
ELT: Efficient Log-basedTroubleshooting System for
Cloud Computing Infrastructures

Kamal Kc, Xiaohui Gu
Department of Computer Science
North Carolina State University
kkc@ncsu.edu, gu@csc.ncsu.edu

Abstract—We present an Efficient Log-based Troubleshoot-
ing(ELT) system for cloud computing infrastructures. ELT
adopts a novel hybrid log mining approach that combines
coarse-grained and fine-grained log features to achieve both
high accuracy and low overhead. Moreover, ELT can automat-
ically extract key log messages and perform invariant checking
to greatly simplify the troubleshooting task for the system
administrator. We have implemented a prototype of the ELT
system and conducted an extensive experimental study using
real management console logs of a production cloud system
and a Hadoop cluster. Our experimental results show that
ELT can achieve more efficient and powerful troubleshooting
support than existing schemes. More importantly, ELT can find
software bugs that cannot be detected by current cloud system
management practice.

I. I NTRODUCTION

Cloud computing [1], [2] has become increasingly popular
by obviating the need for users to own and maintain complex
computing infrastructures. However, due to their inherent
complexity and large scale, cloud systems are prone to
various runtime problems caused by hardware failures or
software bugs. Console logs are often the sole information
source for system administrators to perform troubleshooting.
However, those log files grow quickly during system run-
time. For example, in the Virtual Computing Lab (VCL) [2]
production system, a single 12 hour reservation log file
contains over thirty thousand messages. It is a daunting task
for system administrators to manually examine millions of
log messages that can be generated in a week. The current
practice is to search some keywords such as “critical”,
“warning”, or “error” that are inserted in the source code by
software developers. However, relying on labelled messages
cannot capture those unexpected runtime problems that do
not contain any critical or warning messages. Moreover,
developers often mark some messages as critical or warning
for debug purposes, which often produce many false alarms
for the system administrator.

Previous work on log analysis (e.g., [8], [20], [13])
has examined coarse-grained or fine-grained log analysis
separately, which makes them suffer from either high pro-
cessing overhead or low detection accuracy. Moreover, even
with automatic anomaly detection, the system administrator
still faces the challenge of examining a large number of

log messages to find anomaly causes. Unfortunately, little
research has been done to automatically extract root cause
relevant messages. In addition, existing solutions (e.g.,[23])
mostly focus on detecting known problems, which require
prior knowledge about anomalies.

In this paper, we present anEfficient Log-based
Troubleshooting (ELT) system for large-scale cloud comput-
ing infrastructures. ELT adopts a novelhybrid log analysis
approach: It first employs a hierarchical clustering algorithm
over all examined instances using a simple coarse-grained
log feature called message appearance vector (MAV); It
then performs outlier detection within large clusters using a
fine-grained log feature called message flow graph (MFG).
The first step can quickly detect those anomalous instances
that are very different from all normal instances while the
second step can further separate those anomalous instances
that resemble some normal instances. Our approach is based
on two key observations: i) large-scale cloud computing
systems are naturally redundant, which consist of a large
number of similar normal instances (e.g., multiple reser-
vations of the same VM image, data-parallel MapReduce
tasks [6], [4]); and ii) there are anomalous instances that
share certain similarity with normal instances, which makes
them hard to detect using coarse-grained features only. ELT
can detect both known and previously unseen anomalies
using unsupervisedlearning methods. Moreover, ELT can
automatically extract tens of key messages from thousands
of log messages to significantly narrow down the exami-
nation scope for system administrators. ELT also supports
invariant check to provide useful clues for anomaly causes.

We have implemented a prototype of the ELT system and
conducted extensive experimental study using large-scale
console logs collected on the VCL production system. As
a proof of general applicability, we also tested ELT using
a small-scale Hadoop [4] cluster in our lab. We compare
the anomaly detection accuracy of different algorithms using
the receiver operating characteristic (ROC) curves that are
commonly used to show the tradeoff between detection rate
and false positive rate. The experimental results show that
ELT can achieve much higher detection rate and lower false
positive rate than current production system practice and
other existing schemes. ELT can extract 4-150 key messages

VCL log message:

2010-04-27 13:22:03|18457|952414:1027953|new|OS.pm:
wait_for_response(479)|waiting for vclf1-5 to respond

to SSH, maximum of 600 seconds

Hadoop log message:

2011-03-25 23:47:01,380 INFO org.apache.hadoop.mapred.
TaskTracker: Task attempt_201103252330_0001_m_000033
_0 is in commit-pending, task state:COMMIT_PENDING

Figure 1. Production system console log message examples.

from large log files containing over 30K messages. Our
invariant check scheme successfully found two software
bugs in the VCL production system. ELT is light weight,
which has more than one order of magnitude less overhead
than fine-grained log analysis schemes. Performing invariant
check over extracted messages reduces the check time by
more than three orders of magnitude compared with check-
ing against whole log files.

The rest of the paper is organized as follows. Section II
presents the overview. Section III presents the design details
of our approach. Section IV presents the implementation and
experimental evaluation. Section V compares our work with
related work. Finally, the paper concludes in Section VI.

II. BACKGROUND AND SYSTEM OVERVIEW

Cloud systems often continuously produce console logs
to record management operations during system runtime. In
this work, we use the virtual computing lab (VCL) [2] and
a Hadoop cluster [4] as our case study examples. VCL is
a production cloud system that operates in a similar way
as Amazon EC2 [1]. The system keeps a large number
of virtual machine (VM) images recording different pre-
configured reference systems (e.g., RedHat 4.3 with Hadoop,
Windows 7 with Matlab). When the user submits a reserva-
tion request, one of the VCL management nodes creates
the requested system by loading proper VM image files
into the allocated hosts. Hadoop [4] is an open source
implementation of Google’s MapReduce system [6], which
is one of the most representative data-intensive applications
running in cloud.

Figure 1 shows two examples of console log messages
produced by a VCL management node and a Hadoop
tasktracker node. VCL log files record reservation operations
such as host allocation, image loading, node reclaim, and
others. Each log message consists of a set of fields sepa-
rated by the pipe symbol (“|”). The message fields include
time stamp, process identifier, request identifier, reservation
identifier, reservation state, caller information, andmessage
content. Hadoop log files record task operations such as
creation, deletion, progress report, cleanup, and others.Each
log message contains fields separated by blank spaces. The
message fields aretime stamp, log level, output class name,
andmessage content.

ELT
Log feature
extraction

(MAV,MFG)

Clustering
using MAV

Outlier
detection

using MFG

Key message
extraction

Invariant
check

Log files

Instance ID: 101
Is anomaly?: Yes
Anomaly Type: multi-
process forking error
Key messages:
msg1,..,msgk
Invariant check: failed

Troubleshooting
Report

Figure 2. The ELT system architecture.

In order to efficiently parse millions of log messages in
a short period of time, we first extract a set of message
templates to represent many different log messages. The
message template consists of two parts: the text that does not
change and the text that changes. We refer to the text that
does not change asmessage typeand the text that changes
based on variable values asmessage variables. The log
message template matching process only uses the message
type part by replacing those message variables with the “*”
symbol. In our experiments, we extracted 4164 message
templates from the Apache VCL source version 2.1 and 167
message templates from the source files (mapred folder) of
the Hadoop version 0.20.2. If the number of the message
templates is large (e.g., VCL logs), we store all message
templates in a hash table to achieve fast matching. Since the
log message often consists of the code module name (e.g.,
OS.pm in the log message shown in Figure 1) where the
message is generated, we hash log message templates using
their code module names.

ELT explores a novel hybrid log mining approach to
achieve efficient troubleshooting for cloud computing in-
frastructures, illustrated by Figure 2. ELT first groups log
messages based on a certain identifier (e.g., reservation IDin
VCL, task ID/task attempt ID in Hadoop) into different log
files. Thus, each log file records all the execution operations
for one troubleshooting instance (e.g., one reservation in
VCL, one map/reduce task in Hadoop). ELT then parses
each log file to extract a coarse-grained log feature called
message appearance vector(MAV) and a fine-grained log
feature calledmessage flow graph(MFG). The MAV feature
only captures which types of messages appear in the log
file while the MFG feature captures the transition patterns
between different types of messages.

Next, ELT performs hierarchical clustering over the log
files of all troubleshooting instances using the MAV feature.
The system will get two different types of clusters: i) small
clusters consisting of anomalous instances only; and ii) large
clusters consisting of both anomalous and normal instances.
The system performs outlier detection within those large
clusters using the fine-grained MFG feature to further sepa-
rate the anomalous instances from normal ones.

After the anomalous instances are identified, ELT auto-
matically extracts key messages that are most relevant to

anomaly root causes. This is done by performing clustering
over the difference logsof all anomalous instances. The
difference log of an anomalous instance contains those
messages that are not found in normal instances. Each of
the resulting cluster represents an anomaly type and key
messages for each anomaly type are the common message
sequences among the anomalous instances of the same
anomaly type. ELT provides further automatic troubleshoot-
ing support by checking system specific invariants over
extracted key messages to provide useful clues for the
anomaly causes.

Assumptions. Our current system implementation relies
on the source code to extract message templates. This
assumption is similar to previous console log analysis sys-
tem [20]. Previous work also proposed techniques to extract
message templates from log files without the need for source
code [19]. Our work can easily leverage those techniques to
eliminate the source code requirement if the source code
is hard to obtain. Our clustering-based anomaly detection
approach is based on the premises that the number of normal
instances is larger than that of the anomalous ones, and
each instance type (e.g., reservation of certain VM image)
has abundant normal instances. During our experiments,
we found that large-scale cloud computing environments
generally follow our assumptions. Another assumption of
our approach is that the anomalous instances contain either
different log messages or different log message sequences
from normal instances. We have found that most of the
anomalous instances in cloud systems such as VCL and
Hadoop follow this behavior.

III. SYSTEM DESIGN

In this section, we present the design details of our system.
We first describe the hybrid log feature extraction scheme
followed by the hybrid log mining scheme. Next, we present
the key message extraction and invariant check schemes.

A. Hybrid Log Feature Extraction

To achieve efficient log-based troubleshooting, the first
step is to extract proper log features to characterize different
instances. ELT first extracts the simple MAV log feature
to describe the presence or absence of different message
templates in each log file. Since the message templates
present in the log file correlate with the system operations,
MAV reflects which operations are conducted during the
runtime of the examined instance. The size of MAV equals
to the total number of message templates. Theith element
value in the vector is set to be1 if the ith message template
is present in the log file. Otherwise, it is set to be0. For
example, if the total number of message templates is 4 and
a log file contains message templates 1 and 3, the MAV of
this log file is [1,0,1,0].

We chose MAV rather than previously used message
frequency feature [20] because it is more robust. MAV is not

Figure 3. Message flow graph (MFG) construction.

susceptible to repeating messages that often appear during
normal operations. For example, in VCL, the management
node continuously polls the reserved host, which results in
some messages appearing frequently in the logs. Under such
circumstances, the message frequency feature may cause
false alarms by incorrectly categorizing reservations with
different durations.

Examining MAV alone is insufficient since MAV cannot
capture the execution sequence information. Thus, MAV can
not distinguish two instances that consist of the same set
of operations but executed in different orders. To address
the problem, ELT extracts the fine-grained MFG log feature
to capture the transition patterns among different message
templates. The graph nodes in an MFG are message template
identifiers and the edge from a nodei and to a nodej denotes
that the message templatei appears right before the message
templatej at least once. For example, Figure 3 shows an
example of MFG for a VCL log snippet. The numbers in
square brackets are the message template identifiers. In this
example, the message sequence2 → 3 → 4 → 5 → 6 is
the first round of check for ssh service. During this check,
the management node waits for some time to accommodate
the boot delay. After the first round, the management node
iteratively performs ssh service check in the loop2 → 7 →
6 → 2. The loop terminates after the ssh service starts.

The console log message sequence reflects the execution
sequence in the code path. Thus, MFG is useful for finding
differences between instances that contain similar messages.
Difference between the MFGs of two similar instances
would indicate that there exist different execution sequences
between them even though they have similar operations.
However, the drawback of the MFG feature is its complexity.
Analyzing the MFGs for all log files will inevitably incur big
processing overhead. Thus, we need to design a hybrid log
analysis algorithm that can leverage the advantages of both
log features but still keep the log processing overhead low.
We will describe the details of our log analysis algorithm in
the next section.

B. Hybrid Log Analysis

We propose a new hybrid log analysis scheme that can
achieve both high accuracy and low overhead. The hybrid

Step 2: Detect outliers within each big
cluster using MFG

- Anomalous instance
- Normal instance

41
20

17

26

Step 1: Clusters obtained
using MAV

Mark small cluster
as anomalous

Threshold=40

Figure 4. Hybrid log analysis scheme.

log analysis algorithm consists of two steps, illustrated by
Figure 4. First, we employ a hierarchical clustering algo-
rithm using the MAV log feature to quickly obtain groups of
instances with similar characteristics. Second, we perform a
nearest neighbor based outlier detection within each group
using the MFG log feature to accurately detect abnormal
instances. We describe both steps in detail as follows.

1) Clustering using MAV:We employ a hierarchical clus-
tering algorithm [10] to obtain groups of instances with sim-
ilar characteristics. We choose hierarchical clustering over
other common clustering techniques such as k-means and
its variations because we do not want to make assumptions
on the number of clusters that will form during production
run. We use MAV in the clustering process for two reasons.
First, MAV allows the clustering algorithm to form groups of
instances with similar operations. Second, the cost of using
MAV over all instances is much smaller than the cost of
using fine-grained feature such as MFG.

We start from a single cluster containing all instances and
continuously split a large cluster into two smaller ones. This
process repeats until there isn’t any cluster that can be split.
Typically, hierarchical clustering uses dendogram height
based stopping criterion which is not easy to determine
algorithmnically. Due to this reason, our work usescluster
diameter as the stopping criterion. The cluster diameter
denotes the largest distance between any two objects in a
cluster. Any cluster with diameter greater than a specified
threshold (e.g., 40) is selected for splitting. During each
splitting step, we employ thek-medoid (k = 2) clustering
algorithm to split a large cluster into two new smaller
clusters.

We define the distance between two instances as the
Manhattan distance between the MAVs of the two instances’
log files. Let D(Li, Lj) denote the distance between two
log files Li and Lj. Let [mi1, ..., mip] and [mj1, ..., mjp]
denote the MAVs of the two log files. We formally define
the distance as follows,

D(Li, Lj) =

p∑

k=1

|mik − mjk| (1)

The result of the clustering process is a collection of
clusters of different sizes. Based on the premise that anoma-
lous instances are relatively infrequent and contain different

messages, most abnormal instances should form separate
small clusters by themselves. However, in some cases of real
systems, both normal and abnormal instances may contain
similar messages. Thus, we cannot distinguish anomalous
instances from normal ones based on the MAV feature only.
To handle those cases, we perform outlier detection within
all large clusters (e.g., size> 4) to further pinpoint those
anomalous instances that mix together with normal ones in
the same cluster. The size value (eg. 4) is an empirically
decided value. We believe that large cluster size threshold
can be methodically derived in an online version of ELT
scheme. In online operation, our scheme is less sensitive to
the small cluster size selection since the anomaly always
starts from a small cluster and normal operations often
have sufficient number of instances in a large-scale cloud
computing environments.

2) Outlier Detection using MFG:The instances in the
same cluster contain a similar set of message types but
can have different message sequences. We use the MFG
feature to distinguish those instances with different message
sequences. We perform outlier detection using the MFG
feature within each large cluster to further pinpoint anoma-
lous instances. We use the graph edit distance to define the
distance of two instances’ MFGs. The graph edit distance
between two graphs is the number of edge additions or
deletions required to transform one graph to the other.

We use the nearest neighbor technique [18] to perform
outlier detection. We compute pairwise graph edit distance
between the MFGs of every two instances within the cluster.
We define the nearest neighbor distance as the shortest dis-
tance for each instance. We label an instance as anomalous
if its nearest neighbor distance is greater than the threshold
X̄ + 2δ, whereX̄ is the mean of all the nearest neighbor
distances andδ is the standard deviation. Note that we only
process the MFG feature within each cluster rather than over
all the instances. As we will show later in our experiment
results, the hybrid log analysis approach can significantly
reduce the processing overhead by more than one order of
magnitude compared to the scheme using the MFG feature
only over all instances.

C. Key Message Extraction

Although automatic anomaly detection is very helpful,
the system administrator still faces the dismal task of ex-
amining each anomalous instance containing thousands of
messages for problem diagnosis. To further simplify the
troubleshooting task, ELT provides key message extraction
support, which can narrow down a small number of log
messages that are most relevant to the anomaly cause. Our
key message extraction scheme consists of three steps shown
in Figure 5.

First, we obtain a difference log calleddifflog for each
anomalous instance by comparing it with normal instances.
We use the MFG feature during the difflog generation. If

AI1: Difflog MAV [110101]
AI2: Difflog MAV [111010]
AI3: Difflog MAV [111101]
AI4: Difflog MAV [011100]

AI1: Difflog MAV [110101]
AI3: Difflog MAV [111101]

AI2: Difflog MAV [111010]
AI4: Difflog MAV [011100]

a. Obtaining difflog for detected anomalous
instances (six message templates).

2

3

1

6

4

3

1 5

4

MFG of
Anomalous

instance 1 (AI1)

MFG of representative
normal instance (cluster

medoid) from large cluster

Compare to
generate difflog All message

sequences of
anomalous instance
matching: (1,2,4,6)

Difflog

Cluster using
MAV

Difflog MAV of
Anomalous instances

b. Obtaining anomaly types.

Anomaly
Type 2

Anomaly
Type 1

Anomaly Type 1

2

1

6

4

AI1 2

3
1

4

AI2

Common message
sequence

All Difflog message
sequences matching
the common
sequence: (1,2)

c. Obtaining key messages.

Key messages

(1,2)

Figure 5. Key message extraction.

an edge in the anomalous instance’s MFG is not present
in any of those normal instances’s MFGs to which it is
compared, we add the sequence of the message templates
denoted by the edge together with all message occurrences
matching the sequence into the difflog of the anomalous
instance. For example, in Figure 5(a), the unique MFG edges
of the anomalous instance are1 → 2 and 4 → 6. We add
all occurrences of the message sequence(1, 2, 4, 6) into its
difflog. For the anomalous instance that belongs to a large
cluster, we compare its MFG with the cluster medoid. For
the anomalous instance that belongs to a small cluster, we
compare its MFG with the medoids of all large clusters (i.e.,
the representatives of all normal instances).

Second, we extract the MAV features for all derived
difflogs. We then perform hierarchical clustering over all
difflogs using their MAVs to identify different anomaly
types. The clustering algorithm used for difflogs is the same
as the one used for processing original log files. As a
result, we can identify different types of anomalies and the
anomalous instances belonging to the same anomaly type
will be grouped together in one cluster. For example, in
Figure 5, we identify two anomaly types, each of which
includes two instances.

Third, we extract common message template sequences
among all the instances belonging to the same anomaly type
by comparing their MFGs. For example, in Figure 5, if the
edge1 → 2 appears in both instances of the anomaly type
1, we add the message template sequence(1, 2) into the
common message template. Next, we match the message
template sequence with the original log messages stored in
the difflogs of all anomalous instances. If there are multiple
matching message sequences in different instances, ELT

13:38:28| 24817|..|new|..|collected public hostname=host1

13:38:31| 27609|..|new|..|executing SSH command on host1: .. '/
usr/sbin/useradd -u 32494 .. '
13:38:31| 27609|..|new|..|SSH command executed on host1,
returning (0, "none")

13:38:33| 24817|..|new|..|SSH command executed on host1, '/usr/
sbin/useradd -u 32494 .. '
13:38:33| 24817|..|new|..|detected user already has account
13:38:33| 24817|..|new|..|executing SSH command on host1: '/
usr/sbin/userdel -u 32494'

Figure 6. Key messages extracted for the multiprocess forking error.

outputs all of them.

D. Invariant Checking Over Key Messages

By extracting a small number of key messages, ELT can
speedup the troubleshooting task for the system adminis-
trator. To further automate the log-based troubleshooting
process, ELT supports invariant checking to provide more
clues for the anomaly causes. We observe that many real
world systems need to preserve certain invariants. Violations
of those invariants indicate incorrect operations. For exam-
ple, in VCL, the system needs to preserve the following
invariants: 1) a reservation request cannot be processed
by multiple processes simultaneously; and 2) simultaneous
commands (e.g., remote ssh) should return the same output.
Note that we do not use invariant checking to perform
anomaly detection but instead only use it to extract more
properties about the detected anomalous instances. We as-
sume that the invariants are specified beforehand and can be
readily tested.

Figure 6 shows an example of the extracted key messages
for an anomalous VCL reservation request with themultipro-
cess forking error. We can see that the log file contains two
interleaving processes (process 24817 and process 27609)
performing the new state operations simultaneously. We
detected this bug by performing invariant check over all the
processes in the extracted key messages. We first derived the
execution intervals defined by the start and end timestamps
for all processes. We then checked whether the execution
intervals of different processes overlap with each other. In
Figure 6, we can see that the process 24817 and the process
27609 have overlapped execution interval. This bug has been
reported to the VCL bug database (bug entry VCL-149).
Note that this bug cannot be detected by the current VCL
management practice since the failed reservation request
does not include any critical or warning message.

ELT allows system administrators to specify the system
invariants it should check. Performing invariant checks over
the extracted key messages is relatively inexpensive com-
pared to the entire log. Although we can perform some
invariant checks over original log files, it is more efficient
to perform invariant check over the extracted messages. For
example, in the multiprocess forking error example, a single
reservation may contain a large number of processes for long
running reservations. The cost of performing the invariant

check over the entire log file isO(N2), whereN is the
number of processes included in the log file. In contrast, the
extracted key messages only include a few processes, which
can significantly shorten the checking time.

IV. EXPERIMENTAL EVALUATION

In this section,we present our prototype implementation
and experimental evaluation results. We applied ELT to
three production logs of the VCL system and MapReduce
execution logs of a Hadoop cluster.

A. Implementation and Experiment Setup

We have implemented a prototype of ELT in about 6K
lines of C/C++ code. The prototype consists of five major
modules: 1) log parser, 2) clustering, 3) outlier detection, 4)
key message extraction, and 5) invariant check. When we
apply ELT to different system logs, we only need to modify
the log parser module. We used adjacency list to represent
the MFG. For matrix operations, we used the armadillo
library [3].

We now describe the log parser implementations for VCL
and Hadoop systems. The VCL codebase is written in Perl.
It uses the function “notify() ” to produce the console
log message. The third argument of the notify function
call contains the log message. Thus, the log parser greps
the VCL source code for notify() function calls and then
parses the third argument of each function call to extract a
message template. The message template may contain perl
variables which typically start with a “$” or “@” symbol.
We assign a unique identifier to each message template. In
our experiments, we extracted 4164 message templates from
the Apache VCL source version 2.1 [2].

We use a simple approach to extract message templates
from the Hadoop source code. Hadoop is written in Java. The
functions of LOG object,LOG.info() , LOG.warn() ,
LOG.error() and LOG.fatal() output the log mes-
sages. Our log parser greps those functions from the source
code to form the templates by separating parts enclosed in
double quotes (”) as fixed texts and parts not enclosed as
variables. We extracted 167 message templates from the
source files in the mapred folder of the Hadoop version
0.20.2. For simplicity, our current log parser did not use
the abstract syntax tree to disambiguate the templates that
may have different stream combination values due to known
variable values and object function calls such as toString().
We can extract more templates by applying the abstract
syntax tree, which can further improve the accuracy of our
anomaly detection algorithms. However, as we will show
later, ELT can achieve very good detection accuracy for
Hadoop console logs even with only 167 message templates.

Table I shows the detailed information of the log datasets
used in our experiments. VCL-1, VCL-2 and VCL-3 are the
production logs produced by six different VCL management
nodes during a 60 day period from April 1st to May

System Log
messages

(anomalous
instances,

total
instances)

Message
templates

Log size

VCL-1 2 million (39,623) 4164 240 MB
VCL-2 20 million (172,3655) 4164 2.6 GB
VCL-3 17 million (43,1114) 4164 2.0 GB
Hadoop-1 2 million (257,18224) 167 300 MB
Hadoop-2 6.8 million (975,68561) 167 1.1 GB

Table I
DATASETS USED DURING EXPERIMENTS.

31st, 2010. During this period, reservations were made for
various softwares such as Matlab, Openoffice, educational
software for class projects, Linux system, and others. VCL-
1 contains only Linux reservation logs. VCL-2 contains
Linux and Windows reservation logs produced by the first
management node. VCL-3 contains Linux and Windows
reservation logs produced by the second management node.
Hadoop-1 and Hadoop-2 are the Hadoop logs produced by
running MapReduce sort applications on a 20 node cluster
during a period of 5 days. Hadoop-1 is the subset of Hadoop-
2 dataset. All log analysis experiments were conducted on a
Quad core 2.66 GHz Intel processor (8GB RAM) machine
running Linux kernel 2.6.32.

The VCL and Hadoop system logs used in our experiment
are single files that contain log messages for all troubleshoot-
ing instances. When we process the system logs, we group
log messages based on the instances. Each of these instances
is represented as a separate log file. So, the number of log
files ELT uses is the same as the number of instances shown
in Table I.

We evaluate our system in terms of both detection ac-
curacy and processing overhead. LetNtp, Nfn, Nfp and
Ntn denote the total number of true positive, false negative,
false positive and true negative observations, respectively.
We calculate the detection rateAD and false alarm rateAF

in a standard way as follows,

AD =
Ntp

Ntp + Nfn

, AF =
Nfp

Nfp + Ntn

(2)

We used the receiver operating characteristic (ROC) curve to
show the tradeoff betweenAD andAF for different anomaly
detection algorithms.

To identify true anomalies in the VCL logs, we spent
several weeks on manually examining the VCL log files.
We first use our clustering algorithms to separate different
log files into different groups. We then manually examine
each instance in one group based on the specific messages
appeared in the instance. After manually identified those
anomalies, we confirmed with VCL developers on our
manual inspection results. For Hadoop log files, we injected
faults on a subset of MapReduce tasks. We thus know which
tasks are true anomalies.

For comparison, we also implemented a set of alternative
console log analysis schemes: 1)Critical keyword: this

scheme marks an instance as anomalous if its console log
file contains the keyword “critical”. Current VCL production
system management adopts this approach and a critical
message will immediately trigger an alert email sent to
the system administrator; 2)Warning keyword: this scheme
relies on warning messages to detect anomalous instances.
Since developers tend to include many warning messages
for debugging purposes, this scheme will inevitably mark
many instances as anomalous; 3)PCA: this scheme applies
principle component analysis using the message frequency
vector (MFV) feature to detect anomalies, which has been
used by previous console log analysis system [20]; 4)
Clustering+ NN MFG: this scheme uses the same hybrid
log analysis algorithms as ELT but uses the fine-grained log
feature MFG for both clustering and outlier detection; and
5) PCA MFG: this scheme uses the same PCA scheme as
in [20] but uses the fine-grained log feature MFG instead of
MFV.

B. VCL Results

Table II shows all anomalies present in the VCL produc-
tion log files we processed. Among the listed anomalies,
multi-process forking errorand multiple attempts to delete
user error do not contain any warning or critical message.
The management node normally processes a reservation with
one process at a time. But, due to a bug in the software,
for some reservation instances, there were two redundant
processes performing node allocation, causing themulti-
process forking error. Both processes then attempted to
create user account on the reserved host, setting different
passwords on each attempt. Depending on which process
notifies the user, the user might be provided with a wrong
password and locked out of successfully reserved host. In
the case of themultiple attempts to delete user error, a bug
in the user deletion handling module makes the management
node to issue a repeated delete command. The second delete
command attempts to delete an already deleted user and the
management node is not able to correctly process the return
result. ELT can successfully detect both unexpected bugs in
all examined anomalous instances.

Figure 7 shows the anomaly detection accuracy compar-
ison results among different log analysis schemes for the
three VCL datasets. We evaluate the detection accuracy of
different schemes using the Receiver Operating Character-
istics (ROC) curves, which are commonly used to show the
tradeoff between detection accuracy and false alarm rate.
The x-axis and y-axis are false alarm rate (AF) and detection
rate (AD) defined in Equation 2. We derive the ROC curve
for ELT by tuning the diameter from 0 to 500. For VCL,
we mark cluster of size smaller than 4 as anomalous cluster.
This size value is empirically decided. We derive the ROC
curve for PCA by changing the confidence interval of the Q-
statistic value of the projections on non-significant principal
components from 0 to 100%. Since the critical keyword and

Anomaly Types Description
Image reloading failure Occurs when the reloading operation fails

twice to establish a new reservation.
Sanitization failure Occurs when user account and activity are

not cleared successfully during the reclaim
operation.

Overlapping reservations Occurs when more than one reservation is
made on the single host.

*Multi-process forking
error

Occurs when more than one process
performs same state operation at the same
time.

*Multiple attempts to
delete user

Occurs when the management node
attempts to delete the same user account
more than once.

Reservation host not in
contact

Occurs when the management node is not
able to establish ssh connection with the
reserved host after the host was reserved
successfully.

Reservation failure due to
cluster node failure
dependency

Occurs when the reservation processing is
not successful due to the failure of other
dependent cluster nodes.

Predictive reloading
failure

Occurs when predictive reloading cannot be
performed at the end of a reservation.

Table II
VCL A NOMALY TYPES.“*” DENOTES UNEXPECTED ANOMALIES.

warning keyword schemes do not have tunable parameters,
their ROC curves are not continuous.

The results show that the critical keyword scheme has
very low detection rates for VCL-1 and VCL-2 datasets, and
about 70% detection rate for VCL-3. In contrast, the warning
keyword scheme has very high false positive rates for VCL-
1 and VCL-2 datasets since many warning messages are
inserted by developers for debugging purposes. For VCL-3,
the warning keyword scheme can achieve 100% detection
rate with a slight lower false positive rate than ELT. The
critical/warning keyword methods work better for VCL-3
than VCL-1 and VCL-2. The reason is that most anomalous
instances in VCL-3 are expected problems that contain
critical failure messages and most normal instances do not
contain any warning messages. Compared to PCA, ELT can
achieve up to 530% higher detection rate (i.e., 95% v.s.
15% true positive rate in Figure 7(b)) under similar false
alarm rates (i.e., 15% in Figure 7(b)). The reason is that
PCA cannot detect those anomalous instances that share
significant similarity with some normal instances while ELT
can detect them. We did not show the ROC curves for the
PCA MFG and Clustering + NN MFG algorithms since both
of them are too expensive to be considered for practical use.
We will show their overhead results in Section IV-D.

Table III shows the key message extraction and invariant
checking results. We can see that ELT can extract 5 to 150
messages from log files containing 269 to 32957 messages
on average. We use the full coverage metric to verify the
correctness of the extracted messages. We say that the
extracted messages have a full coverage if all the messages
relevant to troubleshooting are included in the extracted mes-
sages. The invariant check results indicate whether a specific
type of anomaly violates the system invariant. ELT also

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
D

 (
%

)

AF (%)

ELT
PCA

Critical keyword
Warning keyword

(a) VCL-1

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
D

 (
%

)

AF (%)

ELT
PCA

Critical keyword
Warning keyword

(b) VCL-2

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
D

 (
%

)

AF (%)

ELT
PCA

Critical keyword
Warning keyword

(c) VCL-3

Figure 7. Anomaly detection accuracy comparison among different log analysis schemes.

Anomaly Types Num. of
extracted key

msgs/total msgs

Full
Cover-

age

Invariant
check

Image reloading failure 18/540 Yes Pass
Sanitization Failure 22/594 Yes Pass
Overlapping
reservations

50/2395 Yes Pass

Multi-process forking
error

150/4455 Yes Fail

Multiple attempts to
delete user

25/3036 Yes Fail

Reservation host not in
contact

60/2574 Yes Pass

Reservation failure due
to cluster node failure
dependency

20/269 Yes Pass

Predictive reloading
failure

4/32957 Yes Pass

Table III
STATISTICS IN TROUBLESHOOTING REPORT.

21:39:28|..|..|deleted|..|executing SSH command on host2: '/
usr/sbin/userdel u1'
21:39:28|..|..|deleted|..| SSH command executed on host2,
returning (0, "none")
21:39:28|..|..|deleted|..|executing SSH command on host2: '/
usr/sbin/userdel u1'
21:39:29|..|..|deleted|..| SSH command executed on host2,
returning (0, "userdel: user u1 does not exi...")
21:39:29|..|..|deleted|..|attempted to delete usergroup for u1

Figure 8. Key messages extracted for multiple attempts to delete user.

successfully reduced the overhead of performing invariant
check compared to the original log. For VCL-1, VCL-2 and
VCL-3 datasets, the average per-instance invariant checking
time was reduced from 600ms to 0.3ms, 67ms to 0.2ms, and
150ms to 0.2ms, respectively.

Figure 6 shows the snippet of the key messages extracted
for multi-process forking error, which has been described
in Section III-D. Figure 8 shows the snippet of the key
messages extracted for themultiple attempts to delete user
error. The remote commands issued to delete the user
generate improper return code. Thus, the management node
attempts to delete the user again. We have confirmed with
VCL developers that the extracted key messages are able to
identify the problem and are useful for troubleshooting.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
A

D
 (

%
)

AF (%)

ELT
PCA

(a) Hadoop-1

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
D

 (
%

)

AF (%)

ELT
PCA

(b) Hadoop-2

Figure 9. Hadoop ROC curves.

C. Hadoop Results

We consider three types of anomalies in Hadoop MapRe-
duce jobs: i)memory leak bugwhere some map tasks contain
a memory leak bug that eventually makes the host run out
of memory; 2)non-responding taskwhere some map tasks
contains an infinite loop bug, which causes the jobtracker to
mark them as non-responding and kill them; and 3)disk out
of spacewhere some tasks failed after processing a large
amount of data because the system ran out of disk space.
We used the sort application processing the RandomWriter
data, both of which are provided by the Hadoop software
distribution.

Figure 9 shows the detection results for ELT and PCA
schemes. The results show that ELT achieves similar detec-
tion accuracy as PCA. Both ELT and PCA can achieve much
better detection accuracy for the Hadoop datasets than for the
VCL datasets. The reason is because most anomalous tasks
have very different features from all normal instances. Both
ELT and PCA can easily detect such anomalies. Hadoop also
contains relatively fewer number of message templates. As
a result, the log features are easier to distinguish than VCL.

In contrast to VCL reservation instances, Hadoop task
instances have relatively fewer log messages. Anomalous
tasks contain even fewer log messages than normal tasks
since anomalous tasks often last for a very short period
of time. Figure 10 shows the key messages extracted for
the disk out of spaceanomaly. The second message shows
that no space is left on the Hadoop Distributed File System

In TaskLauncher, current free slots : 1 and trying to launch
attempt_201103252330_0009_r_000018_4
Task: attempt_201103252330_0009_r_000018_4 - Killed :
java.io.IOException: No space left on device
attempt_201103252330_0009_r_000018_4 do ne; removing files.
LaunchTaskAction (registerTask):
attempt_201103252330_0009_r_000018_4 ta sk's state:FAILED_UNCLEAN

Figure 10. Hadoop key messages extracted for disk out of space error.

Dataset ELT PCA PCA MFG Clustering
+NN MFG

VCL-1 9±0.5 min,
600MB

4±0.5 min,
400MB

Impractical
(>256TB)

8 hours,
600MB

VCL-2 135±2 min,
7GB

30±2 min,
3GB

Impractical
(>256TB)

>25 hours,
7GB

VCL-3 20±1 min,
7GB

18±1 min,
3GB

Impractical
(>256TB)

13 hours,
7GB

Hadoop-1 31±1 min,
2GB

10±1 min,
400MB

>8 hours,
1GB

>15 hours,
2GB

Hadoop-2 170±2 min,
7GB

25±1 min,
1.5GB

>10 hours,
2.5GB

>20 hours,
7GB

Table IV
PROCESSING OVERHEAD COMPARISON.

(HDFS), and the task is subsequently killed. On average, the
anomalous instance of this anomaly type contains about 20
messages while normal instance usually contains up to 100
messages.

D. Overhead Results

Table IV shows the overhead comparison results. The
results show that ELT has low processing overhead com-
pared to other schemes (i.e., PCA MFG, Clustering+NN
MFG) that use the fine-grained features. ELT achieves a low
execution time of 9 minutes for VCL-1 and the highest of
170 minutes for Hadoop-2. The current prototype of ELT has
larger memory consumption than PCA. The reason is mainly
due to an unoptimized implementation for object allocations
during the clustering process. We can significantly reduce
the memory consumption of ELT by changing the object
allocation implementation, which is part of our on-going
work. PCA (using the message frequency vector) has the
lowest runtime and memory consumption since it only uses
coarse-grained log features. However, as shown by our
previous results, PCA can only achieve very low detection
accuracy for the VCL logs since the coarse-grained log
feature cannot distinguish the anomalous instances that share
certain similarity with some normal instances. PCA MFG
cannot be run on a single machine for VCL datasets due
to extremely high memory requirement (eg.>256TB). The
high memory requirement is due to the space requirements
of covariance matrix which isO(p2), wherep is the size
of feature vector (for the MFG of VCL,p = 4164× 4164).
PCA MFG also has relatively longer processing time for
Hadoop datasets. Clustering+NN MFG also has very high
processing overhead.

V. RELATED WORK

Previous work has investigated unsupervised learning
techniques for automatic log analysis. For example, Xu et.
al [20] applied PCA based anomaly detection to Hadoop
Distributed Filesystem (HDFS) console logs to identify the
anomalous HDFS block instances. However, as we have
shown in the experiments, PCA can only detect those
anomalous instances that are very different from all normal
instances. Moreover, PCA using the message frequency
feature is very sensitive to repeating message patterns, which
may cause high false positive rate of the PCA scheme. Lim
et. al [13] applied frequency analysis technique to identify
message patterns that mostly occur during known failure
event. This approach is more suitable when the failure events
are known a priori. In running production systems known as
well as unknown failures can occur. Our scheme differs from
previous work on being able to identify unknown failure as
well.

Previous work has also explored other unsupervised learn-
ing techniques to detect performance anomalies, resource
usage and prediction of fatal events. Fu et al. used the
clustering technique to extract log keys and constructed
finite state automaton to diagnose performance anoma-
lies [8]. Kavulya et al. applied an instance based learning
technique on logs of a production MapReduce cluster to
characterize resource utilization patterns and find failure
sources [11]. The SALSA project used Hadoop logs to
derive the control flow and the data flow, and compared
the probability distributions of state durations across hosts
to identify anomalies such as disk hog and cpu hog [17].
Salfner et al. proposed a logfile structure consisting of
hierarchical numbering of event types and sources such that
it is amenable for automatic log analysis techniques like
clustering [16]. Li et al. proposed an integrated frameworkto
mine logs to infer temporal dependency between log events
from the cumulative distribution function of the events’ wait-
ing times [12]. Palatin et al. employed a distributed outlier
detection algorithm HilOut, a variant of the nearest neighbor
approach, over processed log files stored in different nodes
of a grid system to identify misconfigured machines [15].
Our work also explores unsupervised learning methods to
achieve fully automatic log analysis. However, our scheme
differs from previous work by adopting a hybrid analysis
model to achieve both high accuracy and low overhead.
Moreover, our scheme can not only detect anomalies but also
simplify the troubleshooting task by extracting key messages
and performing efficient invariant check.

Our work is also related to previous function call trace
analysis work. Mirgorodskiy et al. usedk-nearest neighbor
approach on per function time profile to identify potential
failure traces in distributed systems [14]. Jiang et al. used
training data to construct automata to characterize normal
traces of distributed system and then used it to detect

abnormal traces [9]. Yuan et al. applied support vector
machines classifiers to categorize system event traces and
correlated them to known system problem to determine root
causes [21]. Zheng et al. trained decision tree to user request
traces with user visible failures and used the decision treeto
identify the failure causes for runtime user request in Internet
systems [22]. Dickinson et al. proposed to use clustering
over program execution traces based on the function call
relationships to identify failure executions [7]. Chilimbi et
al. correlated program path profiles with program failures
to identify the cause of program failures [5]. In contrast to
execution trace analysis, our scheme is unobtrusive, which
does not require modifying original program or installing
extra system call tracing program.

VI. CONCLUSION

We have presented ELT, a practical and efficient console
log based troubleshooting system for large-scale cloud com-
puting infrastructures. ELT employs a novel hybrid log anal-
ysis approach that combines coarse-grained and fine-grained
log analysis to achieve both high accuracy and low overhead.
ELT can automatically extract a few key messages and
perform invariant check to significantly simplify the anomaly
diagnosis process. We have implemented a prototype of the
ELT system and tested it using several real console logs
collected on a production cloud computing system and a
Hadoop cluster in our lab. Our experimental results show
that ELT can achieve higher detection rate and lower false
alarm rate than existing schemes for the VCL logs. For
Hadoop logs where anomalous instances show distinct log
features and the number of message templates is small, ELT
achieves similar detection accuracy as previously proposed
PCA scheme. ELT can extract correct key messages for all
detected anomalous instances. More importantly, ELT found
two software bugs that were missed by current cloud system
management practice.

In the future, we plan to optimize the implementation
of the ELT system (e.g., reduce the memory consumption
of hierarchical clustering process) and develop online log
analysis system based on ELT.

VII. A CKNOWLEDGMENT

We would like to thank VCL system administrators Aaron
Peeler and Andy Kurth for providing us with the log data and
their generous help on validation. We also thank Brent Miller
from IBM for many useful discussions. We would also like
to thank our shepherd Miroslaw Malek for his guidance. This
work was sponsored in part by NSF CNS0915567 grant,
NSF CNS0915861 grant, U.S. Army Research Office (ARO)
under grant W911NF-10-1-0273, and IBM Faculty Award.
Any opinions expressed in this paper are those of the authors
and do not necessarily reflect the views of NSF, ARO, or
U.S. Government.

REFERENCES

[1] Amazon elastic computing cloud.
http://aws.amazon.com/ec2/.

[2] Apache vcl. https://vcl.ncsu.edu.

[3] Armadillo - c++ linear algebra library.
http://arma.sourceforge.net/.

[4] Hadoop. http://hadoop.apache.org/.

[5] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. Holmes: Effective statistical debugging via
efficient path profiling. InProc of ICSE, pages 34–44,
Washington, DC, USA, 2009.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. InProc. of OSDI, 2004.

[7] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. InProc. of ICSE,
pages 339–348, Washington, DC, USA, 2001.

[8] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. InProc. of ICDM, pages 149–158, Los Alamitos,
CA, USA, 2009.

[9] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. Multi-
resolution abnormal trace detection using varied-length n-
grams and automata. InProc. of ICAC, pages 111 –122,
2005.

[10] L. Kaufman and P. Rousseeuw.Finding Groups in Data An
Introduction to Cluster Analysis. Wiley Interscience, New
York, 1990.

[11] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
analysis of traces from a production mapreduce cluster. In
Proc. of CCGrid, pages 94 –103, 17-20 2010.

[12] T. Li, F. Liang, S. Ma, and W. Peng. An integrated framework
on mining logs files for computing system management. In
Proc. of KDD, pages 776–781, New York, NY, USA, 2005.

[13] C. Lim, N. Singh, and S. Yajnik. A log mining approach to
failure analysis of enterprise telephony systems. InProc. of
DSN, pages 398 –403, 24-27 2008.

[14] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. Problem
diagnosis in large-scale computing environments. InProc. of
SC, page 88, New York, NY, USA, 2006.

[15] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff. Mining
for misconfigured machines in grid systems. InProc. of KDD,
pages 687–692, New York, NY, USA, 2006.

[16] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive
logfiles for autonomic systems. InProc. of IPDPS, 2004.

[17] J. Tan, X. Pan, S. Kavulya, R. G, and P. Narasimhan. Salsa:
Analyzing logs as state machines. InProc. of WASL, 2008.

[18] P.-N. Tan, M. Steinbach, and V. Kumar.Introduction to Data
Mining. Addison Wesley, 2005.

[19] R. Vaarandi. Mining event logs with slct and loghound. In
Proc. of NOMS, pages 1071–1074, 2008.

[20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. InProc. of SOSP, pages 117–132, New York, NY, USA,
2009.

[21] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and
W.-Y. Ma. Automated known problem diagnosis with event
traces. InProc. of EuroSys, 2006.

[22] A. X. Zheng, J. Lloyd, and E. Brewer. Failure diagnosis using
decision trees. InProc. of ICAC, pages 36–43, Washington,
DC, USA, 2004.

[23] P. Zhou, B. Gill, W. Belluomini, and A. Wildani. Gaul:
Gestalt analysis of unstructured logs for diagnosing recurring
problems in large enterprise storage systems. InProc. of
SRDS, 2010.

