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Abstract—Partial replication is a way to increase the scala-
bility of replicated systems: updates only need to be applied to
a subset of the system’s sites, thus allowing replicas to handle
independent parts of the workload in parallel. In this paper, we
propose P-Store, a partially replicated key-value store for wide
area networks. In P-Store, each transaction 7" optimistically
executes on one or more sites and is then certified to guarantee
serializability of the execution. The certification protocol is
genuine, it only involves sites that replicate data items read
or written by 7', and incorporates a mechanism to minimize
a convoy effect. P-Store makes a thrifty use of an atomic
multicast service to guarantee correctness: no messages need
to be multicast during 7”’s execution and a single message is
multicast to certify 7. In case T is global, that is, T”s execution
is distributed at different geographical locations, an extra vote
phase is required. Our approach may offer better scalability
than previously proposed solutions that either require multiple
atomic multicast messages to execute 7' or are non-genuine.
Experimental evaluations reveal that the convoy effect plays
an important role even when one percent of the transactions
are global. We also compare the scalability of our approach
to a fully replicated solution when the proportion of global
transactions and the number of sites vary.

I. INTRODUCTION

By allowing sites to store a subset of the application
data and split the load among replicas, partial replication
improves the scalability of replicated systems. With partial
replication, access locality is favored by replicating data
close to clients, and storage resources are used sparingly.

In this paper, we present P-Store, a scalable distributed
key-value store that supports partial replication and trans-
parent transactional access. P-Store assumes a wide area
network environment where sites are clustered in groups
(e.g., data centers) and seeks to minimize costly and slow
inter-group communication.

The solution we propose is flexible and scalable in a pre-
cise sense as we explain next. Data items may be replicated
anywhere and any number of times provided that sites of a
given group replicate the same set of data items. Transaction
execution does not require data items to be accessed from the
same site, allowing more flexibility when partitioning data.
Read requests are executed optimistically with no inter-site
synchronization; transactions are then certified to guarantee
serializability of the execution. To improve scalability, the
certification protocols we present ensure genuine partial
replication:
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o For any submitted transaction 7', only database sites
that replicate data items read or written by 7" exchange
messages to certify 7.

In P-Store, correctness relies on the use of an atomic
multicast service to order transactions that operate on the
same data items. We make an economical use of this service:
to execute and certify each transaction 7', a single message
is atomically multicast. In case 7" is global, an extra vote
phase consisting of a single round of message exchange is
needed to ensure agreement on 7’s outcome.

This is in contrast to previously proposed solutions that
either atomically multicast multiple messages to handle each
transaction [1], [2] or are non-genuine [3], [4], [5]. To
the best of our knowledge, this is the first partial database
replication protocol that is genuine and uses a single atomic
multicast message per transaction.

The first certification protocol we propose is simple but
vulnerable to a convoy effect that slows down transaction
certification due to global transactions, i.e., transactions
that involve multiple groups. To mitigate this undesired
phenomenon, we propose a second protocol that doubles
the throughput of the first protocol even when only 1%
of transactions are global—this advantage grows when the
percentage of global transactions increases.

We further study the performance of P-Store and com-
pare its scalability to a fully replicated solution when the
percentage of global transactions and the number of groups
vary. P-Store provides a linear scale-out up to eight groups
and when a fourth of the transactions are global. With this
number of groups, P-Store allows to almost double the peak
throughput of the fully replicated scheme, and can process
multiple thousands of update transactions per second when
each data items is replicated three times and inter-group links
have a delay of 50 milliseconds and 10 megabits per second
of bandwidth. Preliminary experimental results suggest that
partial replication is interesting in systems with four or more
groups when global transactions access few groups.

The rest of the paper is structured as follows. Section II
introduces our model and assumptions. Sections III and IV
respectively present P-Store and the two certification pro-
tocols; the current state-of-the-art is surveyed in Section V.
The implementation of P-Store is sketched in Section VI and
empirical results are reported in Section VII. Section VIII



concludes the paper. Due to space limitations, we only
briefly discuss the correctness of P-Store in Section IV; the
full proofs can be found in [6].

II. SYSTEM MODEL AND DEFINITIONS
A. Sites, Groups, and Links

We consider a system IT = {si,...,s,} of sites, each
equipped with a local database. Sites communicate through
message passing and do not have access to a shared memory
nor a global clock. We assume the benign crash-stop failure
model: sites may fail by crashing, but do not behave mali-
ciously. A site that never crashes is correct; otherwise it is
faulty.

The system is asynchronous, i.e., messages may experi-
ence arbitrarily large (but finite) delays and there is no bound
on relative site speeds. To circumvent the FLP impossibility
result [7] and make atomic multicast implementable, we
further assume that the system is augmented with unreliable
failure detectors [8]. The exact failure detector needed
depends on the atomic multicast algorithm. Hereafter, we
assume an atomic multicast service, as defined in II-D.

We define I' = {g1,...,9m} as the set of site groups
in the system. Groups are disjoint, non-empty, and satisfy
Uyer 9 = 1L For each site s € II, group(s) identifies the
group s belongs to. A group g that contains at least one
correct site is correct; otherwise g is faulty.

Communication links are quasi-reliable, i.e., they do not
create, corrupt, nor duplicate messages, and for any two
correct sites s and s’, and any message m, if s sends m
to s, then s’ eventually receives m.

B. Database and Replication Model

A database D is a finite set of tuples (k,v, ts), or data
items, where k is a key, v its value, and ts is its version
number. Each site holds a partial copy of the database. For
each site s;, we denote by Items(s;) C D the set of keys
replicated at site s;. Given a site s; and a key k replicated
at site s;, Version(k,s;) returns the version of k stored at
s;. We suppose that, initially, for every key k£ and every
site s;, Version(k,s;) = 1. We assume that sites in the
same group replicate the same set of data items, that is,
Vg €T :Vs, s € g: Items(s) = Items(s’), and we allow
data items to be replicated in more than one group. For
every key k in the database, there exists a correct site s; that
replicates the value associated with k, i.e., k € Items(s;).

A transaction is a sequence of read and write operations
on data items followed by a commit or an abort operation. A
read on some key k by transaction T', denoted rr[k], returns
the value associated with k as well as its corresponding ver-
sion. A write performed by T is designated as wr [k, v, ts],
where v is the value written on key k, and ts is its version.
For simplicity, we hereafter represent a transaction 1" as a
tuple (id,rs, ws,up) where id is the unique identifier of
T, rs is the set of key-version pairs read by 7', ws is the

set of keys written by 7, and up contains the updates of
T. More precisely, up is a set of tuples (k, v), where v
is the new value 7' associates to k; the set T.ws equals
{k : (k,v) € T.up}, where we refer to element e of T"s
tuple as T'.e.

For every transaction T, Items(T) is the set of keys read
or written by T. Transactions T and T" read-write conflict
if one transaction reads a key k that the other transaction
updates. We do not consider write-write conflicts because
for each key k, the certification protocols we propose totally
order updates to k. Every transaction 7' is associated to a
unique site: Proxy(T), which submits 7"s read and write
requests on behalf of a client. We denote WReplicas(T) as
the set of sites that replicate at least one data item written
by T, and Replicas(T) as the sites that replicate at least
one data item read or written by 7'. Transaction 7' is local
iff for any site s in Replicas(T), Items(T) C Items(s);
otherwise, T' is global.

Knowledge about whether T" is global or local, Items(T),
WReplicas(T), and Replicas(T) is only needed at certifi-
cation time, i.e., after T’s execution. However, we require
sites to know where data items are located.

C. Data Consistency Criteria

On each site, the local database ensures order-preserving
serializability: the local execution of transactions has the
same effect as a serial execution of these transactions in
which the commit order is preserved [9]. This condition is
typically met by relying on two-phase locking.

In this paper, we provide a partial replication protocol
that ensures the transaction execution on multiple partial
copies of the database is equivalent to some one-copy serial
execution of the same set of transactions. More precisely,
the devised protocol ensures one-copy serializability (1-
SR) [10].

D. Atomic Multicast

We assume that our system is equipped with an atomic
multicast service that allows messages to be disseminated
to any subset of groups in I' [11], [12]. For every message
m, m.dst denotes the groups to which m is multicast.
A message m is multicast by invoking A-MCast(m) and
delivered with A-Deliver(m). We define the relation < on
the set of messages sites A-Deliver as follows: m < m/ iff
there exists a site that A-Delivers m before m/’.

Atomic multicast satisfies the following properties: (i) uni-
form integrity: for any site s and any message m, s A-
Delivers m at most once, and only if s € m.dst and m
was previously A-MCast, (ii) validity: if a correct site s
A-MCasts a message m, then eventually all correct sites
s’ € m.dst A-Deliver m, (iii) uniform agreement: if a site
s A-Delivers a message m, then eventually all correct sites
s’ € m.dst A-Deliver m, (iv) uniform prefix order: for any
two messages m and m’ and any two sites s and s’ such



that {s,s’'} C m.dst N m'.dst, if s A-Delivers m and s’
A-Delivers m/, then either s A-Delivers m’ before m or
s’ A-Delivers m before m/, (v) uniform acyclic order: the
relation < is acyclic.

To guarantee genuine partial replication, we require
atomic multicast protocols to be genuine [13]: an algorithm
A solving atomic multicast is genuine iff for any admissible
run R of A and for any site s, in R, if s sends or receives
a message, then some message m is A-MCast, and either s
is the site that A-MCasts m or s € m.dst.

III. THE LIFETIME OF A TRANSACTION IN P-STORE

We present the lifetime of transactions in our partially
replicated system P-Store. We consider a transaction 7' and
comment on the different states 7" can be in.

o Executing: Each read operation on key k is executed

at some site that stores k; k and the data item version
ts read are stored as a pair (k, ¢s) in T.rs. Reads are
optimistic, that is, no synchronization between sites in
Replicas(T) occurs to guarantee the consistency of
T’s view of the database; later on, when 71" is in the
Submitted state, a certification protocol checks that T’
read the correct data item versions. Every update of
key k to some value v is buffered as a pair (k, v) in
T.up. If aread is issued on a key k that was previously
updated by 7', the corresponding value stored in T".up
is returned.
When Prozy(T) requests a commit, 7" passes to the
Committed state if 7" is read-only and local. Otherwise,
if T is global or an update transaction, 7" is submitted
to the certification protocol, at which point 7' enters
the Submitted state. The goal of the certification pro-
tocol is twofold. First, it propagates 71’s updates to
WReplicas(T). Second, it ensures that the execution
of transactions is one-copy serializable. To submit T,
sites use one of the certification protocols presented in
Section IV.

o Submitted: To ensure one-copy serializability, the certi-
fication protocol checks whether 1" observed an up-to-
date view of the database despite optimistic reads and
concurrent updates. If T" passes the certification test, T’
enters the Committed state; otherwise, 7' passes to the
Aborted state.

o Committed/Aborted: If T commits, all sites in
WReplicas(T) apply its updates. Whatever T”’s out-
come, Prozy(T) is notified.

In P-Store, local deadlocks are handled by the key-value
store, and inter-site deadlocks cannot occur because a read
operation releases its lock once the operation is completed
and writes are ordered by atomic multicast.

When combined with any of the two certification proto-
cols proposed in this paper, P-Store ensures genuine partial
replication and one-copy serializability. Moreover, the fol-
lowing two liveness properties are also ensured:

o non-trivial certification: If there is a time after which no
two read-write conflicting transactions are submitted,
then eventually transactions are not aborted by certifi-
cation

o termination: For every submitted transaction T, if
Prozy(T) is correct, then all correct sites in
WReplicas(T) either commit or abort 7.

IV. CERTIFYING TRANSACTIONS

In this section, we present two certification protocols. The
first one is simple but suffers from a convoy effect, that
is, transaction certification may be delayed by transactions
currently being certified. The second protocol seeks to
minimize this undesired phenomenon.

A. A Genuine Protocol

The algorithm .A,. we present next relies on atomic
multicast to certify transactions. We first present an overview
of the algorithm and then present A, in detail.

Algorithm Overview: When a transaction 7' is submit-
ted for certification, Algorithm Ay, atomically multicasts 7'
to all groups storing keys read or updated by 7. Upon A-
Delivering T, each site s, that replicates data items read by
T checks whether the values read are still up-to-date. To do
so, s, compares the version of the data items read by 7T’
against the versions currently stored in the database. If they
are the same, T passes certification at s,., otherwise T fails
certification at s,..

In a partially replicated context, s,, may only store a subset
of the keys read by T, in which case s,- does not have enough
information to decide on 7"’s outcome. Hence, to satisfy non-
trivial certification, we introduce a voting phase where sites
replicating data items read by T send the result of their
certification test to each site s,, in WReplicas(T).' Site s,
can safely decide on 7”s outcome when s,, received votes
from a voting quorum for T'. Intuitively, a voting quorum
V@ for T is a set of sites such that for each data item read
by T, there is at least one site in V() replicating this item.
More formally, a quorum of sites is a voting quorum for T
if it belongs to VQ(T), defined as follows:

VQ(T) ={VQIVQ CTIAT.rs C | J Items(s.)} (1)
s,€EVQ

Transaction 7' can safely commit when every site in a
voting quorum for 7" voted yes. If a site in the quorum
votes no, it means that 7" read an old value and should be
aborted to ensure serializability of the execution.

Figure 1 illustrates the execution of a global transaction
T that reads data items from groups g; and go. After all
read requests have been executed, 7" is submitted to Ay, for
certification.

A similar voting phase appears in [14]. In contrast to Age, the protocol
in [14] is non-genuine and relies on a total order to certify transactions.
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Algorithm in Detail: Algorithm A4, (see next page)
is composed of three concurrent tasks. Each line of the
algorithm is executed atomically. The algorithm uses a
global variable named Votes that stores the votes received,
i.e., the results of the certification tests.

When a transaction T is submitted, Proxy(T) atomically
multicasts T' to Replicas(T) (line 10). Upon A-delivering
T, each site s that stores data items read by 7' certifies T’
(line 8). If T is local, s knows T"’s outcome at this point and,
in case 7' commits, s applies T”’s updates to the database
(lines 16-17). Otherwise, T' aborts (line 18). If T" is global,
the result of the certification test is stored locally at s and
sent to every site s,, in WReplicas(T'), except to members
of s’s group (lines 20-22). Each site s,, waits until it receives
votes from a voting quorum for 7' at which point s,, can
safely decide on 1”s outcome (lines 23-24), and 7" is handled
similarly as local transactions (lines 25-28). The outcome of
T is then sent to Prozy(T) (line 29).

B. Minimizing the Convoy Effect

The convoy effect occurs when the certification of a
transaction 77 is delayed by another global transaction 7%
although 77 is ready to be certified. In the certification proto-
col Ay, this phenomenon may happen as follows: T was A-
Delivered but it must wait until 75’s votes are received to be
certified. As the frequency of submitted global transactions
increases, this phenomenon deteriorates the performance of
Age: an ever growing chain of transactions waiting to be
certified is formed since only one global transaction can be
certified per inter-group delay. We address this problem in
Algorithm A7, . We first give an overview of the algorithm
and then present A7, in detail.

Algorithm Overview: To reduce the convoy effect, we
seek to certify transactions in parallel as much as possible.
In the scenario described above, this allows 7} to be certified
while 75’s votes are exchanged.

Obviously, not all transactions can be certified concur-
rently. Consider two read-write conflicting transactions T

Aborted

The execution and certification of a global transaction 7" involving groups g1 and g2 with Algorithm Age.

Algorithm A,
A Genuine Certification Protocol - Code of site s
1: Inmitialization

2:  Votes+ 0

3: function ApplyUpdates(7")

4:  foreach V(k,v) € T.up : k € Items(s) do

5: let ts be Version(k, s)

6: wrlk,v, ts + 1] {write to the database}
7: function Certify(7")

8: return V(k,ts) € T.rs s.t. k € Items(s) : ts = Version(k, s)
9: To submit transaction T’ {Task 1}
10:  A-MCast(T) to Replicas(T) {Executing — Submitted}
11: When receive(VOTE, T.id, vote) from s’ {Task 2}
12:  Votes < Votes U (T.id, s’ , vote)

13: When A-Deliver(T") {Task 3}

14:  if T is local then

15: if Certify(7") then
16: ApplyUpdates(1)
17: commit T’ {Submitied — Committed}
18: else abort T’ {Submitted — Aborted}
19:  else
20: if 3(k, -) € T.rs : k € Items(s) then
21: Votes < Votes U (T.id, s, Certify(T))
22: send(VOTE, T'.id, Certify(T")) to all s’ in WReplicas(T) s.t.
s' ¢ group(s)
23: if s € WReplicas(T) then
24: wait until 3VQ € VQ(T) :
Vs’ €e VQ: (T.id, s, -) € Votes
25: if Vs’ € VQ: (T.id,s',yes) € Votes then
26: ApplyUpdates(1")
27: commit T’ {Submitted — Committed}
28: else abort T’ {Submitted — Aborted}

29: if s € WReplicas(T) then send T"s outcome to Prozy(T)

and 73 such that T; reads key k; and writes key k;_; with
i € [0, 1]. Further, suppose that keys kg and k; are replicated
in different groups and thus a vote phase is needed to certify
these transactions. If Ty and 77 were certified in parallel, a
site s1 could certify 73 followed by 75 while another site s
could certify T5 before 77. In this scenario, s; would vote



“commit” for T}, but “abort” for 77, the inverse of what so
would do.

We observe that when transactions do not read-write
conflict, their certification order does not matter since they
do not affect each other. These transactions can thus be
certified in parallel.

Nevertheless, the updates of such transactions must be
applied in the order defined by atomic multicast. In short,
this is because local read-only transactions are not certified.
To illustrate this, consider the following execution that
violates 1-SR. Suppose that two transactions 7; and T
update keys k; and ko, respectively, and on site si, T
commits before 715, while on site so, 75 commits before T3 .
Consider in addition that on s; a local read-only transaction
T3 reads keys k; and ko before To commits but after 73
does, and that sy executes a local read-only transaction 7}
that reads the same data items as T3 before 7 commits but
after T, does. This execution is not 1-SR: in a one-copy
serial execution, 75 must be placed before 75 but after 77.
However, T} should be placed before T3 but after T, which
is impossible.

Algorithm in Detail: Algorithm A7, is composed of
four concurrent tasks. Each line of the algorithm is executed
atomically. The algorithm uses two global variables: Votes
stores the results of the certification tests, as in Ay, and
Certify@ is a FIFO queue of transactions that are being
certified.

To submit a transaction T', Proxy(T) atomically multi-
casts T' to Replicas(T) (line 11). When T is A-Delivered
at a site s and 7' does not read-write conflict with any
transaction currently being certified, s stores and sends the
result of T”s certification test if s replicates data items read
by 7" and T is global (lines 14-17). If s is concerned by 71”s
outcome, s adds 7T to the tail of Certify@ (line 18).

Site s then waits until there exists a transaction 7' in
Certify() whose outcome is known, i.e., Outcome(7") # L.
Recall that T’s outcome is known after s certifies 7" if T is
local (lines 4-5); if T" is global, its outcome is determined by
votes from a voting quorum for 7" (lines 6-7). If T' can com-
mit, s waits until 7" is at the head of the certification queue
before applying 1"s updates and committing 7" (lines 19-22).
This ensures that transaction updates are applied in the order
defined by atomic multicast. If 7" failed the certification test,
T can be aborted regardless of T’s position in CertifyQ
(lines 19). Transaction T is then removed from CertifyQ
and its outcome sent to Prozy(T) (lines 25-26).

C. Why Does it Work?

We briefly argue why P-Store ensures one-copy serial-
izability, and refer the reader to [6] for a complete proof.
We consider only certification protocol A7, since Ag. is a
special case of Aj,.

Let H be a replicated data history consisting of committed
transactions only. History H is 1-SR iff H is view-equivalent

Algorithm A},
Minimizing the Convoy Effect - Code of site s

1: Initialization
2:  Votes + 0, CertifyQ < €

{ Functions ApplyUpdates and Certify are as in Age}

3: Function Outcome(7")

4. if T is local then

5 return Certify(T)

6: else if IVQ € VQ(T) : Vs’ € VQ : I(T.id,s’,—) € Votes
then

7 return Vs’ € VQ : (T.id,s', yes) € Votes

8 else

9: return |

0

1

10: To submit transaction T’ {Task 1}
1 A-MCast(T') to Replicas(T) {Executing — Submitted}
12: When receive(VOTE, T.id, vote) from s’ {Task 2}
13:  Votes + Votes U (T.id, s',vote)
14: When A-Deliver(T") and AT’ € CertifyQ :

T’ read-write conflicts with T° {Task 3}
15:  if T is global and 3(k, -) € T.7s : k € Items(s) then
16: Votes < Votes U (T'.id, s, Certify(T))
17: send(VOTE, T.id, Certify(T)) to all s’ in WReplicas(T) s.t.

s & group(s)
18: if s € WReplicas(T) then add T to the tail of CertifyQ

19: When 37T € CertifyQ : Outcome(T) # L and
(T = head(CertifyQ) or Outcome(T) = no)
20:  if Outcome(T") = yes then

{Task 4}

21: ApplyUpdates(7")

22: commit(7") {Submitied — Commiited}
23:  else if Outcome(7T’) = no then

24: abort(T") {Submitted — Aborted}

25:  CertifyQ «+ CertifyQ \ {T'}
26:  send T"s outcome to Prozy(T)

to some one-copy serial history 7H, where H and 1H are
view-equivalent iff the following holds [10]:

1) H and 1H are defined over the same set of transactions,
2) H and 1H have the same read-from relationships on
data items: VT;,T; € H (and hence, T;,T; € 1H): T}
reads-x-from T; in H iff T} reads-x-from T; in 1H,
and,
3) For each final write wr[k, v, ts] in 1H, wr[kq, v, ts] is
also a final write in H for some copy k, of key k.
We show how to construct a one-copy serial history
1H that is view-equivalent to H. History 1H consists of
the same committed transactions as H, write operations
follow the order defined by atomic multicast, and operations
from different transactions do not interleave. In certification
protocol A7, a transaction 7" passes the certification test iff
the data items read by T are still up-to-date. Hence, if T’
commits then no transactions updated data items read by T’
in the meantime. Consequently, 7" reads a key k written by
some transaction 7" in H iff T reads key k from 7" in 1H.
The fact that A7, certifies transactions that do not read-
write conflict in parallel does not matter since certifying
them sequentially would produce the same result. Finally,



Algorithm Genuine? Execution Certification messages Consistency
latency latency (execution + certification) criterion
[3] no (rr +wr) X 2A 2A O(n?) 1-copy-SI
[5] no (rr +wr + 1) x 2A 2A O(n?) 1-copy-SI
[4] no (rr + wr) X 2A 2A O(kd?) 1-copy-SI
[1] yes rr X 2A | 7 X 3A AN O(kZd?) | O((rr + K?) x d?) 1-SR
[2] yes rr X 2A 2A | 4A O(k?2d?) | O((rr + wr + k%) x d2) 1-SR
Age & A, yes rr X 2A 3A O(k2d?) 1-SR
Table 1

COMPARISON OF THE DATABASE REPLICATION PROTOCOLS (7, AND w, ARE THE NUMBER OF REMOTE READS AND WRITES RESPECTIVELY, n
IS THE NUMBER OF SITES IN THE SYSTEM, d IS THE NUMBER OF SITES PER GROUP, AND k IS THE NUMBER OF GROUPS ADDRESSED BY 7).

since writes to every key k are ordered by atomic multicast,
it follows directly that if wr[k, v, ts] is a final write to k in
1H, then wr[kq, v, ts] is also a final write to k in H.

V. RELATED WORK

Numerous protocols for full database replication have
been proposed [15], [16], [17], [18], some of which have
been evaluated in wide area networks [19]. Fewer protocols
for partial replication exist. These protocols can be grouped
in two categories: those that are optimized for local area
networks [20], [21], [22], [14], and those that are topology-
oblivious. In the following, we review protocols from the
second category that either provide a generalized form of
snapshot isolation (1-copy-SI) [3], [5], [4] or one-copy
serializability (1-SR) [1], [2].

With 1-copy-SI, transactions read data from a possibly
old committed snapshot of the database and execute without
interfering with each other. A transaction 7" can only suc-
cessfully commit if no other transaction 7" updated the same
data items and committed after 1" started (first-committer-
wins rule). This consistency criterion never blocks nor aborts
read-only transactions and update transactions are never
blocked nor aborted due to read-only transactions.

To the best of our knowledge, none of the protocols
that ensure 1-copy-SI guarantee genuine partial replication.
In fact, to certify a transaction 7', either T is atomically
multicast to all sites in the system [3], [5], or 7" is sent to a
certifier group [4]. Although the latter protocol reduces the
communication overhead, messages must now be exchanged
over wide area links for local transactions. Further, the
certifier group may become the bottleneck under high loads
since it must certify all transactions. To guarantee that T’
observes a consistent view of the database when 7" is global,
the protocols in [3], [4] take dummy snapshots locally
after each transaction commit. In [5], this is achieved by
atomically multicasting an additional snapshot message at
the beginning of 1”s execution.

In [1] the authors propose a database replication protocol
based on atomic multicast that ensures 1-SR. Every read
operation on data item z is multicast to the group replicating
x; writes are multicast along with the commit request. The
delivered operations are executed on the replicas using strict

two-phase locking and results are sent back to the client. A
final atomic commit protocol ensures transaction atomicity.
In the atomic commit protocol, every group replicating a
data item read or written by a transaction 7" sends its vote
to a coordinator group, which collects the votes and sends
the result back to all participating groups.

In [2], a protocol that allows transactions to be executed
on multiple sites is presented. To certify a transaction 7T,
T is reliably multicast to Replicas(T)?, and each operation
of T on some data item x is atomically multicast to the
replicas of x. Sites then build the graph G of transactions
that precede T in the execution by exchanging their partial
view of GG. One-copy serializability is ensured by checking
that G is acyclic. These last two operations, namely building
G and checking that GG is acyclic, can be expensive.

Two algorithms based on atomic multicast that ensure
genuine partial replication are presented in this paper. They
require a single atomic multicast per transaction plus a vote
phase, in case the transaction is global. Transactions may
execute at multiple sites to allow a flexible partitioning of
the database even if transactions access the database in its
entirety. Algorithm 4,. may suffer from the convoy effect
since it certifies transactions sequentially. The second algo-
rithm A7, alleviates this undesired phenomenon by allowing
non-conflicting transactions to be certified in parallel.

Table I compares the properties and cost of the reviewed
protocols. Column two indicates whether the protocols
ensure genuine partial replication. The subsequent three
columns present the cost of the protocols, namely the inter-
group latency to execute and certify a transaction 7', and the
total number of inter-group messages exchanged to execute
and certify 7. To compute these costs, we consider that
T is global and is executed from within some group g.
Transaction 7T issues 7, remote reads and w, remote writes.
These operations access data items stored outside of g and
thus require inter-group communication. Both r,. and w,. are
in the order of k, the number of groups addressed by T
Further, we assume that groups are correct, neither failures
nor failure suspicions occur, inter-group messages have a

ZReliable multicast ensures all properties of atomic multicast except
uniform prefix and acyclic order.



delay of A, and intra-group message delays are assumed
to be negligible. In Table I, costs are computed by using
the atomic multicast algorithm in [23]. This protocol has
a latency of A and 2A for messages addressed to one
and multiple groups respectively, and sends O(z?) inter-
group messages to deliver multicast messages, where x is
the number of sites to which the transaction is multicast.
In columns four, five, and six, we report the costs of the
algorithms when data items are replicated in one and two
groups respectively. When these costs are identical, we
report a single value.

VI. THE IMPLEMENTATION OF P-STORE

We implemented P-Store in Java on top of BerkeleyDB
(BDB). To execute a transaction 7', a client sends read and
write requests to Proxy(T'), one of the sites in Replicas(T).
Write requests are buffered by Proxzy(T) and each read of
key k is executed at some site that stores k inside a BDB
transaction. When 7 is ready to commit, Prozy(T') submits
T along with 7’s set of key-version pairs read and 71"s
updates using one of the certification protocols presented
in this paper. If T passes the certification test, a BDB
transaction applies 71”s updates to the database in the order
defined by atomic multicast. Otherwise, P-Store re-executes
T and resubmits 7" to the certification protocol.

Certification protocols A,. and A}, are implemented on
top of a genuine atomic multicast protocol optimized for
wide area networks [23]. Performance evaluations of this
protocol can be found in [24]. When a transaction 7" is A-
Delivered at some site s, s assigns a certifier thread to T
This thread executes the certification test for 7' and applies
T"s update to the database as soon as 1" does not read-write
conflict with transactions currently being certified. Certifiers
are part of a thread pool whose size is configurable. When
P-Store uses Ay to certify transactions, the certifier pool
contains a single thread.

VII. PERFORMANCE EVALUATION

In this section, we present an experimental evaluation of
the performance of P-Store with the certification protocols
Age and A7, . We start by presenting the system settings
and the benchmark used to assess the protocols. We then
evaluate the impact of the convoy effect on A4, and asses
the scalability of P-Store when partial and full replication
are assumed.

A. Experimental Settings

The system: The experiments were conducted in a
cluster of 24 nodes connected with a gigabit switch. Each
node is equipped with two dual-core AMD Opteron 2 Ghz,
4GB of RAM, and runs Linux 2.6. In all experiments,
each group consisted of 3 nodes, and the number of groups
varied from 2 to 8. We assumed that groups were correct
and used an atomic multicast service optimized for this

assumption. To provide higher degrees of resilience, it would
have sufficed to replace the atomic multicast service with
an implementation that tolerates group crashes [12] and
replicate data items in multiple groups. Note, however, that
this would come at a cost. The bandwidth and message
delay of our local network, measured using netperf and ping,
were about 940 Mbps and 0.05 ms respectively. To emulate
inter-group delays with higher latency and lower bandwidth,
we used the Linux traffic shaping tools. We considered a
network in which the message delay between any two groups
follows a normal distribution with a mean of 50 ms and a
standard deviation of 5 ms, and each group is connected to
the other groups via a 1.25MBps (10 Mbps) full-duplex link.

BerkeleyDB was configured with asynchronous disk
writes and logging in memory. Moreover, on each site s,
the cache was big enough to hold the entire portion of the
database replicated at s. This corresponds to a setting were
data durability is ensured through replication.

The benchmark: We measured the performance of the
protocols using a modified version of the industry standard
TPC-B benchmark [25]. TPC-B consists of update transac-
tions only, and defines one transaction type that deposits (or
withdraws) money from an account. In our implementation
of TPC-B, each transaction reads and updates three data
items: the account, the teller in charge of the transaction,
and the branch in which the account resides. Accounts and
tellers are associated with a unique branch.

We horizontally partitioned the branch table such that each
group is responsible for an equal share of the data. Accounts
and tellers of a branch b were replicated in the same group
as b, and members of a given group replicated the same set
of data items. Before partitioning, the database consisted of
3’600 branches, 36’000 tellers, and 360’000 accounts.

In TPC-B, about 15% of transactions involve two groups,
that is, the teller in charge of the transaction is replicated
in a different group than the group in which the branch
and account are stored. The remaining 85% of transactions
access data in the same group. To assess the scalability of
our protocols, we parameterized the benchmark to control
the proportion p of global transactions. In the experiments,
we report measurements when p varies from 0% to 50%.

Each node of the system contained an equal number of
clients that executed the benchmark in a closed loop: each
client executed a transaction 7' and waited until it was
notified of 7”s outcome before executing the next one. Each
client ¢ was placed in the same group as the teller in charge
of handling c¢’s transactions, and inside each group g the
load generated by g’s clients was equally shared among
g’s replicas. For all the experiments, we report the average
transaction execution time (in milliseconds) as a function of
the throughput, i.e., the number of transactions committed
per second. We computed 95% confidence intervals for the
transaction execution times but we do not report them here as
they were always smaller than 5% of the average execution



time. The throughput was increased by adding an equal
number of clients to each node of the system and, on aver-
age, four hundred thousand transactions were executed per
experiment. In steady state, that is, when the system supports
the client load, the throughput of committed transactions
equals the input load minus the rate of aborted transactions.
Unless we explicitly state otherwise, the executions were
cpu-bound at peak loads.

B. Assessing the Convoy Effect

We explore the influence of the number of certifier threads
on the performance of P-Store. We consider a system with
four groups, one percent of global transactions, and vary the
number of certifier threads from one to one hundred fifty.
With any pool size bigger than one, the certification protocol
used is A;e, otherwise it is Age.

In Figure 2, we observe that the convoy effect affects both
latency and throughput despite a low percentage of global
transactions. With one certifier thread, as soon as sites certify
a global transaction, no other transactions can be certified for
the duration of the vote exchange, that is, one inter-group
delay. This creates long chains of transactions waiting to
be certified and limits throughput. Adding extra certifiers
quickly improves the performance of P-Store which reaches
its peak bandwidth with one hundred fifty threads. With this
pool size, the peak throughput reached by P-Store more than
doubled compared to when P-Store uses a single certifier. We
observed that the difference between these two certification
protocols grows when the percentage of global transactions
increases.

In the following experiments, we configured A7, to use
one hundred certifiers since the performance gained by
adding an extra fifty certifiers is small.
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Figure 2. The influence of the number of certifier threads in a

system with four groups and 1% of global transactions.

C. Full versus Partial Replication

In the following, we assess the scalability of P-Store and
compare certification protocol A;e against a certification
protocol denoted as Ay, that assumes full replication, i.e.,
all sites store the entire database.

Protocol Ay is based on A7 : non-conflicting trans-
actions are certified in parallel and updates are applied in
the order defined by atomic multicast. When an update
transaction 7" is submitted to A, T' is atomically multicast
to all sites to be certified and to propagate its updates. Since
full replication is assumed, all transactions are local and do
not require a vote phase. The certifier pool of .4, contains
one hundred threads.

We note that A7, and Ay, use different atomic multicast
protocols: A7, uses a genuine atomic multicast that requires
two inter-group delays to deliver a multicast message if the
message is addressed to multiple groups, and none when the
message is addressed to a single group and the sender is a
member of that group. To multicast a message to all sites,
Ay, relies on a non-genuine multicast protocol that needs
a single inter-group delay [24].

We compare the performance of A}, and Ay, in a setting
where the database is split into as many partitions as there
are groups, and each group replicates x partitions. We denote
x as the replication factor or number of copies. With x equal
to one, the data is perfectly partitioned such that no two
groups replicate the same data item—this is the setting A7,
used up to now. With x equal to the number of groups, we
fall back to full replication, i.e., Agy;.

Local Replication: We start the comparison between
Ay and Aze with a replication factor of one. We assess
the scalability of the protocols by varying the number of
groups and percentage of global transactions.

In Figure 3(a) and 3(b), we report the latency of P-Store as
a function of throughput when using certification protocols
A_’;e and Ay,;. Figure 3(a) presents the average latency
of the certification protocols considering both local and
global transactions; Figure 3(b) plots the latency of global
and local transactions separately. We consider from 0% to
50% of global transactions and a system with four groups.
A;e presents a similar latency as Ay,; with 25% of global
transactions but supports higher loads (see Figure 3(a)). Any
percentage of global transactions higher than 25% makes full
replication more attractive than partial replication. This is
explained by the extra cost paid by A7, to fetch remote data
items and execute vote phases to handle global transactions.

With lower percentages of global transactions, A7, pro-
vides lower latencies and improves the peak throughput
of Apu by a factor of 2.1, 2.7, 3.7, and 6.3 when the
percentage of global transactions is respectively 15%, 5%,
1%, and 0%. When no transactions are global, each group
acts as a completely independent replicated system, the
corresponding curve in Figure 3(a) thus only serves as an
illustrative purpose.

In Figure 3(b), we observe that local transactions are
executed faster with A7, than with Apg,: with the latter
certification protocol, transactions are multicast to all groups
as opposed to only the local group with A7,. At low loads,
global transactions require about 300 milliseconds to be
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Figure 3. The scalability of A, and Aj, when the percentage of global transactions and the number of groups vary.

executed by P-Store and certified with A7 : two inter-group
delays are needed to fetch remote data items, two delays
are required to atomically multicast the transaction, and the
last inter-group delay allows to carry out the vote phase.
In total, inter-group communication takes 250 milliseconds,
the remaining 50 milliseconds are due to intra-group com-
munication and processing overhead. Note that with Afu”,
all transactions are local since sites store the entire database.

In Figure 3(c) and 3(d), we study the scalability of Aze
and Ap,;; when the number of groups varies and consider
25% of global transactions. As before, Figure 3(c) presents
the average latency of the protocols when considering both
local and global transactions and Figure 3(d) separates local
and global transactions. Ay, does not scale when the
number of groups increases. In fact, Ap,; performs best
with two groups; with eight groups the execution is network-
bound. In contrast, A7, presents a scale-out of roughly 0.7
up to eight groups, that is, multiplying the number of groups
by k increases the peak throughput of A}, by a factor of
0.7k. Moreover, A7, with eight groups can support a load
that is 1.7 times higher than the best peak throughput of
A among all considered system sizes. This shows that
Aj, offers good scalability even when 25% of the workload
involves multiple groups. Figure 3(d) shows similar trends
when comparing A}, with Apy;.

We note that at peak loads, from 7% to 15% of trans-

actions were aborted by A7, —Ay, never aborted more
than 5% of the transactions. In A7, aborts were primarily
caused by the optimistic reads of global transactions. We are

currently working on techniques to reduce this phenomenon.

Replicating Data across Groups: To reduce the amount
of data items fetched from remote groups and increase the
locality of the execution, it may be interesting to replicate
data items in multiple groups. To evaluate this idea, we
consider a replication factor of two, that is, data items are
replicated in two groups.

In Figures 4(a) and 4(b), we report results in a system
with four groups and 100% of updates. Figures 4(c) and 4(d)
illustrate the performance of the protocols with 20% of
updates—read-only transactions read a single account. Re-
call that update transactions also perform reads and may
benefit from replicating data items in multiple groups to
allow local reads.

Maintaining copies of each data item in two groups harms
the latency and scalability of A}, dramatically with 25%
of global transactions (see Figure 4(a)). Transactions are
now atomically multicast to twice as many groups to be
certified. In particular, global transactions must be multicast
to all four groups of the system. Interestingly, reducing the
percentage of global transactions to 1% does not affect
this result significantly—in fact when considering local
and global transactions separately, this difference becomes
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Figure 4. The scalability of A, and Aj, when the replication factor and the percentage of update transactions vary.

insignificant and we thus omit the curves for 1% of global
transactions in Figure 4(b). With two copies, the updates of
local transactions must be applied to two groups, compared
to only one group otherwise. Hence local transactions now
have a much higher latency than with a replication factor
of one (see Figure 4(b)). Moreover, with two copies, A;e
requires roughly twice as much time as Ag,;; to commit local
transactions. This is because Aj, uses an atomic multicast
protocol that requires twice the number of inter-group delays
to deliver messages addressed to multiples groups, i.e., two
for A7, as opposed to one for Apu [24].

This situation does not change when the workload is com-
posed of only 20% of updates (see Figures 4(c) and 4(d)).
The only difference we observe is a significant decrease in
the average latency of local transactions (see Figure 4(d)).
This is because read-only transactions now constitute 80% of
the workload and commit without inter-site communication.
On average, these transactions require less than a millisecond
to commit, regardless of the protocol and the load.

In Figures 4(a) and 4(c), Ay provides better perfor-
mance than A7, with two copies and regardless of the
proportion of global transactions. This suggests that per-
forming remote reads is less costly than replicating data
across groups for the system size considered.

D. Summary

Based on the results above, we provide a tentative decision
diagram to determine whether to deploy full or partial
replication given the workload. Figure 5 advocates partial
replication when the number of groups is important and
global transactions access few groups. We suspect that the
percentage of read-only transactions does not affect the
decision procedure, except in special cases (e.g., when the
majority of read-only transactions read data items from
multiple groups). Further refining this decision procedure
is future work.

VIII. CONCLUSION

P-Store is a partially replicated key-value store for wide
area networks that allows transactions to optimistically exe-
cute at multiple sites and certifies transactions in a genuine
manner: to certify a transaction 7' only sites that replicate
data items read or written by 7' exchange messages. The
certification protocol A7, proposed in this paper allows
to reduce the convoy effect by certifying non-conflicting
transactions in parallel. To guarantee serializability of the
transaction execution, P-Store makes a thrifty use of an
atomic multicast service: a single message is atomically
multicast during 7”s certification. In case 7" is global, an
extra vote phase is executed to ensure that sites agree on 1”’s
outcome. This is in contrast to previously proposed solutions
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that either invoke the atomic multicast service multiple times
to handle each transaction or are non-genuine.

Our experimental results show that the certification proto-
col A7, effectively reduces the convoy effect and doubles the
peak throughput of P-Store even when only one percent of
transactions are global. We also observed that P-Store scales
better than a fully replicated solution when the percentage
of global transactions is no more than twenty-five percent
and provides an almost linear scale-out up to at least eight
groups.

As future work, we plan to further investigate the pa-
rameters that influence the scalability of partial replication
and refine our decision procedure to determine when partial
replication is a better choice than full replication.
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