Swift Algorithms for Repeated Consensus

Fatemeh Borran ~ Martin Hutle Nuno Santos André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL), 10a8drme, Switzerland
{firstnamé .{lastname @epfl.ch

Abstract ample, the case with an algorithm that us€grafailure de-
tector (FD). Here, a process waits for a message from some
We introduce the notion ofswift algorithm Informally, proces until p is in the FD output. Ifp has crashed, this

an algorithm that solves the repeated consensus is swift if,involves waiting for a timeout, but only once: later rounds
in a partial synchronous run of this algorithm, eventually n profit from the fact that the failure detector “remembers”in
timeout expires, i.e., the algorithm execution proceedls wi formation about faults. We formally capture such a behavior
the actual speed of the system. This definition differs fromby the definition oswift, which we define in the context of
other efficiency criteria for partial synchronous systems. repeated consensus [5]. The main intuition behind our def-
Furthermore, we show that the notion of swiftness ex- inition is that swift algorithms make progress at the speed
plains the reason why failure detector based algorithms are of the system, and therefore, are more “efficient” than non-
typically more efficient than round-based algorithms, sinc swift algorithms. A swift algorithm for a repeated problem
the former are naturally swift while the later are naturally is thus one in which eventually all instances of the problem
non-swift. We show that this is not an inherent difference be are “efficient”.
tween the models, and provide a round structure implemen- In more detail, for the definition of swift we look at par-

tation that is swift, therefore performing similarly to fiaie tial synchronous rung,e., runs where a bound on the
detector algorithms while maintaining the advantagesefth transmission delay eventually holds foreVefor the good
round model. period of such a run, that is the partial r&zrin which bound

A holds, we can define the actual transmission dé(dy)

as the maximum of all transmission delayginSuch an ac-
1 Introduction tual transmission delay can be much smaller than the max-

imum transmission delagA. If in this case, the execution

Timeouts are often required to solve problems in dis- time for each instance of the repeated consensus eventually
tributed computing. Due to the FLP impossibility result[7] depends only on(R) (in contrast toA), the algorithm is
there is a need of some minimal synchrony assumptions forswift
solving the consensus problem, and timeouts are the dom- While intuitively swift algorithms progress at the speed
inant mechanism for algorithms to make use of synchrony of messages in good periods, and non swift algorithms
assumptions. progress only at the speed of expiration of timeouts, we
Timeouts are often chosen conservatively, so that the al-refrained from calling these two classes of algorithms

gorithm is correct for a large number of real-life scenarios message-driverand timeout driven This is because the
However, timeouts should be used only to cope with faults, term message-drivens used in [10, 1] with a different
and not slow down the execution time in good cases. As anmeaning, namely to refer to the way events are generated at
example, when implementing communication-closed syn- a process. If processes are allowed to measure &g (
chronous rounds in a synchronous message passing systemyith clocks or step counting), then it is possible to con-
after a process sends its messages for a certain round it usistruct message-driven algorithms (according to this defini
ally waits for a timeout, before it ends the round and sendstion) that are not swift. On the other hand, if processes use
its messages for the next round. However, in many runsan adaptive timeout, then the algorithm can be swift despite
of the algorithm, it might have received all messages from timeout expiration. Thus these terms are not suitable to pre
other alive processes already long before that. It would becisely characterize this class of algorithms.
favorable to start the next round immediately after all mes-

sages from correct processes are received. This is, for ex- Note that such a run exists alsmg, in an asynchronous system, and
all runs of a synchronous systems are of course also paytighsonous.

*Research funded by the Hasler Foundation under grant nuRo@eéx. The definition is thus not limited to partial synchronoustsyss.

Other notions of efficiency for distributed algorithms the in-queue (resp. out-queue) of procgssn each step a
have been considered. The tefast has been used to re- process also performs a state transition.
fer to (consensus) algorithms that solve consensus wish les We assume an abstract global discrete time. Without loss
communication steps in favorable cases [12]. A favorable of generality, at each time at least one process makes a
case corresponds usually to an execution without faults tha step. A single process can make at most one step at any
is synchronous from the beginning. On the contrary, the time. Processes measure time by counting their own steps.
definition of swift is related to the executidime of an al- Channels satisfy validity and integrifyChannels are re-
gorithm in the context ofepeatedconsensus. Further, the liable if additionally the following property holds:
definition of swift considers also runs with faults. The no-
tion of fast is orthogonal to the notion of swift: it is pos&ib
to design both fast algorithms that are swift and fast algo-
rithms that are not swift.

The paper makes the following two contributions. The ~ We consider partial synchronous runs, defined by a
first contribution is the definition of swift algorithms that bound® on the process relative speeds and a bafiroh
we just discussed. The second contribution is a new im-the transmission delay of messages [6]. For aiuwe say
plementation of a communication-closed rounds in a par- that the process speed boundolds in R if in any partial
tial synchronous system with crash faults. This new imple- run of R that containsp steps, every non-crashed process
mentation leads to swift round-based consensus algorjthmsmakes at least one step. Further, we say that the transmis-
while previous round implementations, including those de- sion delayA holds in R after some time, if (i) any mes-
scribed in [6, 8], are not swift. This result is highly rele- sage sent by to ¢ at timet > ¢, is received the latest in
vant in the context of comparing advantages and drawbackghe first receive step after+ A; and (i) every message that
of the failure detector approach [3] vs. the round-based ap-sent before, is received the latest in the first receive step
proach [6, 4] for solving agreement problems. Indeed, fail- afterto + A.
ure de.tector based.algorithms,.despite the usage pf timeoutpafinition 1 (Partial synchrony)A run R is A-partial syn-
in the implementation of the failure detector algorithme ar o ronousf there is a time GST (Global Stabilization Time)
naturally swift. On the other hand, round implementations ¢, that after GST the transmission delay botnbolds,

in a partial synchronous model have some advantages ovef,q process speed bouridholds, and no process crashes
FD based implementations [9]. Our new solution thus com- o¢or ST,

bines the advantages of both approaches. _ _

The rest of the paper is structured as follows. In the next e call the time intervalGST, oc] the good period of
section, we specify our model and give a formal definition - We say aystems A-partial synchronousf every runi
of swift Then, in Section 3 we show a simple round-based qf the system fulfills Definition 1. To simplify the presenta-
consensus algorithm that is not swift, and in Section 4 we tion, we assume = 1.

show that the same consensus algorithm expressed using Befinition 2 (Actual parameters)Let R’ be a partial run.

failure detector is swift. In Section 5 we present our main Thens(R’) denotes the maximum transmission delay of the
contribution: we show a new implementation of rounds that partial run R/, i.e., the smallest valugsuch that the trans-

is swift. Section 6 validates the theoretical analysis with mijssjon delay is bounded Byin the partial runR’.
experimental results comparing the swift and non-swift im-
plementations. Section 7 concludes the paper.

Reliability: If messagen is sent fronp to ¢ andg performs
an infinite number of receive steps, then eventually
is received by;.

If R’ is the good period of @&-partial synchronous sys-
tem, thend(R') < A. WhenR' is clear from the context,
. we simply writed. A may be known or unknown. For our
2 Definitions and model algorithms in this paper, we assume thais known. How-

ever,o is unknown (it represents the performance metric of

We consider a system of processes connected by a a singlerun).
message-passing network. Among theserocesses, at
most f may crash. For repeated consensus, we attach ar2.1 Repeated consensus
in-queue and an out-queue to each process. Processes ex-
ecute an algorithm by making steps, where a step can be We focus on the repeated consensus problem. The in-
either a send stefp, SEND, m), in which a process sends a queue and out-queue are queues of pdirs), wherei is a
message to another process, a receive(tdReCEIVE, S), consensus instance number and value. In the repeated
in which a (possibly empty) set of messages is received, consensus problem, for each instafndbe following holds:

an input ster(p, IN, I> in which a value is read froms in- 2validity: A messagen that is received by; was previously sent by

queue, or an output stefp, OuT,), in_ which a value is some process to ¢; Integrity: A messagen that is sent fronp to q is
output top’s out-queue. We denote with, (resp. Out,) received byy at most once.

e Validity: For every process, if (i,v) € Out, then Algorithm 1 OneThirdRule (OTR) (code of procegp
there exists some procegsuch that(i, v) € Ing. 1: State:

e Uniform agreementFor all processes, q, if (i,v) € zp €V
Out, and(i,v') € Out, thenv = /. 8 decisiony €V

e Termination: For all correct procesg there exist
such that(i, v) € Out,,.

N

4: Roundr:
5 Sp:
6 send(zy) to all processes
. . 7: Tr:
2.2 Swift algorithms 8 pif number of values received 2n /3 then
9 xp < smallest most often received value
0 if more thar2n /3 values received are equaldchen
1 decisionp «— v

Before giving a formal definition of swift, we need to
formalize the notion of execution time of an instance.

Definition 3 (Execution time) Consider a runR of a re- _ : : :
peated consensus algorithm. The execution tini&) of Algorithm 2 A non-swift round implementation (code pf

instance: of consensus is defined as follows. kgt = ; Tp 7 1 . /* round number */
- (s i . P T onext-rp «—
max{t : (i,v) is takgn fr_om[nZ at some procesg at time 3 Reoy < 0 * set of received messages */
t} towr = max{t : (i,v) is output toOut; at Some process 4. vieN: statey[i] — L I* state of instance */
pattimet}. Thenr;(R) = tout — tin.
))) 5. while true do
Let A(A) denote algorithn! parameterized witt .3 6: [I — input()
L. . . . 7: forall {(i,v) € I do
Definition 4 (Swift algorlthm). An.algorlthm A(A) that 8: Sm,fé;[%L (v, 1) g
solves repeated consensussigift if there are constants o | forall i : statep|i] # L do o
k,c € N such that for every rui of A(A) thatis A-partial 1o: f mﬁgs[i] ‘Edspp(smt@p [i]) 5
synchronous with good periol’, there exists’ such that 11 | loratactico A £
. s 12: My — {(i, msgs[i][q]) : statep[i] # L}

for all instance: > ¢/, we haver;(R) < kd(R’) + c. 13: send My, rp. p) t0 g

Note that this definition does not refer to timeouts. Time- 14: | i, <0
out expiration is a low level issue. Our definition only de- 15: | while net_r, = rp do
pends on the relation between system properties (namelyigj izf”f;”Tzlthen o
transmission delays) and algorithm properties (namely, ex ig. f;e;t_,np —rpt1 §
ecution time), and therefore avoids any reference to tirheou 19: receive(\/) o
exp|rat|0ns 20: RCUp — RC’UP UM

21: nextrp « max({r : (—,r,—) € Rcvp}
. . U{next_rp})
3 A non-swift round-based algorithm 22 [0
23: | forall i: statepli] # L do 3

We illustrate swiftness and non-swiftness on simple con- 24: forall r € [rp, next-rp — 1] do 5
sensus algorithms. The algorithms we consider belong all to2>: Vg €1l Mylg] < mif 3M (M,r,q) € Revp 3
th lass of gorithms, i.e., algorithats th A m) € M, elsel g

e same class of consensus algorithms, i.e., algorithats th . statepli] — T (statep i), M) £
requiref < n/3. In this section we consider a round-based »7: if the first timestate,[i]. decision # L then o
algorithm, namely the OneThirdRule (OTR) consensus al- 28: O — O U (i, statepli]. decision)

gorithm from [4], see Algorithm 1. The round-based model 2% Loutput(O)
has been introduced in [6]. In each rouna process sends L Tp T meslTy
its estimater,, to all processes (line 6) and then, after an im-
plicit receive step where only messages of rounday be)) o
received, performs the state transition functig (lines 8 The implementation of the round structure is given by
to 11). Algorithm 1 is always safe. For liveness, we need Algorlthm 2. Itis an extension qf the implementation given
two rounds in which the sdi, of alive processes (at least " [9] with support for repeated instances of consensus.
2n/3) receives all messages from processdgjnand only Each iteration of the outermost loop is composed of three
from these processes. This property is calipdce unifor- ~ Parts:input & sendpart, receivepart andcomp. & output
mity. It can be ensured by the round implementation layer Part. In theinput & sendpart, the process queries the in-
during the good period of a partially synchronous system. PUt queue for new proposals (line 6), initializes new slots
3For models with known bounds on transmission delaysepresent on thestate.e vector for (-aaCh new proppsal (Ime 8)-’ calls the
this knowledge. For models with unknowh, or asynchronous algorithms, send function of all active consensus instances (Ime m’ a

we assumed(A) to be a constant functiori,e, A(A) represents one ~ Sends the re_sulting messages (l_ine 13). The process Fhen
single algorithm. starts thereceivepart, where it waits for messages until ei-

ther the timeoutl’O expires (line 17) or it receives a mes- Algorithm 3 OTR with the failure detectopP (code ofp)

sage from a higher round (line 21). Finally, in themp. 1: State:

& output part, the process calls the state transition function 22 7» <1 /* round number */

of each active instance (line 26), and outputs any new de- if zé’c;‘gn cv

cisions (line 29). Note that some rounds may be partially ?

skipped (no message sent, no message received, only tran5: while truedo

sition function executed): this happens whenever a message?® ~ S€Nd(». zp) to all processes

from higher round is received. 7: wait until received values for roung, from all processeg ¢ OP,,
In [2] we prove the correctness of the round implemen- 8: if number of values received 2n/3 then

tation forT’O > 2A + 2n + 5. We also show that for each ¢ zp — x smallest most often received value

instance of consensus started after GST, we have an exe-i(l)f i r;;)cr;;r;zm?_/?;values received are equalddhen

cution timer; < 270 + 6+ 3n+ 6. This definesthe maxi- 1,y 41

mum execution time. We now show that the implementation

is not swift by computing the minimum execution time for

each instance of consensus. run R with a good periodr’, there is an i such that, for

all instances > ig, 7;(R) < k6(R’) + ¢. For contradic-

tion, considet4d(k + ¢). Then, for runs wheré(R) = 1, by

Lemma 1, there is afy, such that for > iz, 7, > A >

k + ¢, a contradiction. O

Lemma 1. Consider Algorithm 2 witi'O > 2A +2n + 5,

n > 3f. Let R be aA-partial synchronous run. Lety be
the first new round that is started aft&tS7T". Then for all
instances started in a round- > rg, we have an execution
timer; > A.

Proof. Assume by contradiction that for an instanicénat 4 A failure detector-based algorithm that is

started in a round > ro, we haver; < A. This means that swift
there is a procegsthat stays in round at mostA time.
Lett, andt. be the time whep starts and finishes round We consider now the OTR algorithm expressed with the

r, respectively. According to the code of algorithm, process ¢41,re detectok)P, see Algorithm 3.

p may finish round- in two cases: either (i) by the expira- hyjitively it is easy to see that repeated execution of this
tion of its timeout, or (ii) by receiving a higher round mes- 5,4orithm is swift. Indeed, some time aft6iST, the failure
sage. In case (i) we have — ¢, = TO + (n+2) > A. getector list contains exactly the faulty processes. At thi
In case (ii) letg be the first process that has finished round point, by line 7, all correct processes wait only for message
rand sent round -+ 1 messages to all. Procegsould do from correct processes, and sinte: n/3, the condition of
this only by expiration ofits timeout for round Therefore, jine g is always true. Note that the failure detector model
q has started roundthe latest by, = t. — TO — (n + 2). requires reliable links, contrary to the solution in thevpre
Process; sent a round message tp by ¢, +n +1,andp 45 sectiort. For simplicity we will assume that links are
received ity +-n+2 later. So by, +0+2n+4, pmusthave pavely reliable in this section, although they can be ienpl

entered round, thereforer, = ¢, +0+2n+4. Expanding nented from eventual reliable links with a retransmission
tr, we obtaint, =t.— 70 —(n+2)+0+2n+4 < t.—A, protocol.

thatis,t. > ¢, + A, which contradicts the assumption that
p remained in round- for at mostA. Therefore, for all

r > rg, all processes remain in roumdfor more thanA
time. A contradiction.

Repeated execution of Algorithm 3 is expressed by Al-
gorithm 4. The box in Algorithm 4 corresponds to line 7
of Algorithm 3. For simplicity, we have not shown in Al-
gorithm 4 the (trivial) implementation afP. We assume
that, both Algorithm 4 and implementation ¢fP, run in
the same partial synchronous system in the following way:
in every even step, Algorithm 4 is executed, in every odd
step, the implementation &fP is executed.

Theorem 1. The round implementation of Algorithm 2 is The correctness of Algorithm 4 follows from the follow-
not swift. ing lemma:

Since the execution time is proportional to the parameter
A and independent of the effective transmission déjdle
implementation is not swift:

Proof. In case thatTO < 2A + 2n + 5, the algorithm is Lemma 2. For Algorithm 4, there is eventually a round
not live. Therefore we only considgfO > 2A + 2n + 5. GSR so that for all rounds > GSR, every correct pro-
Assume by contradiction that the collection of algo_ 4Consider two correct processpsandg and line 7 executed by. If

rithms A(A) given by_AIgorithm 21is SW_ift- Then, there he message sent lays lost, andy's failure detector never suspegisthen
arek, ¢ € N, such that in everyA, oco)-partial synchronous pis blocked forever at line 7.

Algorithm 4 Multiple instances of Algorithm 3 (code @

Initialization:

rp — 1
VieN: zp[i] — L
Vi € N: decisionp[i] — L

while true do

I — input()
for all (i,v) € I do
xpli] — v
send(ry, z,, p) to all processes

missed message!

D2

b3

10: | while not receivedry, x4, ¢) from all processeg ¢ OP, do Figure 1. New round implementation: issue to address

11: receive(M)

12: Rcv «— Rcv U M

13 OO0 Remark: Failure detector based solutions require reliable

forall ¢ : xp[i] # L and decisiony[i] = L do
if number of values receive@,, z’, —) > 2n/3 then
zp[i] — smallest most often valug']
if more thar2n /3 valuesz’[:] are equal ta then
decisionp[i] «— v
0 — 0U{(i,v)}
output(O)
rp—71p+1

links. This has the following implication. In contrast torpa

tial round implementation of Section 3, no round is skipped,
i.e., processes send messages for all rounds, and wait for the
messages from all unsuspected processes. This implies that
unlike the round implementation in the previous section, it
is no more possible to bound the time fra@$ 7" until the

first decision. To see this, note that@57T, a proces®
might be in a round- that is arbitrarily smaller than the
cess receives a message from every correct process in rounflighest round number,, ., atthat time. Since other correct

r and receives no message from faulty processes. processes might wait in any rountf » < 1" < 1y, for
the roundr message of procegs p cannot skip the send-

Algorithm 4 is swift as eventually every instance of con- ing of all rounds between and,,.,. This can also not
sensus decides withBv + 6n + 6, see Theorem 2. be easily solved by packing all messages into a single one,
since between the sengalso has to perform receive steps
to receive messages from the other correct processes. This
takes an unbounded amount of time,rgas,, — r can be
arbitrarily large.

Theorem 2. For a run of Algorithm 4 withn > 3f and an
infinite number of instances, there is an instance nuniber
such that for alli’ > i, we have an execution time <

39 + 6n + 6.

Proof. Since in every input step only a finite number ofin- § A new round implementation that is swift
stances are read, there is an input step so that this step and
all later input steps are just before a round that is ait€i We show now that the implementation of the round
(see Lemma 2). Lek be the maximum over all instance model can be made swift. Like in the failure detector ap-
numbers that were issued befds R. Then all instances proach, each process estimates a set of alive processes (the
i’ > io are started afte& SR (an instance is started in the complementary of the set of suspected processes) and uses
round when the last process starts that instance). In thisis set to terminate a round earlier af@67, namely, as
case, the algorithm decides in at most two rounds. soon as it receives all messages from the alive set. Con-
It remains to calculate the maximum time for two rounds trary to the failure detector approach, the algorithm tol-
after GSR. Lett be the first time a process starts round grates message loss, by using a timeout which expires
let p be that process. Then every other process does so thgnly beforeGST. Like in the round-based implementa-
latest att + 2(n — 1) + d (note that we have to double the tjon, processes resynchronize after message-loss by skip-

time for a step, since only every second step is of the asyn-ping rounds. Skipping rounds also allows the algorithm to
chronous algorithm). To see this, note that every processqecide in a bounded time aft€rST.

sends its message for round 1 the latest by +2(n — 1),

sincep received already this message from every corrects.1 Issue to address

process at this time. All other processes are performing onl

receive steps at this time, thus these messages are received Combining the termination of a round upon reception of

by time¢ + 2(n — 1) + 6 and all processes areinround)| messages from alive processes, and the round-skipping
By ¢ + 20 + 2(2n) all roundr messages are thus ready mechanism, requires some attention. The problem is illus-

for reception, and received - 20 +2(2n +1). Againby trated in Figure 1. In this scenarips’s roundr message

t 420 +2(3n + 2) all roundr + 1 messages are sent, and s the last message neededbyto have all round- mes-

thus round- + 1 ends the latest at+ 36 +2(3n +3). O sages. Let's assume that upon receiving this message,

Algorithm 5 A swift round implementation (code g
: /* round number */

rp — 1

nextrp «— 1

Revp — 0

Vi € N: statepli] — L

/* set of received messages */
[* state for instance */

RPwbhR

while ¢rue do
[input & send

a

/* lines 6-13 of Algorithm 2 1/

2

ip — 0;
timeout, «— TO
while next_rp, = rp do
ip —ip + 1
receive(\)
Revy +— Revp UM
Alive, — {set of processes from whom
there is a message within 1a%®0 4 stepg
if Vg € Alivey : 3(Mg,7p,q) € Rcvp then
next_ry «— rp + 1
if ip > timeout, then
next_ry «— rp + 1
r — maz{r : (—,7,—) € Revp}
if » > rp 4+ 1 then
next_rp < r
if there is a message from roung + 1
for the first timethen
timeout, < min{i, + TOp, TO}

/* lines 22-29 of Algorithm 2 ¥/

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:

receive

22:

23:
24

[comp. & output
Tp < nexrt-rp

immediately sends its round+ 1 message to all. In this
case, procesgs; may receive the round + 1 message of
p2 before the round message ofs. If p; jumps to round

r + 1 upon receiving the first round+ 1 message, it will
missps’s roundr message, thereby breaking space unifor-
mity on roundr. This situation may repeat in every round,
thus preventing the algorithm from deciding. In Section 5.2
we show how we address this problem.

5.2 The full algorithm

The ideas described above are used in Algorithm 5,
which is a round implementation that is swift. Algorithm 5
enhances Algorithm 2 as follows:

(i) Each procesg maintains an estimation of the set of
alive processes idlive, (see line 13), and updates it
every TO 4 steps. TO 4 is thus the timeout used to
suspect faulty processes.

(ii) A process goes directly to the next round if it received

a message from all processes in its alive set (lines 14-

15). This is the key point to make the algorithm swift.

(iii) Inany case, a process goes to the next round &fter
time (lines 16-17)1°0 is thus the timeout for a round
in bad periods.

variabletimeout,, initially set to O (line 8) which

is modified when a round 4+ 1 message is received
(line 22). This is used to address the problem de-
scribed in Section 5.1.

(v) When receiving a message from a round higher than
the nextroundi(e., > r,+1), the process immediately
goes to this round (lines 19-20). This ensures a fast
resynchronization of the processes after a bad period.

We now show correctness of this solution (Section 5.3),
and then the swiftness (Section 5.4).

5.3 Correctness

Algorithm 1 together with Algorithm 5 solves repeated
consensus in a partial synchronous system. As already dis-
cussed, Algorithm 1 is always safe (with > 3f). Be-
fore proving that the round implementation given by Algo-
rithm 5 provides liveness, we show some properties of the
algorithm related to the correctness that hold aftérr".

When the good period starts@tST", processes will syn-
chronize to the same round using the following two mecha-
nisms: (i) when a process receives a higher round message,
it advances rounds either immediately (line 20), or within
TOp (lines 21-22), or when the original timeoltO ex-
pires; (ii) in any case, processes remain in a round at most
TO time, starting a new round when this timeout expires
(lines 16-17 and line 22). Therefore, shortly aftesT,
there will be a process that starts a new round that is
higher than any round started by the other alive processes.
When the other processes receive the rounessage from
p, they will advance to round and send their own mes-
sages. These messages are then received by all alive pro-
cesses, resulting in a space uniform round.

As discussed in Section 5.1, a round 1 message may
be received before all roundmessages (Figure 1). To ad-
dress this issue, if a procgs# roundr receives a message
from roundr + 1 for the first time and it has not received
all the messages from its alive set, it does not advance im-
mediately. Instead, it waits either for an additioff& ,, or
until the end of the original timeout, whichever comes first.
During the good period, all the remaining rounthessages
will be received before this revised timeout expires. To see
why, notice that for a process to send a round 1 mes-
sage, it must have received all roundnessages from the
alive processes, so these messages will also be received by
processp within at mostTOp = A + (n — 1), namely
(n — 1) send steps and maximum transmission delay. In
any case, all messages will be received before the original
round timeout, so the process only has to wait for the mini-

(iv) When receiving a round message from the next round mum of 70 p or what is left of T'O.

for the first time, the process waits for at maso p
steps before going into this round (lines 21-22). For
this and the last point, each processnaintains a

If a proces® in roundr receives a message from round
r + 2 or higher, it can conclude that the good period has
not yet been started, so it advances immediately to round

r + 2. To see why, consider that if we are inside the good TO + TOp + 26 + (4n + 9), has an execution time of
period and if a procesgsends a roungd+ 2 messages, then 7; <36+ (dn+ 7).

either (i) ¢ received all round- + 1 messages, including)
»’s message, which is not possible; or (i) the timeout for Proof. From Lemma 4 all processes have the same alive set

roundr + 1 expires, which is not possible as the timeout is PY GST'+ T0 4. From the code of the algorithm a process,

chosen in a way that processes have enough time to receivg 9~ 1, Starts a new round every 70 + (n + 2) steps,
all round messages and messages are not lost in the goot-» the latest by, = GST + TO4 + TO + (n + 2). All

period. Therefore, we are still in the bad period. processes do so by = ¢, + TOp + 6 + (2n +5). This
Formally, we have: means that all processes start roundith the same alive
set. From Lemma 3, rounds space uniform. Furthermore,
Theorem 3. Consider a run of Algorithm 5 withh > 3f all processes receive all roumdnessages from their alive

and the following timeoutsTOp > A+ (n — 1), TO > set, and end roundthe latest by = t2 + § + (n +2) and
TOp+2A+(2n+5),andTO4 > TO+A+(2n+1). Let start round-+1 at this time. Therefore, all processes end the
R be aA-partial synchronous run. Then every consensus first space-uniform round the latest by tifd&T + TO 4 +
instance that starts befor&ST decides the latest &S7T+ TO + TOp + 20 + (4n +9). This proves the first part of
TOA+ TO + TOp +3A + (5bn+ 11). the theoremwithX = TO 4+ TO+ TOp+26+ (4n+9).
Similar to the proof of Theorem 2, there are instances
that start afteilG.ST + X. It remains to calculate the ex-
Lemma 3(TimeoutsT0 andT0). Consider Algorithm 5 ecution time _for a consensus instance that is startgd after
with n > 3f and the following timeouts:TOp > A + GST + X Since no process crashes affes7, the al_lve
(n—1), TO > TOp + 2A + (2n + 5). LetR be aA- set remains the same (see line 13). Lék the first time
partial synchronous run. Let. be the time the first process Proces®: starts a new roune Then every other processes
starts a new round- after GST. Let all processes have d0€SSdn—1)+d+(n+4)steps later. Thisis because some

the same actual alive set in this interval. Then roung ~ Procesg: mightsend the last round- 1 messagén — 1)
space-uniform. steps later to another process, eg., And ps will start

roundr the latest aftefn + 4) steps (an output followed by
Lemma 4 (TimeoutTO 4). Consider Algorithm 5 with, > an input,n send, one receive, and one output step). There-
3f and the following timeoutsTOp > A+(n—1), TO > fore, byt + 6 + (2n + 3) all processes start round By
TOp +2A+ (2n+5),andTO4 > TO+ A+ (2n+1). t+20+ (3n+4), all roundr messages can be received, and
Let R be aA-partial synchronous run. Let. be the time roundr ends after an output step by time- 25 + (3n+5).
the first process starts a new roundafter GST. Then by Again byt+26+ (4n+6) all roundr+1 messages are sent,
timet, + 2 + TO 4 all processes have the same alive set, and thus round+ 1 ends the latest at- 36+ (4n+7). O
which is the set of alive processes.

The proof is based on the following two lemmas, see [2]:

) 6 Experimental results
5.4 Swiftness

d how that Algorith h ithth q In this section we present the results of an experimental
_Inorderto show that Algorithm 1 together with the round gy, 4 comparing the three algorithms presented preyjousl
implementation provided by Algorithm 5 is swift, we show The main questions we want to answer are (i) how much

that the execution time of a consensus instance dependﬁnprovement can be obtained in a round-based algorithm

only ond and not omA. using a swift round implementation, and (ii) are swift round

The main properties of the algorithm relfated tq the swift- implementations competitive with implementations that us
ness, which hold afte¢ST’, are the following. First, the failure detectors

Alive set becomes accurate the latest BT + TO

(line 13). Then, once the alive set is accurate aftéfT,) i
it no more changes and therefore no further timeout ex- EXPerimental setup We performed our experiments both

pires. Finally, all processes finish rounds as soon as all mes©" &n émulated network and directly on a physical network

sages from alive processes are received and advance rourd cluster). The emulated network allowed us to test the be-
by lines 14-15, rendering the algorithm swift. havior of the algorithms with different transmission deday

and message loss rates, while the physical network shows
Theorem 4. Consider Algorithm 5 witm > 3f and the what to expect on a cluster environment.
following timeouts:TOp > A+ (n—1), TO > TOp + In all experiments, processes were started with 1 second
2A+ (2n+5),andT04 > TO + A+ (2n + 1). Let of delay between each other. This prevents initial synchro-
R be aA-partial synchronous run. Then every consensus nization and exercises the ability of the algorithms to nesy
instance that is started afteé¥.ST + X with X = TO 4 + chronize the processes.

The metric considered is the decision time for each con-for all experiments run on ModelNet. All 4 replicas were
sensus instance. Processes run each instance sequentiallynning on a dual Pentium 4 at 3.6GHz with 1GB RAM,
starting the next one either when they decide or learn thewhile the core node was a Pentium Pro at 200MHz with
decision by receiving a message from a higher instance. To7OMB of RAM. The machines were connected by a full du-
compute the execution time, we consider the time betweenplex 100Mbits Ethernet, and had a ping time~of0.3ms.
the moment the first process starts instanaatil the first Hencedes =~ 0.3 + demu.
decision. Each data point shown on the plots below was
obtained from a 10 minutes run. We then calculated the av-varying the timeout In the first set of experiments, we
erage decision time, ignoring the first 10% of the run. For fixed the emulated transmission delay while varying the
each data point, we show the 95% confidence intervals. timeout (’'O) used by the algorithms.

Figure 2 shows the results fog,,, = Oms and Fig-
Implementing ¢P and reliable channels for the failure ure 3 ford.m, = 40ms. Thex scale indicates the timeout
detector algorithm We implementedP by having each ~ (70) used by the algorithms to terminate a rotrigor the
process send heartbeats to all evertime. A proces® tests withd.,., = 40ms, the failure detector was config-
suspecty if it does not receive any heartbeat for more than ured withn = T0O/2 andr = T'O. The rationale is that TO
T time. We also implemented reliable channels using mes-is the time an algorithm should wait before declaring a fail-
sage acknowledgments and retransmission. We decided natre and taking corrective measuregy, advancing rounds
to use TCP, because our initial experiments using it redulte or suspecting a process. Wih,,,, = 0ms, following the
in a very poor performance under high message loss condisame policy would result in the network being overloaded
tions. TCP is designed to interpret message loss as an inwith heartbeats, so we opted fpr= 70 andr = TO * 2.
dication of congestion, and therefore it reacts by incregasi The results clearly validate the main motivation behind
the retransmission time. On a typical TCP implementation, this work, in that S-OTR performs at the speed of the net-
the interval between retransmissions may reach several minwork, being independent from the timeout.
utes, which in practice forces the algorithms runningontop ~ With §.y,,, = 0ms (Figure 2-left), FD-OTR performs
of it to stop. poorly with low timeouts. This is caused by the additional

messages sent by the failure detector and the reliable chan-

Notation In the following, ,.; denotes the one-way Nels implementation, which slow down the processes and
transmission delay of the physical network,,, the de- ~ congestthe n_etV_/qu. For highertimeputs, this overhead be-
lay emulated by ModelNet, anl; the effective one-way ~ COMes less S|gn|f|car_1t and the algorlthm starts pgrforming
transmission delay between two processes. On the experSimilarly to the other implementations. When looking only
iments run directly on the physical network,s = ,c¢. atNS-OTRvs S-OTR (Elgure 2—r|ght), itis clgar that. the de-
However, when using ModeINeti,z = 26,0t + Semus cision time qf NS-OTR increases linearly with the timeout,
since the packet is transmitted two times on the physicaIWh'_le the_swn‘t OTR s constant. Furthermore, even with the
network between two nodes of the ModelNet. Finally, note OPtimal timeout o2ms, the NS-OTR performs worse than
that contrary to) defined previously in the papef,.. is S-OTR.
not a bound. Instead, it is a random variable, reflecting the ~ With desn = 40ms (Figure 3-left), NS-OTR performs
non-deterministic behavior of a physical network. poorly with timeouts lower thaf0Oms. For timeouts lower

In the following, NS-OTR, S-OTR, and FD-OTR de- than60ms, itis hardly able to decide even a few times, so
note the non-swift OTR (Algorithm 1 + Algorithm 2), swift ~We (_ji_d not shoyv the results as they were not statistically
OTR (Algorithm 1 + Algorithm 5) and OTR with FD (Al- Significant. Notice tha80ms ~ 20z, which matches the

gorithm 4 +¢P), respectively. results from the analytical analysis, where a round must las
TO = 2A in order to ensure decision. The swift version is
6.1 Emulated network more tolerant to a non-optimal timeout, being able to syn-

chronize even with timeouts of a little abo¢@&ms. This

is because processes finish rounds early after receiving all
messages, allowing the processes that are most behind to
slowly catch-up with the ones in the lead.

We used ModelNet [13] to emulate a network. ModelNet
uses two types of nodes:care nodethat applies the traffic

olicies, and one or moredge nodesghat run the applica-) . . .
P g bp FD-OTR is also independent of the timeout, producing

tion being tested. The edge nodes redirect all traffic sentth timal perf dl t th I 41
by the processes to the core node, which applies the traffic e optimal performance regardless of the values used for

policy (e.g, delay, loss and maximum bandwidth) and then tr}e underlyw;g fa",?hre deltector.h Recafll tht?]t |rf1 t_lhe a(tj)sence
transmits the packet to the intended receiver. We varied the? mesiage 0SS, etr:/ atLtfs ¢ O'Tletr)] or f? allure detector
emulated delay and loss rate, while leaving the emulated("e" 7 = 2n) ensure that there will be no false suspicions,

bandwidth set to 1Gbps. We used two physical machines SEquivalent to2A on the NS-OTR an8A for the S-OTR.

Time per consensus

N
o

Time per consensus

350
K ——NS-OTR — SSB(T);R
300t S-OTR ||
-¢-FD-OTR 20 1
250¢ 3
= \ Z 15
£ 2007 £
o ® *
E 150¢ \ E 100 -~
[\ = —
& 7
100f \ \
5 .
50 |
A S .
0 4 6 8 0 4 6 8
Timeout (ms) Timeout (ms)

Figure 2. Performance on ModelNet with dcgr ~ 0.3mS (demu = 0, 20pet = 0.3)

Time per consensus

Time per consensus

2000 150 S-OTR
——NS-OTR -¢-FD-OTR
S-OTR
-+-FD-OTR
1500 1
2 3
‘o 1000 @ 100
E £
= \\\ . G040 ——6———— - oo mm e o
\
500 \\
0064 ——6 ————— e—f}—f—%f—f—j;—js
%0 40 50 60 70 80 90 5030 40 50 60 70 80 90
Timeout (ms) Timeout (ms)

Figure 3. Performance on ModelNet with dcg ~ 40.3mS (Semu = 40, 20pe¢ = 0.3)

so FD-OTR can proceed at the speed of the network. The

Time per consensus
150 T -

overhead of the failure detector and of the reliable channel *gS;TJ‘FT{R
is less in this scenario, as noticeable in Figure 3-rightnsh o _FD-OTR
it performs only slightly worse than S-OTR. 100l

g

(]
Message loss Figure 4 shows the behavior of the algo- E
rithms in networks with message loss. The experiment was 50r .
run on ModelNet withy.,,, = 0. Both swift and the non- e J/ R -
swift versions were configured with a timeout dfms. P

0

The failure detector was configured with= 10ms and
T = 2bms, So that it tolerates 2 or 3 lost heartbeats before
(wrongly) suspecting a process. The reliable channels im-

0 0.1 0.2 0.3
Loss probability

0.4

Figure 4. Performance with message loss: 5eﬁ ~
0.3ms 20,et = 0.3, ey = 0)

plementation retransmits a message ewsryts.

Both the NS-OTR and S-OTR are very resilient to mes-
sage loss. Even with 40% messages loss, the average deci-
sion time is only a few milliseconds more than when there
is no message loss. This is because the algorithm makesverhead of the retransmissions to simulate reliable links
progress as soon as a single process receives 3 messages
(2n/3),i.e., 2 messages from other processes since its own6.2 Physical network (Cluster)
message is always delivered.

S-OTR outperforms both NS-OTR and FD-OTR in the For the tests with the physical network, we used a clus-
presence of message loss. In particular, the performance ofer of Dual Pentium 4 at 3.00GHz with 1GB memory con-
FD-OTR degrades a lot with message loss, caused by thenected by a 1Gbit Ethernet. Each process run on a separate

Time per consensus

——NS-OTR
S-OTR
-*-FD-OTR

Time (ms)

6 10 12
Timeout (ms)

Figure 5. Performance on cluster (0. ~ 0.1ms)

Algorithms Simple round-based [9] FD-based [8] New rourddd

(Algorithm 2) (Algorithm 4) (Algorithm 5)
Link lossy reliable lossy
Execution time AA+ 54+ 0(1) 36 +0(1) 36+ 0O(1)
Swift no yes yes

Table 1. Repeated consensus: algorithms analyzed in
the paper

not mean that the new solution is limited to OTR. It applies
to any consensus algorithm expressed in the round model,
in particular to the_astVotingalgorithm [4], a round-based
variant of Paxos [11] that requires only> 2 f.

node and the ping time between two nodes was between 0.1

to 0.2ms. The failure detector was configured wjth: 70
andr =TO % 2.

Figure 5 shows that on the cluster even a timeouto$
is enough for OTR to terminate. S-OTR always outper-
forms the two other algorithms. Compared to NS-OTR,
even with alms timeout, S-OTR performs better. Low-
ering the timeout of the non-swift version even further may
improve its performance. But at such small timeouts, the
algorithm becomes sensible to the normal variability of the
system, which is caused by non-deterministic factors like
OS scheduling or background activity, either on the hosts
or on the network. This will cause rounds to finish without
receiving all required messages, leading to unstable perfo

mance. The timeout of S-OTR can be set to a conservative [5]

value, making the algorithm immune to non-deterministic
factors, while still providing optimal performance.

FD-OTR suffers again from the overhead of the underly-
ing failure detector and of the reliable channels, resglitn
a worst performance than S-OTR.

7 Discussion

Table 1 summarizes the results of the paper. We have

analyzed efficiency of algorithms in two models for solv-

ing consensus: the round-based model (which can be im-

plemented on top of a partially synchronous system), and

the asynchronous system augmented with failure detectors 10!

Efficiency refers here tgwiftnessa new notion that cap-

tures the fact that an algorithm, once the system has sta-

OUT]_]_]
new round-based implementation combines the advantages

bilized, progresses at the speed of the messages.

of failure detectors solutions (swiftness) and round-tase
model (lossy links). This weak link assumption makes

round-based algorithm easy to adapt to the crash-recovery[l

model with stable storage [9].
We have illustrated the new round-based implementa-
tion on a specific consensus algorithm (OTR). This does

10

References

[1] M. Biely and J. Widder. Optimal message-driven implemen
tations of omega with mute processeSCM Trans. Auton.
Adapt. Syst.4(1):1-22, 2009.

F. Borran, M. Hutle, N. Santos, and A. Schiper. Swift Al-

gorithms for Repeated Consensus. Technical report, EPFL,

2009. http://infoscience.epfl.ch/record/

142723.

[3] T.D. Chandra and S. Toueg. Unreliable failure detectors

reliable distributed systemdournal of the ACM43(2):225—

267, Mar. 1996.

B. Charron-Bost and A. Schiper. The heard-of model: com-

puting in distributed systems with benign faulBistributed

Computing 22(1):49-71, 2009.

C. Delporte-Gallet, S. Devismes, H. Fauconnier, F.tPatid

S. Toueg. With finite memory consensus is easier than reli-

able broadcast. IOPODIS pages 41-57, 2008.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in

the presence of partial synchronyJournal of the ACM

35(2):288-323, Apr. 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Imposipil

of distributed consensus with one faulty proceksurnal of

the ACM 32(2):374-382, Apr. 1985.

E. Gafni. Round-by-round fault detectors (extended ab-

stract): unifying synchrony and asynchrony. RODC'98

pages 143-152, Puerto Vallarta, Mexico, 1998. ACM Press.

M. Hutle and A. Schiper. Communication predicates: A

high-level abstraction for coping with transient and dyi@m

faults. INDSN 2007 pages 92-10. IEEE, June 2007.

M. Hutle and J. Widder. On the possibility and the impos-

sibility of message-driven self-stabilizing failure detien.

In Self-Stabilizing Systenmsages 153-170, 2005. Appeared

also as Brief Announcement at PODC'05.

L. Lamport. The part-time parliamenACM Transactions

on Computer System$6(2):133-169, May 1998.

L. Lamport. Fast paxosDistributed Computing19(2):79—

103, 2006.

3] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulatorSIGOPS Oper. Syst. Rev.
36(Sl):271-284, 2002.

(2]

(4]

(6]

(7]

(8]

9]

[12]

