
1

Finding Almost-Invariants in Distributed Systems
Maysam Yabandeh‡, Abhishek Anand†, Marco Canini∗, and Dejan Kostić∗

∗EPFL, Lausanne, Switzerland
†Cornell University, Ithaca NY, USA, (work done during an internship at EPFL)
‡Yahoo! Research Barcelona, Spain (work done during Ph.D. studies at EPFL)

maysam@yahoo-inc.com abhishek.anand.iitg@gmail.com {Marco.Canini,Dejan.Kostic}@epfl.ch

Abstract—It is notoriously hard to develop dependable dis-
tributed systems. This is partly due to the difficulties in foreseeing
various corner cases and failure scenarios while implementing a
system that will be deployed over an asynchronous network. In
contrast, reasoning about the desired distributed system behavior
and the corresponding invariants is easier than reasoning about
the code itself. Further, the invariants can be used for testing,
theorem proving, and runtime enforcement.

In this paper, we propose an approach to observe the sys-
tem behavior and automatically infer invariants which reveal
implementation bugs. Using our tool, Avenger, we automatically
generate a large number of potentially relevant properties, check
them within the time and spatial domains using traces of system
executions, and filter out all but a few properties before reporting
them to the developer. Our key insight in filtering is that a good
candidate for an invariant is the one that holds in all but a
few cases, i.e., an “almost-invariant”. Our experimental results
with the XORP BGP implementation demonstrate Avenger’s
ability to identify the almost-invariants that lead the developer
to programming errors.

I. INTRODUCTION

Implementing and deploying highly dependable distributed

systems is difficult for a number of reasons, including the sheer

system size, concurrency issues, the number of unforeseen

events, and the difficulty in structuring protocols that run over

asynchronous networks.

The approaches for making distributed systems more re-

liable have evolved from debugging using log inspection to

more complex techniques such as property checking [16], [18],

[22], model checking [14], [22], and enforcing the invariants

at runtime [22]. The latter approaches require the developer to

specify the desired system behavior in the form of invariants

that are supposed to hold at all times. Although reasoning

about invariants is arguably easier than reasoning about the

source code itself, the developer is still expected to provide the

invariants. This task becomes more and more difficult as the

system gets larger and more complicated, and as the developer

starts dealing with various corner cases. For example, in

distributed systems in which various network failures can

occur, reasoning about an invariant that holds under all failure

conditions can be difficult. While some distributed systems

have been written with invariants in mind [15], many have

not. Although others have shown that it is possible to discover

invariants [7], [8] and even specifications [2], [5] of single-

machine code, invariant inference is still an open and important

challenge in distributed system implementations.

We observe that, due to the difficulty of dealing with various

issues in the deployment environment, there exist a potentially

large number of important distributed system invariants that

only get violated under certain conditions (and would be

discarded if the existing tools for single-machine code [7], [8]

were to be applied). We refer to such properties as “almost-

invariants”1 . Most often, an almost-invariant gets violated

due to a rare manifestation of a bug that needs to be fixed.

In this paper, we introduce a new tool, Avenger, for infer-

ring almost-invariants in distributed system implementations.

Our approach leverages the rarity of the manifestation of

inconsistencies and emergent behaviors in complex distributed

systems and looks for the almost-invariants across long and

varied distributed system executions. Our tool, Avenger, uses

a grammar and developer input to generate a large number of

potential properties. The properties are evaluated for validity

both over time and spatially, e.g., across the system state.

Our key insight is in realizing that the complexity of

distributed environment (with its failure modes and the un-

derlying asynchronous network) makes it hard to reach bullet-

proof distributed system implementations. The last 1% bugs

manifest very rarely which makes them even harder to detect.

For example, a bug can be introduced when the developer

fails to take a particular sequence of inputs, events, or failures

(corner case) into consideration when writing the program, and

as a consequence the system does not behave as the developer

intended. It is also possible that some emergent behavior could

be the cause for less than perfect system operation. Using

these insights, Avenger ultimately reports a handful number of

almost-invariants that hold in most of (but not all) the cases.

We make the following contributions:

• We introduce a new automatic testing technique for

distributed system implementations based on identifying

the almost-invariants in execution traces. The inferred

almost-invariants are those that are likely to point to

programming errors.

• We demonstrate that our tool handles the peculiarities

of distributed invariants that span state across multiple

nodes, as well as invariants in the spatial domain (where

only some machines in the system are violating a property

at a given point in time).

• We demonstrate that our tool exposed a problem in

handling 4-byte AS numbers in the BGP protocol imple-

mented in C++ within the XORP open-source router [11].

1A property expresses a relation between some variables (including iterator
variables) which can be evaluated as true or false. Throughout this paper, we
use the term invariant to refer to a property that is never violated.



Property 

Reporter
Property Filter

Property 

Checker

Consistent

Global 

State

PropertyProperty Manager

Property /

Statistics

Property

Statistics

Selected Properties

St
a

te
 I

te
ra

to
r

Source code

Sy
st

e
m

 t
ra

ce
 

(c
o

n
si

st
e

n
t 

sn
a

p
sh

o
ts

 o
ve

r 
ti

m
e

)

Statistics

Avenger

State description, non-standard

predicates and iterators

Fig. 1: High-level overview of Avenger

II. AVENGER

Avenger is a centralized, off-line tool that the program-

mer runs either prior to, or after deployment. At a high-

level, Avenger works by examining consistent snapshots of

state across multiple nodes. The programmer prepares her

distributed system for analysis by Avenger in three steps: i)

providing the annotations, ii) compiling the executable, and

iii) generating the state traces. First, the programmer supplies

a C++ header file describing a node object, which contains

the state variables of interest. To drive the generation of

potential properties, the programmer also supplies two C++

files that contain predicates and iterators that are not already

supplied by Avenger. The final piece of developer input is

the values of configuration parameters that control the type

and the number of potential properties that will be generated.

Second, to produce the Avenger executable, the programmer

compiles and links: 1) the programmer-supplied files, 2) any

application libraries that are needed to access state or invoke

functions, and 3) the Avenger library. Finally, the programmer

supplies state traces to drive the Avenger executable. Entries

in the trace are system snapshots recorded over time: each

snapshot is a consistent set of nodes’ states.

Figure 1 provides a high-level overview of Avenger by

depicting the key components and the type of data flowing

between them. The Property Manager uses a system spec-

ification to produce a pool of potential properties. The State

Iterator examines the system states (sequentially or in parallel)

and feeds the consistent, global system state to the Property

Checker. The property checker checks the properties against

each state, updates their statistics and invokes the Property

Filter at coarse timescales. Using the property statistics, the

filter attempts to reduce the size of the property pool in an

effort to speed up overall execution time. At the end of the

state iteration, the Property Reporter module selects a handful

of the almost-invariants in the property pool and reports them

to the developer for further inspection.

Avenger is primarily a testing tool. To pinpoint a pro-

gramming error or discard a reported property altogether, the

programmer relies on available domain knowledge and source

code inspection. She can also feed the almost-invariant to a

debugging tool that produces a sequence of steps that lead to

an invariant violation, e.g., [16], [22]. Avenger is best-suited

for finding almost-invariants via violations of safety properties

(those that should hold at all times). It is not capable of dealing

with liveness properties, i.e., those that hold eventually.

A. Using Avenger

1) Developer’s input to property generation: Avenger gen-

erates properties referring to the variables that represent the

state of system nodes. Some development frameworks make

the state of a node explicit [13], which in turn makes it possible

for Avenger to automatically extract the relevant variables.

In the general case of arbitrary C++ code, Avenger uses a

developer-provided system specification to become aware of

the relevant pieces of state.

A system specification consists of two parts: Variables and

Predicates. We use examples from our application of Avenger

to XORP [11], a popular open-source routing platform, to il-

lustrate Avenger usage. Providing this input is straightforward:

one of our researchers unfamiliar with XORP required less

than a day to produce the required specification.

Variables The state-related input to Avenger is a file called

Variables.h that contains the specification of the structure of a

system node state. Avenger provides a simple syntax to express

the state structure: the user simply needs to write the identifiers

of the state variables and their corresponding data types. An

identifier is basically a variable name. Global functions or

public class methods with empty parameter lists can also be

used as identifiers provided that calling these functions will not

change the state. In these cases the identifier is the function

name followed by the symbol (). A reference to a basic data

type is expressed with the //VARIABLE keyword, while a

container data type is referenced with the //CONTAINER

keyword. A XORP example is shown below:

//CONTAINER IPv4 { uint32_t addr() };

//CONTAINER OriginTable<IPv4> { Trie<IPv4,

IPv4RouteEntry*> route_container() };

Avenger supports all data types in C++ ranging from built-

in data types such as integers, floats, and booleans, to

complex user-defined classes and structs. Polymorphic types

and templates are also supported.

Further, the syntax allows a few annotations that appears

in between the /* and */ symbols, e.g., /*iterator*/,

informs Avenger whether a certain data type is iterable.

Automatically, Avenger supports standard container data types

such as STL array, vector, set, map, etc. Extending Avenger to

new iterable data types is straightforward and just requires an

implementation of the Iterator interface provided by Avenger

and a simple annotation in Variables.h.

Predicates Similar to other invariant inference tools [7],

Avenger provides predicates that correspond to standard op-

erators (equality, membership, etc.). In addition, Avenger is

extensible by allowing the user to specify additional predicates

of interest. The user does this by populating the Predicates.h

file with predicate templates and providing the corresponding

logic in Predicates.cc.

In general, a predicate combines the variables using opera-

tors, e.g., parent ∈ children. A predicate template expresses

an operation over particular data types. Later during the



evaluation of properties, Avenger calls the implementation of

the predicate template in the Predicates.cc file. For example,

the predicate template we added in XORP to access a non-

standard data structure (details are in Section III) is as follows:

bool predicateCanReach(

const OriginTable<IPv4> &rt,

const IPNet<IPv4> &net)

{

const IPv4RouteEntry* re =

rt.lookup_route(net);

return (re != NULL && re->vif() != NULL);

}

2) Trace Collection and State Iteration: Avenger assumes

that an external module generates a trace of globally consistent

system states. These states can be obtained by periodically

recording the global state of a live execution, similarly as

in WiDS [16]. Alternatively, a module could iterate over the

traces of distributed system events, create the global state after

each step [10] (e.g., handler execution on a node), and feed

it to the state iterator. The traces of the system events can be

obtained from the log files recorded during live deployments.

The consistent snapshots are fed to Avenger as sets of

objects that describe node state (recall that the Variables.h

file describes the relevant state). This means that Avenger

can be applied to systems written in a variety of program-

ming languages, provided that these systems collect consistent

snapshots and convert them to C++ objects to present them

to Avenger. Calling existing functions on the state variables

might require linking Avenger with parts of the application

code that defines the data structures.

B. Avenger Design and Implementation

1) Property Manager: Avenger’s Property Manager uses

a developer-provided specification of the system to generate

the set of potential properties. The main challenge here is

to support the generation of all the relevant properties that

can hold in the distributed system under scrutiny. Next, we

describe our approach to meeting this challenge.

Properties are expressed internally using a grammar similar

to first-order logic. The grammar is sufficiently expressive to

derive complex system properties which, for example, iterate

over container data types while tying together states from

different nodes, as later shown in Section III. Fundamentally,

each property is a disjunction of predicates or their negation.

As in first-order logic, a predicate represents a relation be-

tween variables and can be evaluated as true or false. For

example, n1.hashId ∈ n0.neighbor list, is a predicate which

is evaluated to true if the node n1’s hash ID is a member of the

node n0’s neighbor list. A predicate consists of an operator,

e.g., the membership operator (∈), and variables, such as the

hash ID and the list of neighbors in the above example. To help

Avenger discover properties with universal quantification, the

user expresses iterators that show Avenger how to identify all

the members of the quantification universe. At the top level, a

property iterates over the set of nodes in the distributed system,

potentially with multiple nested iterations. Further down in the

nested loops, a property may iterate over arbitrary container-

type variables, such as arrays, vectors, lists, sets, and maps.

Formally, the following describes the property syntax:

Pri : ∀n0 ∈ nodes . . .∀nm ∈ nodes :

∀s0 ∈ nq.v0 . . . ∀sk ∈ nq′ .vk :

l0 ∨ l1 · · · ∨ lt

which selects m + 1 nodes, ni (0 ≤ i ≤ m), and k + 1
variables, vi (0 ≤ i ≤ k), as the universes of quantifications,

and calculates the disjunction of t + 1 literals, li (0 ≤ i ≤ t).

Each literal represents a predicate P or its negation ¬P . The

complete set of properties that can be generated is prohibitively

large. For example, n binary literals can be combined to form

22
n

distinct properties (formulae)2.

In an effort to reduce computational cost, we do not consider

conjunction of predicates3. This decision has limited impact on

the Avenger’s ability to identify important almost-invariants,

as every first-order logic formula F can be converted to

a conjunction of some other first-order logic formulas Fcf ,

where Fcf does not include any conjunction. While evaluating

the properties over a trace, Avenger tracks their holding rate,

i.e., the cumulative rate of evaluating to true. In the end,

Avenger selects the top almost-invariants to report to the user

(more details are in Section II-E). Because the rank on the

report list of each conjunction-free formula, Fcf , would be

higher than the whole formula, Fw, formula Fw will not be

selected in the process anyway.

a) Property Generation: The following presents a high-

level description of how Avenger generates the initial proper-

ties. First, Avenger parses the list of variables and recursively

expands the container data types to produce a tree of variables

and iterators, each of which is annotated with its type and sub

type. Cyclic dependencies can cause the recursive expansion

to continue indefinitely. Although our state descriptions had

no cyclic dependencies, in future we can limit the tree depth

to avoid this potential problem. The role of this tree structure

is explained later. Avenger then reads in the predicate tem-

plates and generates a first set of predicates by instantiating

predicate templates with all the possible combinations of

variables with the appropriate data types. These generated

literals make use of a single system node reference, that

is, any combination of variables is scoped within the state

of a single node (e.g., contains(n.neighbor_list,

n.hashId)). During a second iteration, Avenger increases

the number of system node references and instantiates a

second set of literals with all the possible and appro-

priate combinations of variables whose scope is now en-

larged to address the state of two system node states

(e.g., contains(n0.neighbor_list, n1.hashId),

contains(n1.neighbor_list, n0.hashId)). This

procedure is repeated until the number of node references

reaches the maximum allowed, set by the MAX_NF control

parameter. And so, one set of predicates is created for each

number of node references. Note that the number of generated

2Observe that n boolean literals can have 2
n unique configurations and a

property can be specified uniquely by the set of configurations for which it

is true. We can have 2
2

n

subsets of 2
n configurations.

3If the programmer so desires, she can include a conjunction in a custom
predicate implementation.



predicates increases polynomially w.r.t. MAX_NF with degree

equal to the arity of the predicates. For example, for binary

predicates, the number of predicates increases quadratically

with MAX_NF.

Finally, Avenger iterates over each set of predicates and gen-

erates the properties by combining through disjunction all the

possible combinations of predicates (and their negation) taken

one at a time, then two at a time and so on. The maximum

number of predicates in a single property is controlled by a

parameter MAX_NT. The number of properties with n literals

is of the order O(nMAX NT ). Rather than leaving the user to

guess a suitable value of MAX_NT, Avenger provides her the

option of specifying the maximum number of properties that

she wants to generate in each class.

Lastly, Avenger uses the tree of variables and iterators to

produce a valid C++ qualifier for each state variable which is

plugged into the properties’ internal representation format in

order to produce a series of C++ statements each of which

implements the evaluation of a predicate.

C. Property Checker

The main task of the Property Checker is to update property

statistics that enable filtering and reporting later on. This

component is invoked for each global state snapshot. Upon

each invocation, the Property Checker evaluates every property

(which yields a boolean value) and assigns an individual

property score. Finally, it adds the score to the cumulative

holding rate which is kept for each property in the pool. A

simple property accounting strategy is to score a property

with one if the property holds at all nodes in the snapshot,

and zero otherwise. The holding rate statistic is later used by

the property filter module, as well as during the final ranking

of the properties, with a general goal of ranking higher the

properties that end up violated in fewer instances.

Spatial Accounting One major difference between checking

the properties in distributed systems vs. single-machine is that

some properties might hold at a subset of nodes but not for

all of them. Using the example property ∀n ∈ nodes : P1, the

predicate P1 can evaluate to true for only some of the nodes

in the global snapshot. We handle cases like this using spatial

accounting which computes a fractional score: we set the score

to the number of times that the property holds divided by the

total number of samples (the number of combinations of nodes

on which the property is evaluated in a snapshot).

Fast Accounting As the property detection process is likely

to start with a large number of possible properties, checking

the validity of all properties has to be done quickly and

efficiently. To efficiently evaluate the properties we observe

that many properties share the iteration over the same iterable

container variables because far more properties are generated

than iterable types exist. The idea is to iterate over all the

iterable containers only once and re-evaluate those predi-

cates/properties that depend on a particular iterator only when

such iterator changes. However, this needs to be done correctly

while handling iterator dependencies and nestings.

Scalability The complexity of checking a single snapshot

in the trace is Ω((n)MAX NF ), where n is the number of

nodes. This is because there are MAX NF universal quan-

tifications over nodes and hence a nested loop with nesting

depth of MAX NF is required. Our most common setup

has MAX NF = 2. The complexity further depends upon

the size of the iterable sets in a node’s state. Let us assume

that there are k iterable sets in a node’s state where size of ith

set is O(Si(n)). Then, time complexity of evaluation can be

stated as O(n∗
∏k

i=1
Si(n))MAX NF , as each of these iterable

set will have its own nested loop running over its elements.

Note that the total number of properties does not depend on

the number of nodes and in each iteration, only a subset of

literals which depend on the modified iterators are evaluated.

For simplicity we consider the amount of work done in each

iteration as constant in this analysis. Moreover, each snapshot

is evaluated independently of others. So, the time complexity

increases linearly with the number of snapshots if we assume

that the sizes of iterable sets remain the same.

Load Balancing Given the ubiquity of cheap clusters of

multi-core machines, an important challenge lies in harnessing

the available computational power to speed up checking and,

ultimately, the entire property inference process. We have

parallelized the property checking task by assigning to each

CPU core in the cluster the responsibility of a disjoint subset

of snapshots. For this purpose, we use the operation modulo N

over S, where N is the number of checking processes and S is

the explored state index, so that process x checks the snapshots

for which S mod N = x. We find this simple load-balancing

technique to work well in practice. In our evaluation, 10 quad-

core machines were sufficient to bring Avenger execution time

to less than a few hours for even the longest state traces we

encountered (860,000 states) [21].

D. Property Filter

Recall that the properties in our interest are the ones which

have a holding rate very close to 100%. The properties which

have held much less are unlikely to be chosen at the end of the

property inference process. When the property filter is invoked,

we remove the properties that hold less than a threshold.

Overall, there is a trade-off between the tool accuracy and the

speed of execution which can be controlled by the threshold

filtering value, FILTER HOLD RATIO (default value is 0.95).

At the extreme, one could complete the run of the tool while

keeping all the properties.

E. Property Reporter

The set of reported properties should ideally reveal all the

manifested bugs in the traces of the system run. This set

should not be too large, as inspecting too many properties

can overwhelm the developer. Accordingly, the falsely reported

properties waste developer’s time due to the required efforts

to reject them. Thus, one of our design goals is to report only

a small number of properties. The property reporter module

accomplishes this task, and its REPORT SIZE parameter can

be used to change the number of reported properties (in our

experiments, we set this parameter to 10).

Prioritizing properties Given our observation that the bug-

manifesting input sequences are usually very rare, we look



for properties that hold in most of, but not all, cases. Thus,

we sort the potential almost-invariants by their holding rate in

descending order. The property reporter then iterates over the

candidate list of almost-invariants and applies the following.

Eliminating equivalent properties An important step for

improving the quality of the reported almost-invariants is to

reduce the number of equivalent properties by reporting only

one property from each equivalence set. The properties with

the same holding ratio (to a high precision) are likely to

be equivalent. We use this simple statistic apart from math-

ematical equivalence because there could be two properties

that are not mathematically equivalent, but are in practice

checking the same system aspect. We therefore put the almost-

invariants with the same holding rate in the same equivalence

set and output only one almost-invariant chosen at random.

The original equivalence set can still be reported.

Simplifying properties Finally, we simplify the properties

to help reduce the human effort in analyzing the almost-

invariants. Recall that each property Pr is a disjunction of

some predicates and thus can be split into two or more

properties Pr1∨Pr2∨ . . .∨Prn where each simpler property

Pri contains a disjoint subset of the predicates in Pr. Because

of what we refer to as the Or Effect, we need to make sure

that Pr does not subsume any simpler property that is in

the candidate list. To address this problem, we use a simple

independence statistical test.

III. EVALUATION

In this section, we report our results of using Avenger to

analyze the BGP implementation in XORP version 1.64. BGP

is the standard inter-domain routing protocol in the Internet.

Implementation Details The changes we made to the XORP

source code were minimal, took about two weeks to perform

(we had no previous experience with the XORP platform), and

consisted of: 1) incorporating an existing snapshot algorithm

and 2) writing C++ serialization and deserialization routines

for the Routing Information Base (RIB). The variables we

included in the description file simply reflect the state of the

XORP RIB process: the routing tables and their route entries,

each made of a network prefix, a metric, a next hop, a pointer

to an egress interface, and policy flags. We defined equality

predicates for simple data types (e.g., IP addresses, route

prefixes) and applied basic knowledge of routing domain to

define the reachability predicate that checks the membership

of a route prefix in a routing table (essentially access to a

non-standard data structure, Section II-A1).

Experimental Setup Our testbed makes use of virtual inter-

faces to enable multiple XORP instances to communicate over

a synthetic topology that is installed within a single 48-core

machine. This relatively simple setup does not delay or drop

packets, but it allows us to bring interfaces down and up to

simulate link and node failures as to expose BGP behavior.

In our experiments, we configure multiple BGP instances in

4Due to lack of space, results of applying Avenger to the RandTree overlay
tree, the Chord distributed hash table, and the Paxos consensus protocol (all
within the Mace [13] distributed system framework) are described in the
accompanying technical report [21].

clique (full-mesh) and b-clique topologies [17] with 4, 8, 16

and 32 nodes. Inspired by the BGP problems reported in [1],

we mixed 16-bit and 32-bit AS numbers in the attempt to

uncover unexpected BGP behaviors in our testbed. Finally,

we drove the experiments with a script that can advertise and

withdraw arbitrary prefixes, and trigger link and node failures.

We conservatively marked snapshots as steady state if there

were no UPDATE BGP messages in the past minimum route

advertisement period (30 s by default). In total, there were

11,885 snapshots that were fed to our tool. Starting from

the small set of RIB variables and added predicates, Avenger

generated 3,700 properties and identified two relevant almost-

invariants (only one shown in discussed in this section for lack

of space), out of a total of four reported (10 requested).

Property BGP1: Universal reachability. This almost-

invariant covers complete reachability which is one of the most

important features of the Internet. This invariant is close in

spirit to path visibility, an important BGP property defined

in [9], which specifies that every router that has a usable

path to a destination learns at least one valid route to that

destination. The property Avenger generated is as follows

(after very little cleanup):

∀n1 : ∀n2 : ∀r ∈ n2.ebgpTable : r ∈ n1.ebgpTable

Surprisingly, in our experiments we found the property

being violated a few times during steady state. After careful

investigation, we found that the property was systematically

violated when two or more 32-bit AS BGP speakers were in

the topology and at least one of these speakers was advertising

one or more owned prefixes.

This almost-invariant is evidence that Avenger has all the

required expressiveness to produce two iterations over the

nodes and one iteration over a custom container type with

small amount of developer input (to access a non-standard data

structure). In addition, this almost-invariant ties together state

from multiple nodes in a distributed system implementation.

Discussion Given the difficulty of building reliable distributed

systems, a tool that helps to identify hard-to-find programming

errors is useful. Avenger was effective for every system we

examined. Moreover, two out of four reported invariants turned

out to be relevant in the case of XORP, with one leading to

a previously unknown problem. We note that the seemingly

high false positive rate is typical in anomaly-finding tools [3].

Determining the relevance of the reported properties took

less than a day and primarily involved checking the source

code and, when necessary, the logs and consistent snapshots.

One case required a change in the experimental setup. The

elimination of properties was quick, as the “useless” properties

turned out to be: 1) semantic equivalents of other properties

(e.g., referencing an internal subfield of a routing entry that

is as unique as the entry value itself), or 2) a result of the

expected system operation (e.g., the entries in the routing

tables of two nodes have different next hops). Although the in-

spection process was fairly straightforward, domain knowledge

was still required during source code and property inspection.

Avenger now effectively shifts the burden on the generation

of system traces. These traces should document the opera-

tion of the distributed system under a variety of expected

workloads. Perhaps more importantly, the distributed system



should be subjected to complex failure scenarios (faultloads).

However, achieving the desired variety, especially in the case

of failures, might require substantial resources and execution

time. We note that the recent availability of model checking

tools for distributed system implementations [14] offers the

possibility of quickly obtaining a large number of long exe-

cutions that explore many possible interleaving of the node

actions and failures in so-called random walks.

IV. RELATED WORK

Using invariants during development and deployment

Some distributed systems and algorithms have been designed

from ground up with the invariants in mind. The best example

is perhaps Paxos [15], a distributed algorithm for achieving

consensus over asynchronous networks.

Killian et al. [14] have manually specified safety and

liveness properties in their MaceMC model checker for dis-

tributed system implementations, and used them successfully

to identify bugs in several systems. WiDS [16] similarly looks

for violations of known invariants.

Avenger goes in the opposite direction in the sense that

by checking the traces of the system execution, it detects the

inconsistencies and proposes the invariants corresponding to

the observed inconsistencies.

Invariant inference for single-machine code Static anal-

ysis [4], which involves source code examination without

execution, can be used to infer properties. This approach is

typically sound, but, due to some issues (e.g., pointers), static

analysis is in practice too conservative.

Dynamic approaches overcome the shortcomings of static

analysis by i) generating a large number of possible properties,

and ii) relying on test cases to exercise the code behavior.

Daikon [7], [8] filters out any automatically generated property

that is violated during a test run, which assumes that the

code or specification that is used to generate the properties

is correct. This assumption does not always hold.

Self-consistency Our work is somewhat related in spirit to

checking the self-consistency of source code [6]. This work

uses manually-defined templates and performs static analysis

of single-machine source code to detect common patterns in

sequences of commands. It then reports the deviations from

these patterns as inconsistencies to the developer. However,

it cannot deal with the bugs that are not a deviation from

the similar programming patterns in the rest of the code.

DIDUCE [12] is somewhat similar in spirit to Avenger and

the work in [6], but it works on single-machine Java code and

has significant execution overhead.

Invariant inference for distributed algorithms The work

on automatic detection of properties in SPIN [19] can verify

whether two variables are related by basic operators. The work

that is perhaps closest to ours is [20], whose goal is to infer

the safety properties of distributed algorithms using Daikon.

This work simulates the execution of multiple IO automata

that contain a specification of a distributed algorithm in an

abstract form. In contrast, our work produces properties which

correspond to inconsistencies in distributed system implemen-

tations, and deals with properties in the spatial domain.

V. CONCLUSIONS

In this paper, we tackle the problem of automatically

inferring distributed system properties. Our tool, Avenger: i)

generates a large number of potential properties, ii) checks

them within the time and spatial domains using traces of sys-

tem behavior, and iii) chooses only several almost-invariants

that warrant inspection by the programmer. Avenger increases

the resilience of distributed systems as inspection of these

properties can uncover programming errors.

ACKNOWLEDGMENTS

We are grateful to Simon Schubert and Jiaqing Du for their

help with the XORP testbed. This project is supported by the

Swiss NSF (grant FNS 200021-125140). Marco Canini was

funded in part by a grant #2103 from the Hasler foundation.

REFERENCES

[1] Staring Into The Gorge: Router Exploits. http://www.renesys.com/blog/
2009/08/staring-into-the-gorge.shtml.

[2] G. Ammons, R. Bodı́k, and J. R. Larus. Mining Specifications.
SIGPLAN Not., 37(1):4–16, 2002.

[3] S. Axelsson. The base-rate fallacy and its implications for the difficulty
of intrusion detection. In CCS, 1999.

[4] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant
assertions: Mathematical foundations. In AIPL, 1977.

[5] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard. Inference and Enforcement of Data Structure Consistency
Specifications. In ISSTA 2006, Portland, ME, USA, July 18–20, 2006.

[6] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
Deviant Behavior: a General Approach to Inferring Errors in Systems
Code. In SOSP, 2001.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
Discovering Likely Program Invariants to Support Program Evolution.
Software Engineering, IEEE Transactions on, 27(2):99–123, Feb 2001.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection of
Likely Invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

[9] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults
with Static Analysis. In NSDI, 2005.

[10] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday:
Global Comprehension for Distributed Replay. In NSDI, 2007.

[11] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.
Designing Extensible IP Router Software. In NSDI, 2005.

[12] S. Hangal and M. S. Lam. Tracking Down Software Bugs Using
Automatic Anomaly Detection. In ICSE, 2002.

[13] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat.
Mace: Language Support for Building Distributed Systems. In PLDI,
2007.

[14] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, Death,
and the Critical Transition: Finding Liveness Bugs in Systems Code. In
NSDI, 2007.

[15] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[16] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating Bugs
in Distributed Systems. In NSDI, 2007.

[17] D. Pei, X. Zhao, D. Massey, and L. Zhang. A Study of BGP Path Vector
Route Looping Behavior. In ICDCS, 2004.

[18] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using Queries
for Distributed Monitoring and Forensics. SIGOPS Oper. Syst. Rev.,
40(4):389–402, 2006.

[19] M. Vaziri and G. Holzmann. Automatic Detection of Invariants in SPIN.
In Fourth Int’l SPIN Workshop, 1998.

[20] T. N. Win, M. D. Ernst, S. J. Garland, D. Kirli;, and N. A. Lynch. Using
Simulated Execution in Verifying Distributed Algorithms. Int. J. Softw.
Tools Technol. Transf., 6(1):67–76, 2004.

[21] M. Yabandeh, A. Anand, M. Canini, and D. Kostić. Almost-Invariants:
From Bugs in Distributed Systems to Invariants. Technical report, EPFL,
http://infoscience.epfl.ch/record/141383, 2009.

[22] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak. CrystalBall: Pre-
dicting and Preventing Inconsistencies in Deployed Distributed Systems.
In NSDI, 2009.


