ELT: Efficient Log-basedTroubleshooting System for
Cloud Computing Infrastructures

Kamal Kc, Xiaohui Gu
Department of Computer Science
North Carolina State University
kkc@ncsu.edu, gu@csc.ncsu.edu

Abstract—We present an Efficient Log-based Troubleshoot- log messages to find anomaly causes. Unfortunately, little
ing(ELT) system for cloud computing infrastructures. ELT ~ research has been done to automatically extract root cause
adopts a novel hybrid log mining approach that combines g|6yant messages. In addition, existing solutions (£28])

coarse-grained and fine-grained log features to achieve Hot . . .
high accuracy and low overhead. Moreover, ELT can automat- mostly focus on detecting known problems, which require

ically extract key log messages and perform invariant chedkg prior knowledge about anomalies.
to greatly simplify the troubleshooting task for the system In this paper, we present arkfficient Log-based

administrator. We have implemented a prototype of the ELT Troubleshooting (ELT) system for large-scale cloud comput-
system and conducted an extensive experimental study using ing infrastructures. ELT adopts a noveybrid log analysis

real management console logs of a production cloud system e . . ! -
and a Hadoop cluster. Our experimental results show that ~&PProach:Iitfirst employs a hierarchical clustering aloni

ELT can achieve more efficient and powerful troubleshooting ~ Over all examined instances using a simple coarse-grained
support than existing schemes. More importantly, ELT can fird log feature called message appearance vector (MAV); It

software bugs that cannot be detected by current cloud syste then performs outlier detection within large clusters gsin
management practice. fine-grained log feature called message flow graph (MFG).
The first step can quickly detect those anomalous instances
that are very different from all normal instances while the
Cloud computing [1], [2] has become increasingly popularsecond step can further separate those anomalous instances
by obviating the need for users to own and maintain complexhat resemble some normal instances. Our approach is based
computing infrastructures. However, due to their inherenbn two key observations: i) large-scale cloud computing
complexity and large scale, cloud systems are prone tsystems are naturally redundant, which consist of a large
various runtime problems caused by hardware failures onumber of similar normal instances (e.g., multiple reser-
software bugs. Console logs are often the sole informatiowations of the same VM image, data-parallel MapReduce
source for system administrators to perform troublesingoti tasks [6], [4]); and ii) there are anomalous instances that
However, those log files grow quickly during system run-share certain similarity with normal instances, which nzake
time. For example, in the Virtual Computing Lab (VCL) [2] them hard to detect using coarse-grained features only. ELT
production system, a single 12 hour reservation log filecan detect both known and previously unseen anomalies
contains over thirty thousand messages. It is a dauntikg tasising unsupervisedearning methods. Moreover, ELT can
for system administrators to manually examine millions ofautomatically extract tens of key messages from thousands
log messages that can be generated in a week. The curresft log messages to significantly narrow down the exami-
practice is to search some keywords such as “critical’nation scope for system administrators. ELT also supports
“warning”, or “error” that are inserted in the source code byinvariant check to provide useful clues for anomaly causes.
software developers. However, relying on labelled message We have implemented a prototype of the ELT system and
cannot capture those unexpected runtime problems that dmnducted extensive experimental study using large-scale
not contain any critical or warning messages. Moreoverconsole logs collected on the VCL production system. As
developers often mark some messages as critical or warnirgy proof of general applicability, we also tested ELT using
for debug purposes, which often produce many false alarma small-scale Hadoop [4] cluster in our lab. We compare
for the system administrator. the anomaly detection accuracy of different algorithmagsi
Previous work on log analysis (e.g., [8], [20], [13]) the receiver operating characteristic (ROC) curves that ar
has examined coarse-grained or fine-grained log analyssommonly used to show the tradeoff between detection rate
separately, which makes them suffer from either high proand false positive rate. The experimental results show that
cessing overhead or low detection accuracy. Moreover, eveBLT can achieve much higher detection rate and lower false
with automatic anomaly detection, the system administratopositive rate than current production system practice and
still faces the challenge of examining a large number ofother existing schemes. ELT can extract 4-150 key messages

I. INTRODUCTION

VCL log message: ELT Vj
| . Log feature c:
2010-04-27 13:22:03|18457|952414:1027953)new|OS.pm: Clustering (— extraction
wait_for_response(479)|waiting for vclf1-5 to respond {5 using MAV (MAV,MFG) nsance 5 ToT
to SSH, maximum of 600 seconds Outlier Is anomaly?: Yes
detection Anomaly Type: multi-
Hadoop log message: using MFG ﬂf;f::;:;;':sg error
i msgl,..,msgk
2011-03-25 23:47:01,380 INFO org.apache.hadoop.mapred. [—Key message| 'nvf ”akm) ivariant check failed
TaskTracker: Task attempt_201103252330_0001_m_000033 extraction chec
_0 is in commit-pending, task state:COMMIT_PENDING Troubleshooting

Report

Figure 1. Production system console log message examples. .)
Figure 2. The ELT system architecture.

from large log files containing over 30K messages. Our |n order to efficiently parse millions of log messages in
invariant check scheme successfully found two softwarea short period of time, we first extract a set of message
bugs in the VCL production system. ELT is light weight, templates to represent many different log messages. The
which has more than one order of magnitude less overheagiessage template consists of two parts: the text that daes no
than fine-grained log analysis schemes. Performing invtria change and the text that changes. We refer to the text that
check over extracted messages reduces the check time dyes not change asessage typand the text that changes
more than three orders of magnitude compared with checksased on variable values asessage variablesThe log
ing against whole log files. message template matching process only uses the message
The rest of the paper is organized as follows. Section ltype part by replacing those message variables with the “*”
presents the overview. Section Il presents the desigrilsieta symbol. In our experiments, we extracted 4164 message
of our approach. Section IV presents the implementation antemplates from the Apache VCL source version 2.1 and 167
experimental evaluation. Section V compares our work withmessage templates from the source files (mapred folder) of
related work. Finally, the paper concludes in Section VI. the Hadoop version 0.20.2. If the number of the message
templates is large (e.g., VCL logs), we store all message
templates in a hash table to achieve fast matching. Since the
Cloud systems often continuously produce console logéog message often consists of the code module name (e.g.,
to record management operations during system runtime. 1@S.pm in the log message shown in Figure 1) where the
this work, we use the virtual computing lab (VCL) [2] and message is generated, we hash log message templates using
a Hadoop cluster [4] as our case study examples. VCL igheir code module names.
a production cloud system that operates in a similar way ELT explores a novel hybrid log mining approach to
as Amazon EC2 [1]. The system keeps a large numbeachieve efficient troubleshooting for cloud computing in-
of virtual machine (VM) images recording different pre- frastructures, illustrated by Figure 2. ELT first groups log
configured reference systems (e.g., RedHat 4.3 with Hadooppessages based on a certain identifier (e.g., reservation 1D
Windows 7 with Matlab). When the user submits a reservaVCL, task ID/task attempt ID in Hadoop) into different log
tion request, one of the VCL management nodes creatddes. Thus, each log file records all the execution operation
the requested system by loading proper VM image filedor one troubleshooting instance (e.g., one reservation in
into the allocated hosts. Hadoop [4] is an open sourc&/CL, one map/reduce task in Hadoop). ELT then parses
implementation of Google’s MapReduce system [6], whicheach log file to extract a coarse-grained log feature called
is one of the most representative data-intensive appicati message appearance vect®AV) and a fine-grained log
running in cloud. feature callednessage flow graptMFG). The MAV feature
Figure 1 shows two examples of console log message@nly captures which types of messages appear in the log
produced by a VCL management node and a Hadoofile while the MFG feature captures the transition patterns
tasktracker node. VCL log files record reservation openatio between different types of messages.
such as host allocation, image loading, node reclaim, and Next, ELT performs hierarchical clustering over the log
others. Each log message consists of a set of fields sepfiles of all troubleshooting instances using the MAV feature
rated by the pipe symbol (). The message fields include The system will get two different types of clusters: i) small
time stampprocess identifierequest identifigrreservation clusters consisting of anomalous instances only; andrigela
identifier, reservation statecaller information andmessage clusters consisting of both anomalous and normal instances
content Hadoop log files record task operations such asThe system performs outlier detection within those large
creation, deletion, progress report, cleanup, and otkgsh clusters using the fine-grained MFG feature to further sepa-
log message contains fields separated by blank spaces. Ttate the anomalous instances from normal ones.
message fields aténe stamplog level output class name After the anomalous instances are identified, ELT auto-
and message content matically extracts key messages that are most relevant to

Il. BACKGROUND AND SYSTEM OVERVIEW

[1] initiating Linux post_load: * on *

anomaly root causes. This is done by performing clustering O (7) [21%1NOT responding to ssH. port 22 or 24
over the difference logsof all anomalous instances. The [3] waiting + seconds for * to boot

. . . e e [4] wa!t.ed * seconds for * to boot _
difference logof an anomalous instance contains those [5] waiting for * to respond to SSH, maximum
messages that are not found in normal instances. Each of () (5) Llwaiting for o respond to SSH, maximum

. of * seconds » .

the resulting cluster represents an anomaly type and key (35 131755 NOT responding to SSH. port 23 or 24
messages for each anomaly type are the common message f;f;;é;ﬁgic?de returned false, seconds
sequences among the anomalous instances of the same [6] attermpt = waiing for = to respond to SSH
anomaly type. ELT provides further automatic troubleshoot (21 Ie NOT responding to SSH, port 22 or 24
ing support by checking system specific invariants over

extracted key messages to provide useful clues for the Figure 3. Message flow graph (MFG) construction.

anomaly causes.

Assumptions. Our current system implementation relies _ _)
on the source code to extract message templates. Thid!SCeptible to repeating messages that often appear during

assumption is similar to previous console log analysis sysformal operations. For example, in VCL, the management
tem [20]. Previous work also proposed techniques to extradtode continuously polls_the reserved host, which results in
message templates from log files without the need for sourcé®Me messages appearing frequently in the logs. Under such
code [19]. Our work can easily leverage those techniques tircumstances, the message frequency feature may cause
eliminate the source code requirement if the source codBISe alarms by incorrectly categorizing reservationshwit

is hard to obtain. Our clustering-based anomaly detectiolifferent durations. o .

approach is based on the premises that the number of normal Examining MAV alone is insufficient since MAV cannot
instances is larger than that of the anomalous ones, arfefpture the execution sequence information. Thus, MAV can
each instance type (e.g., reservation of certain VM image5'°t distinguish two instance; thgt consist of the same set
has abundant normal instances. During our experimentQ,f operations but executed in .d|fferer_1t orders. To address
we found that large-scale cloud computing environmentdh€ problem, ELT extracts the fine-grained MFG log feature
generally follow our assumptions. Another assumption oft@ capture the transition patterns among different message
our approach is that the anomalous instances contain eith§mplates. The graph nodes in an MFG are message template
different log messages or different log message sequencédentifiers and the edge from a nodand to a nodg denotes

from normal instances. We have found that most of thghat the message templatappears right before the message
anomalous instances in cloud systems such as VCL an§mplate; at least once. For example, Figure 3 shows an

Hadoop follow this behavior. example of MFG for a VCL log snippet. The numbers in
square brackets are the message template identifierssin thi
I1l. SYSTEM DESIGN example, the message sequefice> 3 — 4 — 5 — 6 is

In this section, we present the design details of our systenthe first round of check for ssh service. During this check,
We first describe the hybrid log feature extraction schemdn® management node waits for some time to accommodate

the key message extraction and invariant check schemes. iteratively performs ssh service check in the ldbp» 7 —
6 — 2. The loop terminates after the ssh service starts.

A. Hybrid Log Feature Extraction The console log message sequence reflects the execution

To achieve efficient log-based troubleshooting, the firsgsequence in the code path. Thus, MFG is useful for finding
step is to extract proper log features to characterizerdiffe differences between instances that contain similar messag
instances. ELT first extracts the simple MAV log feature Difference between the MFGs of two similar instances
to describe the presence or absence of different messag\é)uld indicate that there exist different execution se@esn
templates in each log file. Since the message templatdetween them even though they have similar operations.
present in the log file correlate with the system operationstiowever, the drawback of the MFG feature is its complexity.
MAV reflects which operations are conducted during theAnalyzing the MFGs for all log files will inevitably incur big
runtime of the examined instance. The size of MAV equalsProcessing overhead. Thus, we need to design a hybrid log
to the total number of message templates. THeelement analysis algorithm that can leverage the advantages of both
value in the vector is set to beif the it message template 109 features but still keep the log processing overhead low.
is present in the log file. Otherwise, it is set to beFor ~ We will describe the details of our log analysis algorithm in
example, if the total number of message templates is 4 andl€ next section.

a log file contains message templates 1 and 3, the MAV of i i
this log file is [1,0,1,0]. B. Hybrid Log Analysis

We chose MAV rather than previously used message We propose a new hybrid log analysis scheme that can
frequency feature [20] because it is more robust. MAV is notachieve both high accuracy and low overhead. The hybrid

Step 2: Detect outliers within each big

AR cluster using MFG messages, most abnormal instances should form separate
>, LT 2; N small clusters by themselves. However, in some cases of real
I,;{.\ ‘\\:'; T A g7 systems, both normal and abnormal instances may contain
ey T . % */ similar messages. Thus, we cannot distinguish anomalous
Opn. O \-—Ti;m;w instances from normal ones based on the MAV feature only.
\S ./} 1 Vark small dustor To handle those cases, we perform outller_dete_ctlon within
© - Anomalous instance as anomalous all large clusters (e.g., size 4) to further pinpoint those
© - Normal instance anomalous instances that mix together with normal ones in

the same cluster. The size value (eg. 4) is an empirically
decided value. We believe that large cluster size threshold

log analysis algorithm consists of two steps, illustratgd b €an be methodically derived in an online version of ELT
Figure 4. First, we employ a hierarchical clustering a|go_scheme. In online qperation,_our spheme is less sensitive to
rithm using the MAV log feature to quickly obtain groups of the small cluster size selection since the anom_aly always
instances with similar characteristics. Second, we perfar Starts from a small cluster and normal operations often
nearest neighbor based outlier detection within each groupave sufficient number of instances in a large-scale cloud
using the MFG log feature to accurately detect abnormafOmputing environments.
instances. We describe both steps in detail as follows. 2) Outlier Detection using MFG:The instances in the

1) Clustering using MAVMWe employ a hierarchical clus- Same clustgr contain a similar set of message types but
tering algorithm [10] to obtain groups of instances with sim €an have different message sequences. We use the MFG
ilar characteristics. We choose hierarchical clusteringro ~feature to distinguish those instances with different ages
other common clustering techniques such as k-means argfduences. We perform outlier detection using the MFG
its variations because we do not want to make assumptiori§ature within each large cluster to further pinpoint anema
on the number of clusters that will form during production [0US instances. We use the graph edit distance to define the
run. We use MAV in the clustering process for two reasonsdistance of two instances’ MFGs. The graph edit distance
First, MAV allows the clustering algorithm to form groups of Petween two graphs is the number of edge additions or
instances with similar operations. Second, the cost ofgusindelétions required to transform one graph to the other.

MAV over all instances is much smaller than the cost of We use the nearest neighbor technique [18] to perform
using fine-grained feature such as MFG. outlier detection. We compute pairwise graph edit distance

We start from a single cluster containing all instances and€ween the MFGs of every two instances within the cluster.
continuously split a large cluster into two smaller onessTh e define the nearest neighbor distance as the shortest dis-
process repeats until there isn't any cluster that can ke spl tance for each instance. We label an instance as anomalous

Typically, hierarchical clustering uses dendogram heighi"iits nearest neighbor distance is greater than the thidsho

based stopping criterion which is not easy to determineX + 20, where.X is the mean of all the nearest neighbor
algorithmnically. Due to this reason, our work usdsster distances and is the standard deviation. Note that we only
diameter as the stopping criterion. The cluster diameterPr0Cess the MFG feature within each cluster rather than over

denotes the largest distance between any two objects in &' the instances. As we will show later in our experiment
cluster. Any cluster with diameter greater than a specified€Sults, the hybrid log analysis approach can significantly

threshold (e.g., 40) is selected for splitting. During eachfduce the processing overhead by more than one order of
splitting step, we employ thé-medoid ¢ = 2) clustering magnitude compared to the scheme using the MFG feature

algorithm to split a large cluster into two new smaller ONly over all instances.
Clusters. _ _ C. Key Message Extraction
We define the distance between two instances as the

Manhattan distance between the MAVs of the two instances Although automatic anomaly detection is very helpful,

log files. Let D(L:, L;) denote the distance between two the system administrator still faces the dismal task of ex-

log files I, and L-’ Izet [ty ooy my] and [mi, ..., my,)] amining each anomalous instance containing thousands of
[- i1y «eey Hlip gLy e Hlbgp

denote the MAVs of the two log files. We formally define messages for problem diagnosis. To further simplify the
the distance as follows troubleshooting task, ELT provides key message extraction

support, which can narrow down a small number of log

Figure 4. Hybrid log analysis scheme.

B P 1 messages that are most relevant to the anomaly cause. Our
D(Li, Ly) = Z i — M 1) key message extraction scheme consists of three steps shown
k=1 in Figure 5.

The result of the clustering process is a collection of First, we obtain a difference log callatifflog for each
clusters of different sizes. Based on the premise that anomanomalous instance by comparing it with normal instances.
lous instances are relatively infrequent and contain cifie We use the MFG feature during the difflog generation. If

Difflog 13:38:28| 24817|..|new|..|collected public hosthame=host1

e e Compare to Al
i~ - generate difflog message) ;
(O ~) (5 :> sequences of 13:38:31] 27609|..Jnew]..|executing SSH command on host1: .. "/
\ \ AR @\ (@ ;”;&?:}095&”25?”639 usr/sbin/useradd -u 32494 .."
@) "~ g: (1,24, 13:38:31] 27609]..[new|..[SSH command executed on host1,

MFG of MFG of representative
Anomalous normal instance (cluster
instance 1 (Al1) medoid) fromlarge cluster

returning (0, "none")

13:38:33] 24817|..|new|..|SSH command executed on hostl, /usr/
a. Obtaining difflog for detected anomalous shin/useradd -u 32494 ..'

instances (six message templates). 13:38:33| 24817|..|new|..|detected user already has account
13:38:33] 24817|..|new|..|executing SSH command on host1: '/

— Cluster using [Al1: Difflog MAV [110101] |Anomaly usr/shin/userdel -u 32494

AI2* Diflog MAY [111010] MAV Al3: Difflog MAV [111101] | Type 1

M. Diflog May Eﬁﬁg&} AlZ: Difffog MAV [111010]]Anomaly Figure 6. Key messages extracted for the multiprocessrgrkiror.
+ Difflog Al4: Diffiog MAV[011100] | Type 2

Difflog MAV of
Anomalous instances OUtpUtS all of them.
b. Obtaining anomaly types. . .
D. Invariant Checking Over Key Messages
Common message Key messages .
Anomaly Type 1 sequence y messag By extracting a small number of key messages, ELT can
% ? A Diffog message speedup the troubleshooting task for the system adminis-
® %@ :{> @2 :{} sequences matching trator. To further automate the log-based troubleshooting
A e sequence: (1,2 process, ELT supports invariant checking to provide more
clues for the anomaly causes. We observe that many real
¢. Obtaining key messages. world systems need to preserve certain invariants. Vbt

of those invariants indicate incorrect operations. Fomexa
ple, in VCL, the system needs to preserve the following
_ i) invariants: 1) a reservation request cannot be processed
an edge in the anomalous instance’s MFG is not preserfy mytiple processes simultaneously; and 2) simultaneous
in any of those normal instances’s MFGs to which it iS commands (e.g., remote ssh) should return the same output.
compared, we add the sequence of the message templaig§te that we do not use invariant checking to perform
denoted by the edge together with all message occurrencggomaly detection but instead only use it to extract more
matching the sequence into the difflog of the anomaloug, gperties about the detected anomalous instances. We as-
instance. For example, in Figure 5(a), the unique MFG edges,me that the invariants are specified beforehand and can be
of the anomalous instance ate— 2 and4 — 6. We add readily tested.
all occurrences of the message sequefice, 4, 6) into its Figure 6 shows an example of the extracted key messages
difflog. For the anomglous mstapce that belongs to a larg¢or an anomalous VCL reservation request with tgtipro-
cluster, we compare its MFG with the cluster medoid. Forcess forking errarWe can see that the log file contains two
the anomalous instance that belongs to a small cluster, W@ erleaving processes (process 24817 and process 27609)
compare its MF_G with the med0|d_s of all large clusters ("e"performing the new state operations simultaneously. We
the representatives of all normal instances). detected this bug by performing invariant check over all the

Second, we extract the MAV features for all derived processes in the extracted key messages. We first derived the
difflogs. We then perform hierarchical clustering over all execution intervals defined by the start and end timestamps
difflogs using their MAVs to identify different anomaly for all processes. We then checked whether the execution
types. The clustering algorithm used for difflogs is the samentervals of different processes overlap with each other. |
as the one used for processing original log files. As aFigure 6, we can see that the process 24817 and the process
result, we can identify different types of anomalies and the27609 have overlapped execution interval. This bug has been
anomalous instances belonging to the same anomaly typeported to the VCL bug database (bug entry VCL-149).
will be grouped together in one cluster. For example, inNote that this bug cannot be detected by the current VCL
Figure 5, we identify two anomaly types, each of whichmanagement practice since the failed reservation request
includes two instances. does not include any critical or warning message.

Third, we extract common message template sequencesELT allows system administrators to specify the system
among all the instances belonging to the same anomaly typeavariants it should check. Performing invariant checksrov
by comparing their MFGs. For example, in Figure 5, if thethe extracted key messages is relatively inexpensive com-
edgel — 2 appears in both instances of the anomaly typepared to the entire log. Although we can perform some
1, we add the message template sequgice) into the invariant checks over original log files, it is more efficient
common message template. Next, we match the message perform invariant check over the extracted messages. For
template sequence with the original log messages stored igxample, in the multiprocess forking error example, a sing|
the difflogs of all anomalous instances. If there are mudtipl reservation may contain a large number of processes for long
matching message sequences in different instances, ELTinning reservations. The cost of performing the invariant

Figure 5. Key message extraction.

. g 2 . System Log (anomalous Message Log size
check over the entire log file _|Q(N) vvhereN is the messages | Instances, templates
number of processes included in the log file. In contrast, the total
extracted key messages only include a few processes, whi ‘hVCL . a— irgtgaggt;) — e
PP . . - million \
can significantly shorten the checking time. vors 20 million (172.3655) A64 > 6 CB
V. E E VCL-3 17 million (43,1114) 4164 2.0 GB
- EXPERIMENTAL EVALUATION Hadoop-1| 2 million (257,18224) 167 300 MB
In this section,we present our prototype implementation_Hadoop-2| 6.8 milion | (975,68561) 167 11GB
and experimental evaluation results. We applied ELT to Table |
three production logs of the VCL system and MapReduce DATASETS USED DURING EXPERIMENTS

execution logs of a Hadoop cluster.
31st, 2010. During this period, reservations were made for

A. Implementation and Experiment Setup various softwares such as Matlab, Openoffice, educational

We have implemented a prototype of ELT in about 6K software for class projects, Linux system, and others. VCL-
lines of C/C++ code. The prototype consists of five majorl contains only Linux reservation logs. VCL-2 contains
modules: 1) log parser, 2) clustering, 3) outlier detegtén Linux and Windows reservation logs produced by the first
key message extraction, and 5) invariant check. When wganagement node. VCL-3 contains Linux and Windows
apply ELT to different system logs, we only need to modify reservation logs produced by the second management node.
the log parser module. We used adjacency list to represettadoop-1 and Hadoop-2 are the Hadoop logs produced by
the MFG. For matrix operations, we used the armadillorunning MapReduce sort applications on a 20 node cluster
library [3]. during a period of 5 days. Hadoop-1 is the subset of Hadoop-

We now describe the log parser implementations for VCL2 dataset. All log analysis experiments were conducted on a
and Hadoop systems. The VCL codebase is written in PerQuad core 2.66 GHz Intel processor (8GB RAM) machine
It uses the function riotify() ” to produce the console running Linux kernel 2.6.32.
log message. The third argument of the notify function The VCL and Hadoop system logs used in our experiment
call contains the log message. Thus, the log parser gregge single files that contain log messages for all troublesho
the VCL source code for notify() function calls and then ing instances. When we process the system logs, we group
parses the third argument of each function call to extract &g messages based on the instances. Each of these instances
message template. The message template may contain pi&irepresented as a separate log file. So, the number of log
variables which typically start with a “$” or “@” symbol. files ELT uses is the same as the number of instances shown
We assign a unique identifier to each message template. in Table I.
our experiments, we extracted 4164 message templates fromWe evaluate our system in terms of both detection ac-
the Apache VCL source version 2.1 [2]. curacy and processing overhead. Lét,, Ny,, Ny, and

We use a simple approach to extract message templatéé,, denote the total number of true positive, false negative,
from the Hadoop source code. Hadoop is written in Java. Théalse positive and true negative observations, respéytive

functions of LOG objectLOG.info() , LOG.warn() , We calculate the detection rate, and false alarm ratel

LOG.error() and LOG .fatal() output the log mes- in a standard way as follows,

sages. Our log parser greps those functions from the source N, N

code to form the templates by separating parts enclosed in Ap=—"2__ Ap=—_"J2__ (2)
Nip+ Npn Nyp + Nin

double quotes (") as fixed texts and parts not enclosed as
variables. We extracted 167 message templates from tHé&e used the receiver operating characteristic (ROC) curve t
source files in the mapred folder of the Hadoop versiorshow the tradeoff betwee#, and A for different anomaly
0.20.2. For simplicity, our current log parser did not usedetection algorithms.
the abstract syntax tree to disambiguate the templates that To identify true anomalies in the VCL logs, we spent
may have different stream combination values due to knowseveral weeks on manually examining the VCL log files.
variable values and object function calls such as toStying(We first use our clustering algorithms to separate different
We can extract more templates by applying the abstradbg files into different groups. We then manually examine
syntax tree, which can further improve the accuracy of ourach instance in one group based on the specific messages
anomaly detection algorithms. However, as we will showappeared in the instance. After manually identified those
later, ELT can achieve very good detection accuracy fomnomalies, we confirmed with VCL developers on our
Hadoop console logs even with only 167 message templatemanual inspection results. For Hadoop log files, we injected
Table | shows the detailed information of the log datasetdaults on a subset of MapReduce tasks. We thus know which
used in our experiments. VCL-1, VCL-2 and VCL-3 are thetasks are true anomalies.
production logs produced by six different VCL management For comparison, we also implemented a set of alternative
nodes during a 60 day period from April 1st to May console log analysis schemes: Cyitical keyword this

scheme marks an instance as anomalous if its console Ig
file contains the keyword “critical”. Current VCL productio
system management adopts this approach and a critic
message will immediately trigger an alert email sent to
the system administrator; 2)arning keywordthis scheme

., Anomaly Types

Description

Image reloading failure

Occurs when the reloading operation fails
twice to establish a new reservation.

AlSanitization failure

Occurs when user account and activity are
not cleared successfully during the reclairr
operation.

Overlapping reservations

relies on warning messages to detect anomalous instances.
. . . * 1 1
Since developers tend to include many warning messages Multi-process forking

for debugging purposes, this scheme will inevitably mark
many instances as anomalous;BJA this scheme applies

Occurs when more than one reservation ig
made on the single host.

error

Occurs when more than one process
performs same state operation at the same
time.

U

*Multiple attempts to

principle component analysis using the message frequengydelete user

Occurs when the management node
attempts to delete the same user account
more than once.

vector (MFV) feature to detect anomalies, which has bee
used by previous console log analysis system [20]; 4
Clustering+ NN MFG this scheme uses the same hybrid

T Reservation host not in
contact

Occurs when the management node is no
able to establish ssh connection with the
reserved host after the host was reserved
successfully.

log analysis algorithms as ELT but uses the fine-grained lo

¥ Reservation failure due td

Occurs when the reservation processing ig

feature MFG for both clustering and outlier detection; and
5) PCA MFG this scheme uses the same PCA scheme
in [20] but uses the fine-grained log feature MFG instead o
MFV.

not successful due to the failure of other
dependent cluster nodes.

Occurs when predictive reloading cannot b
performed at the end of a reservation.

Table I
VCL ANOMALY TYPES."*” DENOTES UNEXPECTED ANOMALIES

cluster node failure

gdependency
Predictive reloading
failure

[¢]

B. VCL Results

Table Il shows all anomalies present in the VCL produc-
tion log files we processed. Among the listed anomaliesyarning keyword schemes do not have tunable parameters,
multi-process forking erroand multiple attempts to delete their ROC curves are not continuous.
user errordo not contain any warning or critical message. The results show that the critical keyword scheme has
The management node normally processes a reservation wittery low detection rates for VCL-1 and VCL-2 datasets, and
one process at a time. But, due to a bug in the softwareabout 70% detection rate for VCL-3. In contrast, the warning
for some reservation instances, there were two redundakeyword scheme has very high false positive rates for VCL-
processes performing node allocation, causing nidti- 1 and VCL-2 datasets since many warning messages are
process forking errar Both processes then attempted toinserted by developers for debugging purposes. For VCL-3,
create user account on the reserved host, setting differetite warning keyword scheme can achieve 100% detection
passwords on each attempt. Depending on which procesate with a slight lower false positive rate than ELT. The
notifies the user, the user might be provided with a wronggritical/warning keyword methods work better for VCL-3
password and locked out of successfully reserved host. Ithan VCL-1 and VCL-2. The reason is that most anomalous
the case of thenultiple attempts to delete user erfa bug instances in VCL-3 are expected problems that contain
in the user deletion handling module makes the managemeantitical failure messages and most normal instances do not
node to issue a repeated delete command. The second deletstain any warning messages. Compared to PCA, ELT can
command attempts to delete an already deleted user and thehieve up to 530% higher detection rate (i.e., 95% v.s.
management node is not able to correctly process the retuftb% true positive rate in Figure 7(b)) under similar false
result. ELT can successfully detect both unexpected bugs ialarm rates (i.e., 15% in Figure 7(b)). The reason is that
all examined anomalous instances. PCA cannot detect those anomalous instances that share

Figure 7 shows the anomaly detection accuracy compaisignificant similarity with some normal instances while ELT
ison results among different log analysis schemes for thean detect them. We did not show the ROC curves for the
three VCL datasets. We evaluate the detection accuracy ®#CA MFG and Clustering + NN MFG algorithms since both
different schemes using the Receiver Operating Charactesf them are too expensive to be considered for practical use.
istics (ROC) curves, which are commonly used to show thaMe will show their overhead results in Section IV-D.
tradeoff between detection accuracy and false alarm rate. Table Ill shows the key message extraction and invariant
The x-axis and y-axis are false alarm ratl-) and detection checking results. We can see that ELT can extract 5 to 150
rate (Ap) defined in Equation 2. We derive the ROC curve messages from log files containing 269 to 32957 messages
for ELT by tuning the diameter from 0 to 500. For VCL, on average. We use the full coverage metric to verify the
we mark cluster of size smaller than 4 as anomalous clustecorrectness of the extracted messages. We say that the
This size value is empirically decided. We derive the ROCextracted messages have a full coverage if all the messages
curve for PCA by changing the confidence interval of the Q-relevant to troubleshooting are included in the extracted-m
statistic value of the projections on non-significant pipat ~ sages. The invariant check results indicate whether afgpeci
components from 0 to 100%. Since the critical keyword andype of anomaly violates the system invariant. ELT also

100 T T 1S4 © 100 : < T © 100 \Da T T T ©

80 M 80 f v 80
A
gso b gso b gso
o ELT —o— o ELT —o— a ELT —o—
<40 | PCA —6—1 <40 r PCA —6—1 <40 PCA —6—
Critical keyword —&— Critical keyword —&— Critical keyword —4&—
20 Warning keyword —w»— | 20 Warning keyword —w»— | 20 Warning keyword —w»—
06 0 0d
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
AR (%) AR (%) AR (%)
(a) vCL-1 (b) VCL-2 (c) vCL-3
Figure 7. Anomaly detection accuracy comparison amone@rdifft log analysis schemes.
Anomaly Types Num. of Full Invariant 100 _ 100 5
extracted key Cover- check
msgs/total msgs age 80 80
Image reloading failure 18/540 Yes Pass
Sanitization Failure 22/594 Yes Pass §60 {60
Overlapping 50/2395 Yes Pass) ELT —6— P ELT —o—
reservations <40 PCA —6— “40 PCA —6—
Multi-process forking 150/4455 Yes Fail 0 0
error B
Multiple attempts to 25/3036 Yes Fail 0 s s s s 0 s s s s
delete user 0 20 4 60 80 100 0 200 4 60 80 100
Reservation host not in 60/2574 Yes Pass Ap (%) Ap (%)
contact i (a) Hadoop-1 (b) Hadoop-2
Reservation failure due 20/269 Yes Pass
to cluster node failure Figure 9. Hadoop ROC curves.
dependency
Predictive reloading 4/32957 Yes Pass
failure
C. Hadoop Results
Table Il . o
STATISTICS IN TROUBLESHOOTING REPORT We consider three types of anomalies in Hadoop MapRe-
duce jobs: imemory leak bugrthere some map tasks contain
21:39:28|..|..|deleted|..|executing SSH command on host2: '/ a memory leak bug that eventually makes the host run out
usr/shin/userdel ul’ of memory; 2)non-responding taskwhere some map tasks
rzifffrﬁ'Hg"’(e(')ete,f’hgne,,) SSH command executed on host 2, contains an infinite loop bug, which causes the jobtracker to
21:39:28]..|..|deleted]..|executing SSH command on host2: '/ mark them as non-responding and kill them; andii3k out
usr/shinfuserdel ul' of spacewhere some tasks failed after processing a large
21:39:29]..| |deleted|. | ~ SSH command executed on host2, amount of data because the system ran out of disk space.
returning (0, "userdel: user ul does not exi...") X X i X
21:39:29]..|..|deleted]..|attempted to delete usergroup for ul We used the sort application processing the RandomWriter

data, both of which are provided by the Hadoop software
Figure 8. Key messages extracted for multiple attempts lketel@iser. distribution.
Figure 9 shows the detection results for ELT and PCA
o _ schemes. The results show that ELT achieves similar detec-
successfully reduced the_o_verhead of performing invarianty, accuracy as PCA. Both ELT and PCA can achieve much
check compared to the original log. For VCL-1, VCL-2 and peyter detection accuracy for the Hadoop datasets thahdor t
VCL-3 datasets, the average per-instance invariant chgcki \/c| gatasets. The reason is because most anomalous tasks
time was reduced from 600ms to 0.3ms, 67ms to 0.2ms, ang,ye very different features from all normal instances hBot
150ms to 0.2ms, respectively. ELT and PCA can easily detect such anomalies. Hadoop also
Figure 6 shows the snippet of the key messages extractemntains relatively fewer number of message templates. As
for multi-process forking error, which has been describeda result, the log features are easier to distinguish than.VCL
in Section IlI-D. Figure 8 shows the snippet of the key In contrast to VCL reservation instances, Hadoop task
messages extracted for thaultiple attempts to delete user instances have relatively fewer log messages. Anomalous
error. The remote commands issued to delete the useasks contain even fewer log messages than normal tasks
generate improper return code. Thus, the management nodece anomalous tasks often last for a very short period
attempts to delete the user again. We have confirmed witbf time. Figure 10 shows the key messages extracted for
VCL developers that the extracted key messages are able tbe disk out of spacanomaly. The second message shows
identify the problem and are useful for troubleshooting. that no space is left on the Hadoop Distributed File System

In TaskLauncher, current free slots : 1 and trying to launch

attempt_201103252330_0009_r 000018 4 V. RELATED WORK

Task: attenpt_201103252330_0009_r_000018_4 - Killed : . . _ . .
java.io. | OException: No space left on device Previous work has investigated unsupervised learning
attempt_201103252330_0009_r_000018 4do ne; removing files. techniques for automatic log analysis. For example, Xu et.

LaunchTaskAction (registerTask):

attempt_201103252330 0009 r 000018 4ta sk's state:FAILED_UNCLEAN al [20] applied PCA based anomaly detection to Hadoop

Distributed Filesystem (HDFS) console logs to identify the
Figure 10. Hadoop key messages extracted for disk out ofeseaor. anomalous HDFS block instances. However, as we have
shown in the experiments, PCA can only detect those

Dataset | ELT PCA PCA MFG S&ﬁﬁg‘g anomalous instances that are very different from all normal
VCL-1 9+0.5 min, | 4X0.5 min, | Impractical | 8 hours, instance_)s. Moreov_er- PCA USin_g the message fr_equency
600MB 400MB (>256TB) | 600MB feature is very sensitive to repeating message patterrishwh
VCL-2 135t2 min, [302 min, | Impractical | >25hours,| may cause high false positive rate of the PCA scheme. Lim
7GB 3GB (>256TB) | 7GB ¢ al 13 lied f sis techni to identif
VCL-3 20£1 min, | 18+1 min, | Impractical | 13 hours, et. al [13] applied frequency analysis ec_nlque 01l w_‘ '
7GB 3GB (>256TB) | 7GB message patterns that mostly occur during known failure
Hadoop-1 2(15:31 min, igﬂg&Bmi“v >81(hBOBurS’ 2>ég hours, | event. This approach is more suitable when the failure svent
Hadoop2 | L7052 min T 2551 min |10 hours. | S20hours| &€ known a priori. In running production systems known as
7GB 1.5GB 2.5GB 7GB well as unknown failures can occur. Our scheme differs from
Table IV previous work on being able to identify unknown failure as
PROCESSING OVERHEAD COMPARISON well.

Previous work has also explored other unsupervised learn-

)] ing techniques to detect performance anomalies, resource
(HDFS), and the task is subsequently killed. On average, thgsage and prediction of fatal events. Fu et al. used the

anomalous instance of this anomaly type contains about 20stering technique to extract log keys and constructed
messages while normal instance usually contains up to 10fhite state automaton to diagnose performance anoma-

messages. lies [8]. Kavulya et al. applied an instance based learning
technique on logs of a production MapReduce cluster to
D. Overhead Results characterize resource utilization patterns and find failur
sources [11]. The SALSA project used Hadoop logs to
Table IV shows the overhead comparison results. Thelerive the control flow and the data flow, and compared
results show that ELT has low processing overhead comthe probability distributions of state durations acrosstso
pared to other schemes (i.e., PCA MFG, Clustering+NNto identify anomalies such as disk hog and cpu hog [17].
MFG) that use the fine-grained features. ELT achieves a lovpalfner et al. proposed a logfile structure consisting of
execution time of 9 minutes for VCL-1 and the highest of hierarchical numbering of event types and sources such that
170 minutes for Hadoop-2. The current prototype of ELT hagt is amenable for automatic log analysis techniques like
larger memory consumption than PCA. The reason is mainlglustering [16]. Li et al. proposed an integrated framework
due to an unoptimized implementation for object allocation mine logs to infer temporal dependency between log events
during the clustering process. We can significantly reducdérom the cumulative distribution function of the events'itva
the memory consumption of ELT by changing the objecting times [12]. Palatin et al. employed a distributed outlie
allocation implementation, which is part of our on-going detection algorithm HilOut, a variant of the nearest newhb
work. PCA (using the message frequency vector) has thepproach, over processed log files stored in different nodes
lowest runtime and memory consumption since it only use®f a grid system to identify misconfigured machines [15].
coarse-grained log features. However, as shown by ouPur work also explores unsupervised learning methods to
previous results, PCA can only achieve very low detectiorachieve fully automatic log analysis. However, our scheme
accuracy for the VCL logs since the coarse-grained logfiffers from previous work by adopting a hybrid analysis
feature cannot distinguish the anomalous instances tha¢ sh model to achieve both high accuracy and low overhead.
certain similarity with some normal instances. PCA MFG Moreover, our scheme can not only detect anomalies but also
cannot be run on a single machine for VCL datasets dusimplify the troubleshooting task by extracting key messag
to extremely high memory requirement (eg256TB). The and performing efficient invariant check.
high memory requirement is due to the space requirements Our work is also related to previous function call trace
of covariance matrix which i€ (p?), wherep is the size analysis work. Mirgorodskiy et al. usednearest neighbor
of feature vector (for the MFG of VCLp = 4164 x 4164). approach on per function time profile to identify potential
PCA MFG also has relatively longer processing time forfailure traces in distributed systems [14]. Jiang et al.duse
Hadoop datasets. Clustering+NN MFG also has very highraining data to construct automata to characterize normal
processing overhead. traces of distributed system and then used it to detect

abnormal traces [9]. Yuan et al. applied support vector REFERENCES

machines classifiers to categorize system event traces anfl] Amazon elastic computing cloud.
correlated them to known system problem to determine root ~ NttP//aws.amazon.com/ec2/.

causes [21]. Zheng et al. trained decision tree to user séque [2] Apache vcl. https://vcl.ncsu.edu.

traces with user visible failures and used the decisionttree [3] Armadillo - c++ linear algebra library.
identify the failure causes for runtime user request inrhige hitp://arma.sourceforge.nev.

systems [22]. Dickinson et al. proposed to use clustering[4] Hadoop. http://hadoop.apache.org/.

over program execution traces based on the function call[5] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and

relationships to identify failure executions [7]. Chiliinét eﬁic\{gﬁ%g'{h E'rglfmﬁé ETLeSE'(‘)’S gftafgg%alpggggggﬂp44\{'a
SA, 2009.

al. correlated program path profiles with program failures Washington, DC, U
to identify the cause of program failures [5]. In contrast to [6] J. Dean and S. Ghemawat. Mapreduce: simplified data
execution trace analysis, our scheme is unobtrusive, which ~ Processing on large clusters. Rroc. of OSDJ 2004.

does not require modifying original program or installing [7] W. Dickinson, D. Leon, and A. Podgurski. Finding failsre
by cluster analysis of execution profiles. Broc. of ICS

extra system call tracing program. pages 339-348, Washington, DC, USA, 2001.
[8] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
VI. CONCLUSION etection in distributed systems through unstructured log

] o analysis. InProc. of ICDM pages 149-158, Los Alamitos,
We have presented ELT, a practical and efficient console CA, USA, 2009.
log based troubleshooting system for large-scale cloud-com [9] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. Multi-
puting infrastructures. ELT employs a novel hybrid log anal resolution abnormal trace detection using varied-length n

. . . ! . rams and automata. IRroc. of ICAG pages 111 —-122,
ysis approach that combines coarse-grained and fine-graine 005.

log analysis to achieve both high accuracy and low overheaqi0] L. Kaufman and P. RousseeuWinding Groups in Data An
ELT can automatically extract a few key messages and ~ lftroduclion to Cluster Analysis Wiley Interscience, New
. . . ipe . . ork, .

perform invariant check to significantly simplify the andga 1 S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
diagnosis process. We have implemented a prototype of thé analysis of traces from a production mapreduce cluster. In
ELT system and tested it using several real console logs Proc. of CCGrid pages 94 -103, 17-20 2010.
collected on a production cloud computing system and 412] T. Li, F. Lialng, Sf_lMa,fand W. Peng. An integrated framek(voI

i i on mining logs files for computing system management. In
Hadoop cluster in our I.ab. Our experlmental results show g s RDD, pages 776-781, New York. NY. USA, 2005.
that ELT can achieve higher detection rate and lower falsfl?)] C. Lim, N. Singh. and S. Yajnik. A log mining approach to
alarm rate than existing schemes for the VCL logs. Fo failure analysis of enterprise teléé)hony systemsPtac. of
Hadoop logs where anomalous instances show distinct log DSN pages 398 -403, 24-27 2008.
features and the number of message templates is small, ET4] Q" V. Mi(gqroldskiy, N. Il\/laruyama, and B. P. Millerprrcdrr}

i imi i i lagnosis In large-scale computing environmentsPioc. o
achieves similar detection accuracy as previously prapose SC-page 88, New York, NY, USA, 2006.
PCA scheme. ELT can extract correct key messages for ai_ll5 N. Palatin. A. Lei ity A Schust 4 R. Wolffinin
detected anomalous instances_. More importantly, ELT foun] for maisa(‘x'jnﬁﬁ -ureegzﬁ{ggﬂiﬁ’es in Crigssﬁgtggsnm"of '||<D
two software bugs that were missed by current cloud system pages 687-692, New York, NY, USA, 2006.
management practice. [16] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive
In the future, we plan to optimize the implementation logfiles for autonomic systems. Rroc. of IPDPS 2004.

of the ELT system (e_g_, reduce the memory Consumptiorﬁlﬂ J. Tan, X. Pan, S. Kavulya, R. G, and P. Narasimhan. Salsa

of hierarchical clustering process) and develop online IoghS] Analyzing logs as state machines. fioc. of WASL.2008.

; P.-N. Tan, M. Steinbach, and V. Kumdntroduction to Data
analysis system based on ELT. Mining. Addison Wesley, 2005.
[19] R. Vaarandi. Mining event logs with slct and loghoundh |
VIl. ACKNOWLEDGMENT Proc. of NOMS pages 1071-1074, 2008.

We would like to thank VCL system administrators Aaron [20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console

Peeler and Andy Kurth for providing us with the log data and |oogs. InProc. of SOSPpages 119_132, New York, NY, USA,
their generous help on validation. We also thank Brent Mille 2009.

from IBM for many useful discussions. We would also like [21] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wanggdan

to thank our shepherd Miroslaw Malek for his guidance. This :’r\gggs'_vlf'ﬁpﬁ‘)%t_og?aé%%g,’os\’zvgogrOblem diagnosis with event

work was sponsored in part by NSF CN80915567 grant[22] A. X. Zheng, J. Lloyd, and E. Brewer. Failure diagnossng
NSF CNS0915861 grant, U.S. Army Research Office (ARO) decision trees. IProc. of ICAG pages 36-43, Washington,
under grant W911NF-10-1-0273, and IBM Faculty Award. DC, USA, 2004. N o

Any opinions expressed in this paper are those of the authoig3] éé&‘ﬁ“én%iygé”bfvb’h SBtﬁJ”ClJtS;gQ'rogg%ﬁdig\é%%%m-g "g%Jr|i
and do not necessarily reflect the views of NSF, ARO, or problems in” large enterprise storage systems.Pfoc. of

U.S. Government. SRDS$ 2010.

