts to churn without requiring
any periodic restart, supporting node crashes and high levels
of message loss.
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I. INTRODUCTION

With the advent of multi-hop ad-hoc networks, sensor net-
works and large-scale overlay networks, there is a demand
for tools that can abstract meaningful system properties
from given assemblies of nodes. In such settings, aggre-
gation plays an essential role in the design of distributed
applications [1], allowing the determination of network-wide
properties like network size, total storage capacity, average
load, and majorities. Although apparently simple, in practice
aggregation has reveled itself to be a non-trivial problem in
distributed settings, where no single element holds a global
view of the whole system.

Distributed data aggregation becomes particularly difficult
to achieve when faults are taken into account (i.e. message
loss and node crashes), and especially if dynamic settings are
considered (nodes arriving/leaving). Few have approached
the problem under these settings [2], [3], [4], [5], [6], [7],
proving to be hard to efficiently obtain accurate and reliable
aggregation results in faulty and dynamic environments.

Classical approaches, like TAG [2], perform a tree-based
aggregation where partial aggregates are successively com-
puted from child nodes to their parents until the root of the
aggregation tree is reached (requiring the construction of
a specific routing topology). This kind of aggregation tech-
nique is often applied in practice to Wireless Sensor Network

(WSN) [8]. Other tree-based aggregation approaches can be
found in [3], and [9]. We should point out that, although
being energy-efficient, the reliability of these approaches
may be strongly affected by the inherent presence of single-
points of failure in the aggregation structure.

Sampling techniques [4], [10], [5] are independent from
the routing topology, but are not accurate. Their result is
affected by an estimation error, even in fault-free scenarios,
depending on the quality of the collected samples and the
applied estimation method. Moreover, samples are collected
at a single node and can incur in a considerable delay,
especially if the probing message is lost. The estimation
error can reach 20% in Sample & Collide [10], [4].

A useful class of high accuracy aggregation algorithms
is based on averaging techniques [11], [6], [12], [13]. Such
algorithms start from a set of input values spread across
the network nodes, and iteratively average their values with
neighbors. Eventually all nodes will converge to the same
value and can estimate some useful metric. Averaging tech-
niques allow the derivation of different aggregation functions
besides average (like counting and summing), according to
the initial combinations of input values. These techniques are
thought to be robust and accurate (converge over time), when
compared to other aggregation techniques, but in practice
they exhibit relevant problems that have been overlooked,
not supporting message loss nor node crashes (see [14] for
more details).

The main contribution in this article is to extend our
own averaging approach, Flow Updating [15], which is
immune to message loss, in order to handle node arrival and
departure/crash. We evaluate the new approach, and show
that it is fault-tolerant and able to efficiently support network
dynamism, exhibiting self-stabilizing properties.

The remainder of this paper is organized as follows.
Section II describes a new version of the Flow Updating
algorithm able to work in dynamic networks. In Section III,
we evaluate the proposed approach using simulation. In
Section IV we point to directions of further research. Finally,
we make some concluding remarks in Section V.



II. FLOW UPDATING FOR DYNAMIC NETWORKS

Flow Updating [15] is a recent averaging based aggrega-
tion approach, which works for any network topology and
tolerates faults. Like existing gossip-based approaches, it
averages values iteratively during the aggregation process
towards converging to the global network average. But
unlike them, it is based on the concept of flow, providing
unique fault-tolerant characteristics by performing idempo-
tent updates.

Here we extend Flow Updating to perform robust data
aggregation on dynamic networks. The extension is based
on maintaining a dynamic mapping of flows according to
the current set of neighbors: removing the entries relative
to leaving (or crashing) nodes, and adding entries for newly
arrived nodes. The averaging process in each node uses only
the current set of neighbors. This straightforward modifica-
tion allows Flow Updating to cope with node departure/crash
and node arrival, extending its fault tolerance properties to
these scenarios.

Node departure, crash or arrival are modeled by a failure
detector that gives for each node at each round the set of
neighbors considered to be alive. The interesting thing is
that the extension of Flow Updating will allow the use of
practical implementations of failure detectors, that can be
incorrect many times (falsely suspecting correct nodes or
vice-versa) without compromising the correctness.

New nodes are immediately allowed to participate in the
averaging process, and leaving or crashed nodes implicitly
stop participating in it. The algorithm runs continuously,
without requiring restarts in order to adapt to network
changes/failures, and at each round simply makes use of
the set of neighbors ni given by the failure detector. No
concept of epoch is required and the algorithm is always
converging towards the average according to the current set
of participants, allowing a fast self adaptation to network
changes. Another advantage of Flow Updating is that it also
allows the value to be aggregated vi to change over time
(e.g. a temperature). Again, the algorithm will converge to
the aggregation of the most recent value at each node without
requiring a restart. In the algorithm, presented in Figure 1,
we call these values that can be read at each round, but are
not updated by the algorithm, the inputs.

A. Algorithm

The algorithm is presented under the synchronous network
model (as in Chapter 2 of [16]). Computation proceeds
in synchronous rounds. At each round, first nodes look at
their state and compute what messages are sent, through a
message-generation function; then nodes take their state and
the messages received and compute a new state, through a
state-transition function. Each node needs only to be able to
distinguish its neighbors, not requiring the use of globally
unique identifiers.

1: inputs:
2: vi, value to aggregate
3: ni, set of neighbors given by failure detector
4:
5: state variables:
6: flows: initially, Fi = {}
7:
8: message-generation function:
9: msgi(Fi, j) = (i, f, est(vi, Fi))

10: with

11: f =

{
Fi(j) if (j, ) ∈ Fi

0 otherwise
12:
13: state-transition function:
14: transi(Fi, Mi) = F ′i
15: with
16: F = {j 7→ −f | j ∈ ni ∧ (j, f, ) ∈Mi} ∪
17: {j 7→ f | j ∈ ni ∧ (j, , ) 6∈Mi ∧ (j, f) ∈ Fi}
18: E = {i 7→ est(vi, F )} ∪
19: {j 7→ e | j ∈ ni ∧ (j, , e) ∈Mi} ∪
20: {j 7→ est(vi, Fi) | j ∈ ni ∧ (j, , ) 6∈Mi}
21: a = (

∑
{e | ( , e) ∈ E})/ |E|

22: F ′i = {j 7→ f + a− E(j) | (j, f) ∈ F}
23:
24: estimation function:
25: est(v, F ) = v −

∑
{f | ( , f) ∈ F}

26:

Figure 1. Flow Updating algorithm for dynamic networks.

The state of each node i consists of a mapping Fi from
node ids to flows; it stores, for each current neighbor, the
flow along the edge to that node.

A single type of message is sent, containing the self id i,
the flow Fi(j) to each current neighbor j, and the aggregate
estimate (lines 9–11). When no flow value is available
for a given neighbor, initially or when a new node starts
participating, the value 0 is used. The estimate is computed
by making use of the estimation function (line 25).

The state-transition function (lines 14-22) takes a state
Fi and the set of messages Mi received by the node in
the round, and returns a new state F ′i . We make use of
some auxiliary variables to compute the new state: the flows
F updated according to the messages received, and the
estimates E (last received) used to compute the new average
a. Looking at these values in more detail:

• F is a mapping from current neighbor ids to: the
symmetric of the flow in messages, for those neighbors
that sent messages successfully; the current value, if
any, in the case of message loss.

• E is a mapping from node ids to estimates: for the
self node i, according to the estimation function, using
the newly updated flows in F ; for neighbors whose
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Figure 2. Example of a simple Flow Updating run, without faults.

messages arrived, the estimate sent; otherwise, the
estimate according to the estimation function, using the
flows at the beginning of the round (this is the estimate
sent to all neighbors at the beginning of the round).

• a is simply the average of the estimates in the mapping
E, and represents the new estimate towards which the
node will lead its neighbors to converge in the next
round.

Finally, the new mapping F ′i is calculated by adjusting each
flow in F so that the estimates move towards a: the estimate
for node i in the beginning of next round will be a; each
neighbor would compute a as its estimate at the end of the
next round if it did not receive other messages from its own
neighbors (e.g. if it has node i as its only neighbor).

B. Example Run

We now illustrate the execution of the algorithm in a
simple path network of three nodes, {a, b, c}, with two links,
{(a, b), (b, c)}. First we consider a run, in Figure 2, where
no failures occur. Rounds start executing from an initial
state where each node estimate is the input value (2, 1, and
6, respectively), and no flows are registered, defaulting to
0. When starting round 1 nodes generate the messages to
their neighbors and send them (e.g. node a sends message
(a, 0, 2) to node b, illustrated by a diagonal arrow). Then,
they inspect their state and messages received and apply the
state-transition function. In the second row in the figure we
illustrate final values at the end of round 1. Flows are shown
close to the node, in the direction of the respective neighbor
and are according to F ′i . The estimates, depicted in the center
of the node circle, reflect est(vi, F

′
i ). For each round we also

indicate the sum of flows across all nodes (labeled flows)
and the the sum of all node estimates (labeled mass). One
can see that when the system converges flows add up to 0,
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Figure 3. Example of a Flow Updating run with a message loss.

the mass depicts the sum of the input values, and all nodes
estimate the same value.

In this particular run, in Figure 2, the system converges
after round 2. After this round the flows are skew symmetric
and all nodes correctly estimate an average of 3. This fast
and precise convergence in a short number of rounds is
possible, in flow update, due to the simplicity of this network
and the absence of cycles in the graph. However, even in this
simple path graph, other averaging algorithms (e.g. [11] and
[6]) would take a large number of rounds to reach a high
level of accuracy.

We now consider the effect of loosing one message. In
Figure 3 a message from node b to a sent in round 2 is lost.
In this case, we assume that the failure detector in a does
not mark node b as failed (one still has na = {b}), and thus
one can observe the impact of a single message loss. We
now describe the actions in node a at round 2. According
to the algorithm (line 17), if a neighbor is considered active
by the failure detector but its message has not arrived, then
the stored flow value is used (in this case 0.5). Similarly, the
algorithm (line 20) uses the estimate at the beginning of the
round for nodes whose messages have not arrived (in this
case 1.5); this corresponds to the estimate at the end of the
previous round, which is also the value sent to neighbors
in the current round. Since no message is received by node
a, the same estimate is used for both nodes to compute the
new average, keeping it unchanged as (1.5 + 1.5)/2 = 1.5.
Since node a estimate is unaltered, so is the flow towards
node b (0.5 + 1.5 − 1.5 = 0.5). Overall, the impact of this
single lost message was simply to delay convergence to the
end of round 3.

Now we consider an execution where a node fails perma-
nently and this is detected by the neighbor node. In this case,
in Figure 4, node c fails at round 1 and this is detected by
its neighbor node b, from round 2 onwards. After this failure
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Figure 4. Example of a Flow Updating run with a node crash/departure.

nodes a and b should no longer converge to a common
estimate of 3 but instead to 1.5, the average of the input
values at the remaining nodes. In node b, at round 2 node c
no longer belongs to nb (nb = {a}), thus according to the
algorithm (lines 16-17) its previous flow does not get into
the mapping F . Likewise, its estimate is not incorporated in
E and the target average, line 21, now only considers nodes
a and b. This changes in node b will indirectly lead node a
to adjust its flows; convergence of the two remaining nodes
to the new target will be at the end of round 3.

One should also note that, if node c becomes active again,
sends messages to b, and eventually is again considered an
active neighbor in nb, then this leads to a rebalancing of
the average that again considers the input value in c. This
plasticity allows the algorithm to quickly adapt to changes
in active membership due to churn, as well as message loss.

III. EVALUATION

In this section, we provide some experimental results to
evaluate Flow Updating under demanding faulty scenarios,
with both churn and message loss. We also compare it with
an existing average based technique intended to be able
to operate in dynamic networks, more specifically Push-
Pull Gossiping [6]. For that purpose, we use a custom
high level simulator, operating in synchronous rounds, to
compute the COUNT aggregation function (determination
of network size). Convergence speed depends on the initial
data distribution across the network; COUNT represents an
extreme scenario where only one node starts with the value
1 and all others with 0. We chose to use this aggregation
function for evaluation because it is the one with the worst
performance. The algorithm will perform better when com-
puting an AVERAGE of uniformly distributed input values.
SUM will have the same performance as COUNT, as it is
computed by combining AVERAGE and COUNT.

We consider two different network topologies: random
(generated according to the Erdős–Rényi model [17]), and
2D/mesh (geographical networks, with random uniform
node placement, where communication links are established
according to a predefined radio communication range, an
approximation to the topologies occurring in WSN). The
results for each scenario are drawn from 30 trials of the
execution of the algorithms under identical settings. In each
trial different randomly generated networks with the same
characteristics (topology, size and average degree) are used.
All networks considered in every scenario start with the
same size (n = 1000), and the same approximated average
connection degree (d ≈ 2 log n). Notice that according
to [18], log n is the degree that nodes must have in order
to keep the network connected with constant probability,
considering that all nodes fail with a probability of 0.5.
However, we choose to be more conservative and use a
value twice higher, in order to avoid significant network
partitioning when testing failure of one quarter of the nodes.

We start by considering a random network scenario,
when subject to both drastic and continuous changes of
the network membership. For this purpose, we successively
applied a sudden departure (catastrophic crash) and arrival of
25% of the initial nodes, followed by an arrival and departure
of the same portion of nodes at a constant rate (10 nodes
per round). For a matter of clarity, a stability period of 50
rounds is introduced between each network change.

First, we compare Flow Updating (FU) with Push-
Pull Gossiping[6] (PPG), and Push-Pull Ordered Wait [14]
(PPOW is a fix of PPG that solves its atomicity problems),
in the described random dynamic network scenario without
message loss. PPG implements a restart mechanism to cope
with churn, starting a new instance of the algorithm after
a predefined number of rounds (epoch), and prevents new
nodes from participating in the current epoch. Similarly to
PPG, PPOW was extended with a restart mechanism, but
instead of delaying the participation of new nodes to the
next epoch, joining nodes are allowed to immediately par-
ticipate. This modification was applied since it yielded more
favorable results to PPOW in all performed experiments.

Figure 5 shows the results obtained, using an epoch
length of 50 rounds. We can observe that an overestimate
is produced by PPG due to its atomicity problems, even
without network changes (e.g. between round 0 and 50),
which is solved by PPOW that converges to the expected
value. Most important, these results expose the effect of
the restart mechanism, that introduces an undesirable delay
to respond to network change. Note that, this delay is also
observed even if only the estimate at the end of each epoch
are considered as valid (points at the end of each PPG and
PPOW epoch, every 50 rounds). In the particular case of
PPG, the delay is present in both node departure and arrival.
However, in PPOW the response time to changes is reduced
in the case of nodes arrival by allowing joining nodes to
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immediately participate in the current epoch.
The restart mechanism introduces a trade-off between the

response time to network change and the accuracy of the
push-pull algorithms, preventing them from following the
network change with high accuracy. In contrast, FU is able
to closely follow the network changes without requiring
any restart mechanism. FU clearly outperforms the other
approaches (PPG and PPOW) which are unable to adapt
to network changes. For this reason, the remainder of the
evaluation focuses exclusively on Flow Updating.

We now evaluate the behavior of FU on the same dynamic
random network. But besides churn, we also consider that
each received message (at each round) can be lost according
to a given probability. Figure 6 shows more clearly that
the mean of the estimates produced by FU closely follows
the network changes. Moreover, from Figures 6 and 7, we
observe that message loss, even in considerable amounts
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Figure 7. Coefficient of variation of the RMSE in a dynamic random
network with message loss.

20% and 40%, only slightly affects convergence speed and
the ability of the algorithm to cope with churn.

Curiously, in some situations the algorithm even benefits
from message loss, increasing its convergence speed (e.g.
20% loss in round 175 to 225 of Figure 7). We found out
that it is possible to increase the convergence speed of the
algorithm by “deactivating” some communication links. This
deactivation also provides a considerable reduction on the
number of messages required to reach a given accuracy level.
In some cases, message loss reproduces this effect. We are
currently exploring mechanisms to control this feature [19],
although a thorough study of this additional source of
convergence speedups is left for future work.

Figure 7 shows the coefficient of variation of the root
mean square error1 along time, allowing the observation
of the global accuracy variation due to network dynamism.
This metric compares each individual estimate against the
actual network size, as perceived by an external observer that
can inspect the whole network in 0 rounds. This is a very
demanding metric, since in any actual distributed algorithm
nodes would have a delay proportional to diameter rounds
before knowing the network size.

The results confirm the fast convergence of the algorithm
during stability periods, and show expected accuracy de-
creases (increase of the CV(RMSE)) resulting from network
changes. Brutal changes lead to momentary perturbations
which are rapidly reduced, while continuous changes will
provoke an accuracy reduction that persists during the con-
tinuous churn time period. In this particular case, for the
considered churn rate (10 nodes per round), the arrival of
nodes will increase the global error from less than 0.01%
to about 3.5%, and node departures will increase it from

1Root of the mean squared differences between the estimate ei at
each node i and the correct result e, divided by the correct result:
1
e

√
1
n

∑n

i=1
(ei − e)2
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less than 0.01% to about 50%. Node departure (or crashes)
induce higher perturbations than node arrivals; in both cases
the higher the number of nodes involved the bigger is the
impact on node estimation accuracy. The effect of churn on
each node estimate is clearly depicted by Figure 8, which
shows the distribution of individual estimates along time,
considering 20% of message loss2.

The previous simulation scenarios are now applied using
2D/mesh network topologies. Since the convergence speed
of these kind of networks is much slower (see [15]), a
bigger stability period (500 rounds) and slower churn rate (1
node per round) were considered. Results are presented in
Figures 9 and 10. In these settings, the behavior of Flow
Updating is similar to the one previously described for
random networks, although a deeper contrast between the
effect of node arrival and departure is observed. Namely,

2The graphic of the distribution of node estimates in a scenario without
message loss is very similar to the case of 20% faults.
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the perturbation introduced by a sudden (round 1000) or
continuous (round 1500 to 1750) arrival of nodes is very
small. On the contrary, node departure/crash have a greater
impact in this kind of networks.

Node departure/crash breaks the flows established be-
tween nodes, and can result in the removal of links connect-
ing different clusters, breaking the equilibrium in the whole
network. This may lead to a global rearrangement of flows
across the network, in order to reach a new equilibrium state.
On the other hand, new nodes will simply provide new links
(alternative paths), without breaking existing ones, leading
to a smaller adjustment of the existing flows in order to
converge to the new aggregate.

Overall experimental results show that Flow Updating can
provide accurate aggregation results in demanding dynamic
and faulty networks. It allows all nodes to continuously
adjust their estimates according to network changes, due to
node arrival/departure and crashes, quickly converging to
the current network aggregate average, even with very high
levels of message loss.

IV. FUTURE WORK

Our level of abstraction in the simulation follows the
practice in the analysis of aggregation algorithms [11], [20],
[12], [21], considering faults and churn. We concentrated
on network dynamism and message loss, but assumed per-
fect failure detection. Further work will be assessing how
practical failure detectors impact convergence speed.

Another aspect will be evaluating variations of Flow
Updating for asynchronous systems. The algorithm could
start a new round after receiving messages from a subset
of the neighbors. In the extreme we could have an event
driven approach were the algorithm reacts to single mes-
sages received. In these scenarios it will be interesting to
evaluate a possible tradeoff between number of messages
and convergence speed.



V. CONCLUSIONS

Average-based aproaches constitute an important segment
in aggregation algorithms due to their independence from
network topology and convergence to any desired precision.
Our previous work on averaging by Flow Updating, in static
settings, already introduced fault tolerance, achieving up to
an order of magnitude improvement in convergence speed
without increasing the message load [15].

Here we bring attention to the vulnerabilities of state
of the art averaging techniques when faced with failures
and dynamic environments. It is our belief that these short-
comings are not easy to fix and that actual mass exchange
must give way to idempotent flow management, in order to
address these demanding scenarios.

We introduce a dynamic version of Flow Updating where
entries for neighbor nodes are added or removed according
to the current participants. This simple design adapts to
abrupt changes of network membership and tracks continu-
ous variations of network size with a good level of accuracy.
Evaluation showed that Flow Updating clearly outperforms
previous strategies, and unlike them it adapts in a continuous
fashion without requiring protocol restarts.

Finally we show that, even in dynamic settings, Flow
Updating is hardly affected by a message loss rate of 40%,
and one can expect it to tolerate even higher losses.
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(INForum), Lisboa, Portugal, Sep. 2009.

[15] ——, “Fault-tolerant aggregation by flow updating,” in Proc.
9th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS), ser. Lecture Notes
in Computer Science, vol. 5523. Lisbon, Portugal: Springer,
Jun. 2009, pp. 73–86.

[16] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann
Publishers Inc., 1996.
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