
An Architecture for Reliable

Encapsulation Endpoints using

Commodity Hardware

by

Robert M. Robinson

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2011

© Robert M. Robinson 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Customized hardware is expensive and making software reliable is difficult to achieve as

complexity increases. Recent trends towards computing in the cloud have highlighted the

importance of being able to operate continuously in the presence of unreliable hardware

and, as services continue to grow in complexity, it is necessary to build systems that are able

to operate not only in the presence of unreliable hardware but also failure-vulnerable soft-

ware. This thesis describes a newly developed approach for building networking software

that exposes a reliable encapsulation service to clients and runs on unreliable, commodity

hardware without substantially increasing the implementation complexity. The proposal

was implemented in an existing encapsulation system, and experimental analysis has shown

that packets are lost for between 200 ms and 1 second during a failover, and that a failover

adds less than 5 seconds to the total download time of several sizes of files. The approach

described in this thesis demonstrates the viability of building high availability systems

using commodity components and failure-vulnerable server software.

iii

Acknowledgments

I would like to acknowledge my thesis supervisor, Dr. Paul A. S. Ward of the University

of Waterloo, for his guidance and contributions to this thesis. I would also like to thank Dr.

Michael J. Robinson of the University of Calgary for his assistance with structuring the

statistical analysis of my experimental results. I wish to express my gratitude to Pravala,

Inc. for allowing me to utilize the Accoriem platform to implement and test my proposal,

as well as providing me with the time and resources to explore this problem space.

I wish to thank the editors of this document, Dr. David Taylor, Nicholas Armstrong,

and Todd Kemp, for taking the time to ensure that my thesis was properly structured and

readable. I also wish to thank Dr. Rudolph Seviora and Dr. Sebastian Fischmeister, both

of the University of Waterloo, for acting as the readers of this thesis.

iv

Dedication

This is dedicated to my parents, Cathy and Mike.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background and Related Work 4

2.1 Traditional Encapsulation Systems . 5

2.2 Traditional Encapsulation Failover . 7

2.3 The Complexity of IP Continuity . 9

2.3.1 Address Translation . 9

2.3.2 Datacentre Networking . 11

2.4 Software Routing . 13

2.5 Handling Decapsulator Failure . 16

3 Design 18

3.1 DN Failover . 21

3.2 Detecting Failures . 23

3.3 ESR Failover . 27

3.4 Analytical Analysis of a Failover . 27

vi

4 Implementation 31

4.1 Accoriem . 31

4.2 EN and DN Modifications . 33

4.3 EN-DN Mapping Table . 36

4.4 Routing-Table Growth . 37

4.5 Routing in the DN Cluster . 38

5 Experimental Validation 39

5.1 Packet Loss During Failover . 41

5.2 Impact on Long-Lived TCP Flows . 47

5.3 Impact of TCP Retransmissions . 53

5.4 Impact of Reliable Encapsulated Packet Delivery 58

5.5 Experimental Observations . 60

6 Conclusion and Future Work 61

6.1 Conclusions . 61

6.2 Future Work . 61

APPENDICES 64

A List of Acronyms 65

References 70

vii

List of Tables

5.1 Impact of Failure on HTTP File Download Times (UDP channel) 49

5.2 Kolmogorov-Smirnov Test for Normality on the HTTP File Download Times

(UDP channel) . 50

5.3 Difference-of-Mean HTTP File Download Times (UDP channel) 51

5.4 Difference-of-Median HTTP File Download Times (UDP channel) 52

5.5 Impact of Failure on HTTP File Download Times (TCP channel) 59

viii

List of Figures

2.1 Typical Encapsulation Architecture . 6

3.1 Failover Encapsulation Architecture . 19

3.2 System Prior to (a) and Following (b) Failure of a DN 22

3.3 Decapsulation Node-Failure Detector (DN-FD) Architecture 24

3.4 Network Failure Scenarios . 26

3.5 Timeline Of System States During Failover 28

4.1 Accoriem System Components . 32

4.2 Accoriem Components: Modified Modules shown in Gray 34

5.1 Experimental Testbed Setup . 40

5.2 Packet Loss Count During A Failover (Rate of 100 Packets Per Second) . . 43

5.3 Packet Drop Count During A Failover (Rate of 10 Packets Per Second) . . 46

5.4 Impact of Retransmissions on Download Time (63 MB File, P/P) 54

5.5 Impact of Retransmissions on Download Time (625 MB File, P/P) 55

5.6 Impact of Retransmissions on Download Time (63 MB File, P/V) 56

5.7 Impact of Retransmissions on Download Time (625 MB File, P/V) 56

5.8 Impact of Retransmissions on Download Time (63 MB File, V/V) 57

5.9 Impact of Retransmissions on Download Time (625 MB File, V/V) 57

ix

Chapter 1

Introduction

Encapsulation systems are commonly used to allow unsupported network protocols to run

over an existing network. This is accomplished by wrapping a fully-formed packet from

an unsupported protocol inside another, supported protocol; allowing the network to treat

traffic generated by the unsupported protocol as traffic it already handles. Building a

reliable encapsulation system has traditionally required either complex server-side failover

solutions or weak reliability guarantees, neither of which are particularly appealing ap-

proaches for highly available network systems. This thesis proposes a third approach for

building high reliability encapsulation systems — redundant server-side components with

loose coupling and an intelligent client component that actively maintains connections

with multiple servers and selects the most appropriate server to pass traffic through. This

approach is believed to be easier to implement than existing solutions, provides minimal

packet loss during a server-side failure, works on commodity hardware, and can be adopted

by a variety of encapsulation systems.

Encapsulation is commonly used as an approach to add additional features to the

network without having to change the underlying network protocol — Internet Protocol

Security (IPsec) [14], Teredo [11], Mobile Internet Protocol (IP) [18], and IP-in-IP [21]

are all examples of this paradigm. It is common to deploy many of these solutions in

a client/server architecture, with many client devices running the encapsulation protocol

connecting to a single server responsible for decapsulating traffic and passing it on to the

1

destination network. In these systems, failures in either the client or server component will

cause network traffic to stop flowing; in the case of a client failure only the local device

will lose access, but in the case of a server failure all of the clients will lose access. Current

systems approach this problem from one of two perspectives: a complex server-side failover

solution that enables clients to maintain connectivity, or a simple approach that does not

maintain connectivity but simply reconnects to a new server.

One of the more complex aspects of handling the failure of a server in the encapsulation

environment is ensuring that traffic is still routed to the client after the failure has occurred.

Encapsulation systems are typically exposed to the client as a virtual network interface

that receives a subset of all IP traffic generated by the client, with each interface being

assigned an IP address that acts as the source IP for all traffic entering the encapsulation

system. The address that is assigned to the client typically comes from a subnet that has

been assigned to the corresponding server, with different servers assigning addresses from

different subnets. Even if all servers assign addresses from the same subnet, they will have

to perform Network Address Translation (NAT) on the addresses before they leave the

server, because it is not possible for two clients to have the same transport address visible

to the wider network. Consequently, if a client disconnects from a server and connects

to another one, it will not keep its transport address, which causes all flows traversing

the encapsulation system to break. This is undesirable because many applications do not

currently handle address changes well; further, it requires handling server failure on a per-

application basis. It be would preferable if migration from one server to another could

be accomplished without changing the address assigned to the virtual interface; that is,

performed in a ‘seamless’ (from the client perspective) manner.

The primary goal of this thesis is to develop a mechanism for software-based encapsula-

tion systems to provide their clients with continuous, uninterrupted service in the presence

of server failures. The most important measure of whether a solution provides continuous

service in the presence of server failures is whether a client application that is passing traffic

through the encapsulation system can continue operating without having the connection

drop, time out, or otherwise close. More specific measures of the impact of a failure include

how many packets are lost during a failover and the impact of a failover on file download

2

times. The complexity of the solution is also considered — solutions that require few mod-

ifications to the system and solutions that have components that can be utilized by other

encapsulations systems attempting to achieve similar goals are preferred as they provide

more value to developers of similar systems.

The major contributions of this thesis are the proposal of a new architecture for failure-

tolerant encapsulation systems, the development of an analytical framework to measure

the impact of a failure, and the experimental validation of said architecture in an actual

encapsulation system. The solution detailed in this thesis is believed to be the first exam-

ple of a failure-tolerant encapsulation architecture that neither requires a complex server

implementation, nor passive failover devices. It is believed that this work is applicable

not only in the discussed example but also in other commonly used encapsulation systems,

including Virtual Private Networks (VPNs), Internet Protocol version 6 (IPv6) transition

technologies, and Mobile IP-capable solutions. Wide adoption of the principles discussed

in this thesis will make it possible to develop and deploy highly available encapsulation

systems in the future, making it easier for individuals or organizations to continue adding

new features to existing network layer protocols without having to develop new approaches

for providing fault-tolerance and high-availability capabilities.

This thesis is divided into six chapters. Chapter 2 includes a more detailed descrip-

tion of the problem space, as well as a survey of related approaches. This includes both

research proposals and implemented systems. Next, Chapter 3 contains the design of the

encapsulation reliability solution, with a focus on the overall design of the system and its

impact on system behaviour. Chapter 4 details the implementation of the encapsulation

reliability design in the context of an existing system. In Chapter 5 the implementation is

validated using several micro-benchmarks. Conclusions and future work are presented in

Chapter 6.

3

Chapter 2

Background and Related Work

A typical encapsulation system incorporates elements from a variety of computer-science

fields; the underlying transport mechanism is built much like a typical Layer 2 (L2) point-

to-point transport protocol, the packet forwarding logic uses similar algorithms to those

used in traditional Layer 3 (L3) routers, and the reliability and failover behaviour has been

extensively studied in both the high-availability routing literature and the high-availability

distributed systems literature.

The use of encapsulation to support additional functionality on top of the base Internet

Protocol version 4 (IPv4) protocol has a long history of use on the Internet. It is commonly

used in two separate but related roles, legacy support and network isolation. Encapsula-

tion has been used to enable non-IPv4 protocols to be usable over the Internet; there

are a variety of standards describing this mode of operation including Generic Routing

Encapsulation (GRE), 6to4, and Teredo. A more common deployment architecture, how-

ever, involves using encapsulation to provide network isolation for IPv4 traffic that needs

to traverse the Internet to reach its destination. One common example of encapsulation

providing network isolation can be seen in a VPN scenario. The network-isolation ap-

proach has also been codified in a number of different standards, including both IP-in-IP

and IPsec, as well as being used by application designers (OpenVPN) to provide similar

isolation capabilities.

4

2.1 Traditional Encapsulation Systems

A typical encapsulation architecture has two components, as shown in Figure 2.1. These

components are the Encapsulation Node (EN) and the Decapsulation Node (DN)1. The

EN typically runs on a client device, such as a smartphone or a laptop, and initiates a

connection to the DN. The DN typically runs somewhere in the network that is directly

connected to the next hop destination of the encapsulated traffic. This can include a

private corporate network, the IPv6 Internet, or the IPv4 Internet, depending on the de-

ployment requirements. The EN and DN may participate in one or more authentication

sessions, encryption-algorithm negotiations, or other configuration steps before both end-

points are ready to transfer data. Completion of the initialization process will result in

any packets that the EN receives on its virtual interface being sent to the DN. Each DN

assigns a client an IP address from a pre-configured subnet; each DN is usually assigned

a unique subnet to prevent duplicate addresses. Once the EN has established a session

with the DN, it cannot migrate to another DN without tearing down its session with the

first. This coupling is necessitated both by the assignment of an IP address to the EN

(routing entries to the EN are, by definition, set to have the DN as the next hop) and

potentially by the transport protocol employed by the EN and DN themselves. The use of

Transmission Control Protocol (TCP) as a transport protocol prevents seamless migration

because sequencing and other state issues prevent the connection from continuing properly

on a new host. Typically, the DN is implemented on specialized or dedicated hardware, to

ensure that the encapsulation system offers high availability to the ENs.

There are two distinct approaches to performing encapsulation — wrapping the data

to be encapsulated directly in IP, or utilizing a transport protocol running over IP to carry

the encapsulated data. There are many standardized examples of both approaches; GRE,

6to4, IP-in-IP, and IPsec all encapsulate their data in raw IPv4 packets, and as a result

have been assigned different IP protocol numbers to allow routers to treat these forms of

traffic differently from TCP or User Datagram Protocol (UDP). Newer protocols have

1While the terms EN and DN are used to differentiate the two devices, both endpoints perform encap-

sulation and decapsulation operations — for simplicity a single direction of traffic flow is assumed in the

rest of this thesis even though it holds for the reverse as well.

5

Figure 2.1: Typical Encapsulation Architecture

adopted the latter approach, with protocols such as Teredo and OpenVPN encapsulating

their data in either TCP or UDP. The reasons for this are discussed below.

Protocols that directly encapsulate traffic in IPv4 are considered to be the preferable

approach because they minimize the amount of overhead added to every packet. While

preferable from an overhead perspective, they encounter major deployment issues on the

Internet today partly as a result of the prevalence of NAT in access networks and partly due

to restrictive firewall configurations. This has caused problems not only for encapsulation

systems (see IPsec passthrough mode on some routers) but for newer transport protocols,

such as Stream Control Transfer Protocol (SCTP) as well. To work around the deployment

issues that NAT introduces, several encapsulation protocols that directly use IPv4, for

example IPsec, have been updated to utilize transport-level encapsulation. RFC 3948

6

[12] was developed to allow IPsec to function in the presence of NAT by wrapping the

Encapsulating Security Protocol (ESP) packets in UDP.

2.2 Traditional Encapsulation Failover

The underlying protocol used to encapsulate data has a direct impact on the complexity

of enabling seamless server failover. Approaches that utilize a stateless transport layer,

either directly using IP or wrapping a payload in UDP, can potentially utilize existing IP-

redundancy protocols such as Hot Standby Router Protocol (HSRP) or Virtual Routing

Redundacy Protocol (VRRP). In such an environment, both servers will be configured

to share a single IP address, with the primary server receiving all traffic and the standby

configured to take over should the primary fail. If the IP-redundancy protocol is used

both on the inbound interface (to allow the client traffic to continue arriving) and on

the outbound interface (to ensure traffic returning from the encapsulation network can be

routed back to the client properly) then the failure of a single server will go unnoticed

by the client. This approach does not, however, work with systems that utilize a stateful

transport layer, because while IP redundancy protocols allow for an IP address to migrate

between servers, they do not do the same for transport connections. There is no widely

supported mechanism to migrate the state of a TCP connection between operating-system

instances, requiring that the client handle failure cases through a reconnection approach.

To allow TCP connections to be migrated between independent operating system in-

stances, researchers have developed a system that integrates with the server-side TCP

stack. This solution, named Fault-Tolerant Transmission Control Protocol (FT-TCP) [1]

[31], combines traditional IP failover protocols with a new component that sits both above

and below the existing TCP stack to intercept all packets being send and received using

TCP. It logs all packets to a data store that is shared amongst all the hosts in the clus-

ter. When a host fails, another takes over and ‘picks up’ from where the last host left

off based upon the state committed to the shared data store. The new host continues

the connection by rewriting all subsequent incoming and outgoing TCP packets to reflect

the proper state of the connection. This enables FT-TCP to overcome the state and se-

7

quencing issues which traditionally prevent TCP connections from being able to migrate

between hosts. While FT-TCP enables a TCP connection to be migrated between hosts,

it has several disadvantages - supporting this protocol requires tight coupling with a host

operating system, as well as requiring tight coupling between all the hosts in the cluster.

As well, it requires an active-passive deployment architecture, which tends not to scale in

an efficient manner. One final limitation is that FT-TCP is limited to supporting TCP

failover between different hosts - any application that uses UDP will require a different

solution.

The IP-redundancy protocols have a limitation as well; it is only possible for a single

machine to be the primary server for a specific IP address. Load balancing across HSRP or

VRRP requires multiple IP addresses configured on the cluster with each machine assigned

as primary to one of the addresses [24]. This complicates active-active configurations with

more than a single server because it is now necessary to load balance clients across the IP

addresses exposed by the system.

Utilizing existing IP-redundancy protocols directly has the advantage of simplifying the

client; it simply connects to a single IP address and passes traffic to the server. The tradeoff

to this simplicity is the complexity of the server implementation — it becomes necessary

to synchronize all state used in the decapsulation process between all of the failover servers

in real-time, otherwise a failure of the primary server will result in interruption of service

to the client. This state is not always static — IPsec requires that session keys for each

client be shared between all servers that may process a client’s traffic, and any service with

restricted access requires that authentication information be shared between all servers.

The complexity of this state synchronization only increases as the encapsulation system is

expanded to support a larger number of servers that can be simultaneously used, especially

in load-balancing architectures. It is relatively straightforward to synchronize two servers

that are sharing an IP address in an active/passive architecture, but synchronizing many

servers in an active/active architecture is a much more difficult problem.

The approach proposed here sidesteps many of these concerns by pushing the failover

logic into the client — a small amount of extra logic enables clients to connect to an

arbitrary number of servers that do not need to be directly synchronized with the other

8

servers in the failover cluster. It enables the solution to scale to a large number of servers in

an active/active architecture without requiring complex server-side logic or configuration

parameters to support, and does not require scaling IP-redundancy protocols.

2.3 The Complexity of IP Continuity

In order to provide the client a continuous, uninterrupted connection to the Internet, it is

necessary to provide more than just a redundant connection to the decapsulator, it is also

necessary to ensure that the IP address assigned to its virtual interface does not change

as the client moves between decapsulators. The IP address assigned to the EN is able to

migrate between interfaces as the EN enters and leaves different networks as long as it

is communicating with the same DN; the DN advertises the subnet from which the EN

addresses are assigned and other routers use this information to send the EN’s traffic to

the proper DN. In most environments this is statically configured because the information

is not dynamic — if a DN goes down then all of the ENs connected to it are no longer

reachable. This mode of operation is not acceptable in a fault-tolerant system, however,

and as a result it is necessary to ensure that an EN’s IP address will migrate between DNs

in the relevant failure scenarios.

Providing IP continuity to clients in an encapsulation system has not been the focus

of a lot of literature to this point, router-reliability protocols such as HSRP or VRRP

excepted. There are two related fields that have received a lot of research recently, however

— supporting address reassignments (for a variety of reasons) and providing IP continuity

in virtualized datacentres. A summary of the relevant research of each field is presented

below.

2.3.1 Address Translation

Address translation is a somewhat overloaded term; here the intent is not to refer to the

one-to-many NAT commonly used to provide connectivity to many clients behind a single

IP address, instead the term is used to refer to a one-to-one NAT whereby each client has

9

a unique address on both sides of the NAT device, these addresses just happen to exist in

different address spaces. This approach is used not only to help reduce the size of global

routing tables, but also to simplify the transition to IPv6.

The paper Towards a new Internet routing architecture [30] observes that one of the

biggest contributions to the growth of the global BGP routing table is the number of

Provider Independent (PI) address subnets that are being assigned, and examines several

solutions to reduce the impact that PI networks have on the global routing table while

still allowing for multihoming across independent Internet Service Providers (ISPs). PI

addressing space is named as such because it is not allocated from address blocks that

carriers have been assigned (hence, ‘provider independent’), both to simplify renumber-

ing when changing providers and to enable multihoming. The use of PI addressing has

increased in recent years for both of the previously mentioned reasons; unfortunately it

is essentially impossible to aggregate PI addresses because they are inherently assigned

to disjoint organizations. This dramatically increases the size of the global routing table,

since all providers now need to know how to reach each PI block independently. To support

PI addressing while still enabling address aggregation, Towards a new Internet routing ar-

chitecture [30] proposes a two-layer addressing scheme whereby PI space is mapped into

Provider Assigned (PA) addresses, which enables clients to be assigned a single address

that is persistent across ISP failure, and in effect enables IP continuity in a failure environ-

ment. Essentially, the border routers between the PI and PA addressing spaces perform a

version of one-to-one NAT, except that multiple ‘public’ addresses map to a single ‘private’

address.

The author of Six/One [29] proposes a solution for enabling PI addressing in IPv6

deployments by deploying what are essentially one-to-one NAT devices on both sides of

the transit network. This architecture is similar to Towards a new Internet routing archi-

tecture [30] because it relies on a transparent, in-network mechanism for mapping client

addresses to globally reachable addresses in such a manner that an assigned globally reach-

able address can change without impacting the client address or its connections. This does

not completely work with IPv4, however, because it relies upon an IPv6 extension header

to carry the original, untranslated address to the end host, making it possible for other

10

hosts to associate connections coming from two different addresses as actually coming from

the same host (if the PI-to-PA mapping changes partway through a connection). Clearly,

this is a major limitation, because upgrading all end hosts on the Internet to understand

multiple sets of addresses in the IP header is not a trivial or rapidly accomplished task.

Both Towards a new Internet routing architecture [30] and Six/One [29] are built with

the assumption that the PI space is managed independently from the PA address space,

allowing the organization to manage the operation of the PI space as it wishes. This is

an important aspect of both approaches; organizations have the flexibility to move hosts

throughout their organization without interrupting existing connections. Adapting this to

an encapsulation system requires an extra layer of indirection be added to the system, yet

if the routes can be properly adjusted within the organization during a failure it is possible

to hide this failure from existing connections.

2.3.2 Datacentre Networking

The adoption of virtualization technology in the datacentre has provided a number of

advantages to operators, including improved utilization, increased flexibility, and higher

uptime. Virtual Machines (VMs) are able to be migrated between physical systems, making

it possible for physical hosts to be taken down for maintenance without requiring any

observable downtime. Virtual-machine migration is a substantial advantage provided by a

virtual environment; however, enabling this migration greatly complicates the underlying

network infrastructure. Different VMs are expected to run on different networks, and

moving these machines between physical hosts requires that every possible network a VM

is connected to be available to all of the physical hosts on which said VM could possibly

execute. In effect, every physical host needs to have connectivity to every network any of

the VMs could use. Furthermore, it is necessary for the underlying network to be able to

switch packets destined to a given VM to the physical host on which this VM is currently

executing, something that will dynamically change during a VM migration. Addressing

some of these obstacles to VM migration in a datacentre network has been the focus of

several recent papers, discussed below.

11

PortLand [17] presents a network architecture that is designed to support host mobility

in a datacentre. The major focus of the work in PortLand is modifying the underlying

L2 protocol (Ethernet) to enable the required L3 mobility features in a virtualized dat-

acentre. They accomplish this by replacing the broadcast behaviour of Ethernet with a

centralized directory of Media Access Control (MAC) addresses-to-switchport mappings

that are transparently updated by inspecting outgoing packets from each switchport. A

side benefit of eliminating Ethernet broadcasting is that it reduces the amount of traffic

that hosts connected to the network need to process. The modifications to Ethernet in

PortLand are not just constrained to supporting IP mobility; the centralized directory is

responsible not only for maintaining a MAC-to-port mapping but also detecting failures in

the network fabric and switching the selected path to prevent a loss of connectivity.

Floodless in SEATTLE [15] is another paper that explores the limitations of the Eth-

ernet protocol in the context of supporting IP mobility for VMs. Much like PortLand,

SEATTLE removes the broadcast-address lookup component with something considerably

more scalable; however, in contrast to PortLand, it proposes collapsing all the L3 subnets

into a single broadcast domain which is run across all switches in the network. While

a single broadcast domain would be infeasible if broadcasting was used, the switches are

modified to use a distributed hash table (DHT) to perform L2 address resolutions in lieu of

the traditional broadcast-based solutions, removing one of the major impediments to large

subnets in a datacentre. With all of the VM IPs now on the same subnet, it is possible

to relocate a VM anywhere in the datacentre without worrying about how the switching

infrastructure will interact with the routing infrastructure — an L3 device can sit on the

edge of the datacentre and let the switching infrastructure take care of the rest.

Supporting IP continuity in a datacentre network requires modifying the underlying

transport protocol, and while different approaches are taken they all remove the broad-

casting component from Ethernet and replace it with a centralized data store that can be

updated dynamically when the structure of the network changes. This is unfortunately

something which is not feasible to replicate directly in an encapsulation system because

most existing encapsulation systems are built under the assumption that the DN performs

both L2 and L3 functions, making it infeasible to have multiple DNs share a logical L2

12

address space. However, the approach can be moved one layer up the stack, and instead

of having a centralized directory of MAC-to-switchport mappings each DN could write to

a centralized directory of IP-to-DN mappings, and allow the DN to use its existing mech-

anism to map IPs to encapsulation links. As long as the directory is updated when IPs

move DNs, IP continuity will exist for the ENs.

2.4 Software Routing

Traditional IP routers are built using custom silicon that embeds forwarding logic into

hardware; while capable of forwarding at very high rates (over 10 Gbps) they are expensive

both to build and deploy, and are unable to support protocol changes easily. There have

been various attempts to address these limitations by using a commodity machine running

a commodity operating system (typically Linux), yet the performance of a commodity

platform has never been able to match that of the custom silicon found in dedicated routers.

The performance issue has resulted in software routers being relegated to use in branch

offices and development labs, but not in major datacentres. Indeed, most encapsulation

systems today that include routing functionality are built into dedicated routers, and are

not typically deployed on general-purpose computers [22].

Recently, the field of software routing has experienced an increase in interest due to

several different but related factors. First, advancements in both processor architectures

and network-interface card designs have dramatically increased the rate at which general-

purpose machines are able to process network traffic, addressing one of the largest barriers

that software routers traditionally faced. The advancements in processor architectures has

not just increased the speed and number of cores that can exist on a chip; operating-

system virtualization has become a popular way to increase datacentre utilization while

also increasing the uptime and flexibility of the overall system. Features like virtual-

machine migration and hot failover of virtual machines have introduced changes to the

way datacentre networks are being designed and operated, yet the underlying network

technology has not seen a similar rate of change. It is difficult to determine if this is because

such changes are not necessary, or if the cost of the existing infrastructure is preventing

13

innovation from extending to the datacentre networking field. The difficulty of adding

features to dedicated routers has been an impediment to deploying new capabilities to

virtualized datacentres; motivating further interest in adopting software routing technology

due to the simplicity of updating software routers.

The authors of Towards high performance virtual routers on commodity hardware [8]

explored the limits of running a software router on a commodity server, and discovered

that the memory subsystem is the source of bottlenecks in a typical mid-range multicore

server system performing software routing. They were able to achieve forwarding rates of

approximately 7-million packets per second for 40-byte packets, after carefully mapping

routing processes to cores. They also explored the impact of running software routers in

virtual machines; virtualization technology was discovered to have a significant impact on

the obtainable forwarding rates, with a virtualized instance achieving between 1 and 2

million 40-byte packets per second in the best case. Given that decapsulation nodes are,

fundamentally, software routers with additional logic, this provides an important practical

upper limitation on the performance which each DN can be expected to achieve. This paper

also explores the impact of different approaches to sharing physical network interfaces with

virtualized routers; when the network card is able to perform packet de-multiplexing and

assign each virtualized router an independent packet queue on the NIC it is possible to

achieve much better isolation and fairness metrics as compared to having the hypervisor

handle all packet processing itself. This is unsurprising but an important factor to consider

when building virtualized routers — the capabilities of the underlying hardware can have

a major impact on the performance that each routing instance is capable of achieving.

The issue of scaling software routers running on commodity hardware to multi-gigabit

rates is examined in Can software routers scale? [2], where the authors examine the impact

that the architecture of commodity hardware has on the potential performance achievable

by a software router. They propose an architecture not dissimilar to the one proposed in

this thesis whereby a collection of routers are clustered together to achieve higher through-

put rates than would be otherwise achieved by a single machine; however, they focus on

building a single logical router from multiple machines which are interconnected using a

Valient load-balancing mesh. The key observation underlying their paper is that one of the

14

most basic limitations of existing software routers is that they focus on the ‘single server as

router’ architecture, yet this is fundamentally unable to match the performance of custom

hardware; therefore, future software routers will need to be built using a clustered archi-

tecture to obtain speeds comparable to custom hardware using a software router. The

programmability of a software router is also highlighted as a key advantage of this ap-

proach; it becomes easier and less expensive to deploy new capabilities to existing routers.

ViAggre [3] presents an architecture by which the growth of the Default Free Zone

(DFZ) is addressed by splitting the global routing table onto a collection of routers through

the use of virtual network prefixes. This is, in effect, attempting to solve the same problem

as Towards a new Internet Routing Architecture [30], large routing tables due to increases

in PI addressing, yet instead of attempting to solve the source of the problem it instead

proposes a way to hide the impact of the issue. The use of virtual network prefixes makes

it possible to have large swaths of relatively unused address space handled by a single

router, while allowing the more popular subnets to be handled by dedicated machines,

and dynamically shifting the assignment of prefixes to routers can allow for dynamic load

balancing across the routing cluster. This is similar to the approach proposed in Can soft-

ware routers scale? [2] whereby less capable devices are shown to have a higher aggregate

throughput by splitting the load across a cluster of machines. Splitting the routing table

into components that are loaded onto different routers is similar to the approach presented

in this thesis takes to separate load across the different decapsulators in the system, where

the ingress router knows how to route specific packets to the responsible decapsulator.

The work in Can software routers scale? [2] is extended in RouteBricks: Exploiting par-

allelism to scale software routers [7], where the authors implement the proposed software-

router architecture and validate its performance using several real-world benchmarks. The

prototype is shown to be capable of forwarding at a rate of 35 Gbps using a 4-server cluster;

an impressive demonstration that modern commodity machines are capable of forwarding

at rates that used to be exclusively obtainable with customized hardware. The imple-

mentation resulted in several important results; first, the Central Processing Unit (CPU)

architecture plays an important role in achieving high throughputs — the parallel memory

bus present in the Intel Nehalem architecture was required to achieve the required forward-

15

ing performance, and shared-memory-bus CPUs were incapable of obtaining a comparable

level of performance. Second, it was necessary to use multi-packet queue network cards

to avoid queue-CPU core contention. Finally, it was necessary to pin each CPU core to a

specific network-card packet queue to avoid cross-core queue locking.

The encapsulation system presented in this thesis is not expected to be deployed in en-

vironments that require extremely high packet-forwarding performance, because the clients

are expected to be connecting to the server over the Internet, and most datacentres are

connected to the Internet using links that have a capacity in the small single digits of Giga-

bits per second. Given that others have demonstrated systems that are capable of pushing

much higher rates than the system proposed in this thesis is expected to handle using a

small cluster of commodity machines, it validates the feasibility of the system running as

a software router on commodity hardware.

2.5 Handling Decapsulator Failure

The software reliability field has two perspectives on the development of fault-tolerant

software — perform extensive testing on all possible failure cases to ensure that the software

never crashes, or build in the assumption that software will fail and ensure that failure

handling does not break the system. The second approach is much easier to implement

and validate in complex software, especially when safety is not a concern. There are

many variations on this general approach to building software, but two major approaches

are to detect and try to handle any errors that occur or to crash whenever an error is

detected. Software that implements the second approach is called ‘crash only’ software,

and this is the approach that more and more highly reliable, highly parallel solutions are

adopting [5] [13] [6] [10].

Traditionally the networking field has not adopted the ‘crash only’ approach because

it is not terribly difficult to build mostly reliable software on reliable hardware, and with

custom hardware forming the basis for most networking gear it is expected that hardware

failures will be relatively rare. Indeed, for the few cases when failure is not tolerated,

specialized failover approaches have been developed, yet these are often complex and in-

16

flexible. As the networking field begins to utilize software routers running on commodity

hardware, it is important to recognize the intrinsic differences between the two approaches

and the additional work required for systems running on commodity hardware to offer

similar reliability guarantees.

Integrating a ‘crash only’ approach to an existing encapsulation system is greatly simpli-

fied when IP continuity is provided to ENs during a failure — a small process can monitor

the state of each DN and forcibly kill it if required. Clients that are written assuming a DN

can go down at any time will simply switch to an alternate DN when the primary stops,

either due to a failure of the software or the hardware. Minus some small packet loss, the

EN does not experience any problems because the IP address migrates with the client to

the new DN.

17

Chapter 3

Design

A reliable encapsulation endpoint architecture does not exist in a vacuum; it is built on top

of existing encapsulation systems, and therefore the design will be implemented differently

depending on the specifics of the particular encapsulation system in question. The high-

level architecture of the encapsulation endpoint reliability architecture is discussed here

in relation to the previously-discussed standard encapsulation architecture, and how IP

continuity is provided for that architecture. A specific implementation is described in

Chapter 4.

The encapsulation endpoint reliability architecture proposed in this thesis, in contrast

to a traditional encapsulation architecture, has four components; the encapsulation node

(EN), the decapsulation node (DN), the decapsulation node failure detector (DN-FD), and

the edge service router (ESR). In this architecture the EN and DN occupy the same roles

that they do in the traditional encapsulation architecture, with some minor differences.

The ESR acts to ensure that the IP address assigned to an EN can be migrated between

DNs when a failure occurs by maintaining a system-wide EN-to-DN map. The DN-FD

acts to detect failures in the DN, and kills nodes acting in an erroneous manner.

One difference between our architecture and a typical encapsulation architecture is

that the failover DNs are not run on specialized hardware; instead commodity hardware

is used. While typical encapsulation systems may deploy DNs on commodity hardware,

failover-capable versions of these DNs tend to be deployed on custom hardware. Another

18

Figure 3.1: Failover Encapsulation Architecture

difference is that instead of having the EN connect only to a single DN, the EN connects to

multiple (n, n >1) DNs, where n is one more than the greatest number of concurrent DN

failures that are to be supported. The first DN to which the EN connects is responsible for

sending configuration settings, including IP address, to the EN — this DN also becomes

the initial destination for all client traffic. During the connection setup process with the

additional n-1 DNs, the EN supplies its configuration (including assigned IP address) and

marks the DN as ‘secondary’. Being marked as ‘secondary’ does not cause the DN to treat

the EN any differently than it would if it were primary; it simply maintains the session in

preparation for a failover situation.

The architecture providing failover capabilities to an encapsulation system is shown in

Figure 3.1. Each of the DNs, in addition to being connected to the Internet (to terminate

19

EN connections), is connected to the Edge Service Router (ESR) using whatever version of

IP the encapsulation system supports (IPv4 or IPv6). The network connected to the ESR

is whatever the intended destination for this encapsulation system is; possibilities include

a private IP network, the public IPv6 Internet, or the public IPv4 Internet. The version of

IP running on this network matches the protocol type used to determine the IP addresses

assigned to the EN. When the primary DN assigns an IP address to the EN, it does so

out of its own address pool, and the ESR is configured with the address ranges assigned

to each DN. When the DN receives a packet from the EN, it decapsulates the packet and

injects it into the network where it will be routed through the ESR before traveling to

its final destination. Packets returning from an end host pass through the ESR, where it

routes the packet to the proper DN, at which point it follows the standard encapsulation

protocol for returning to the EN.

Every DN is configured with two classes of subnets, primary and secondary, instead of

being configured with a single subnet. A primary subnet is used by a primary DN to assign

addresses to clients that are not yet connected to a DN. A secondary subnet is one that

contains part of a primary subnet on a different DN, and reflects which ENs will fail-over

to the DN should its primary fail — this is used to reduce the potential impact of churn on

the routing table during DN failures. Additional details on primary and secondary subnets

can be found in Section 4.4.

Since ENs will migrate between DNs as a result of DN failure, it is necessary for the

ESR to have an up-to-date view of which EN is connected to which DN. Establishing such

a mapping of ENs to DNs is analogous to creating and maintaining a routing table; each EN

acts as an end host and each DN acts as a packet router. This association table is referred to

as the EN-DN Mapping Table; further, it must act as a reliable data store to ensure that the

failure of any DN or ESR does not cause an interruption in service. Given the similarity in

functionality to a routing table, the EN-DN Mapping Table could be implemented using one

of several common dynamic routing protocols, including Open Shortest Path First (OSPF)

or Routing Information Protocol (RIP). An alternative approach would be to utilize an

existing reliable shared data store, such as the Google Chubby Lock Service [4], to persist

the mapping table. The use of Chubby to store small pieces of identification information

20

(such as host name to IP mappings) has been demonstrated by Google; such a service could

feasibly store the EN-DN Mapping Table reliably as well. Both the DN and ESR read and

write to the EN-DN Mapping Table; the exact method that they use to access the table

depends upon the specific mapping table implementation; however, all implementations

will require a component running on each DN and each ESR. When choosing how to store

the EN-DN Mapping Table it is necessary to consider how both the DN and ESR will

interact with the table; using an existing routing protocol would allow existing dedicated

hardware to fulfill the ESR role; using a custom software solution like Chubby would

preclude this approach.

The DN-FD is an independently developed piece of software that runs on each DN

and monitors the state of the system to detect component failures (both hardware and

software). This piece of software is independent of the specific encapsulation system; by

separating the encapsulation system from the failure detector it is possible to build a small,

well-tested, and robust failure detector that can be utilized across different encapsulation

implementations. The design and implementation of the DN-FD can leverage much of the

research that has already been done in this field; indeed it could be feasible to allow the DN

to signal error conditions directly to the DN-FD rather than just relying on the DN-FD to

detect all possible failures. Upon detecting a failure or inferring the presence of a failure,

the DN-FD forcibly terminates the DN software and restarts it after a configurable period

of time. The amount of time that will elapse before restarting the DN will depend on the

number of previous failures, the load on the system, and other detected hardware issues.

As long as one of the secondary DNs is still working, the system will continue functioning

as before (ignoring the packet loss that will occur before the client realizes that the DN

has failed), ensuring reliability as long as one secondary DN is still available.

3.1 DN Failover

When the primary DN fails, the EN selects one of its secondary DNs to take over, and

begins sending all of its traffic to this DN. Given that the DN had already been initialized,

there is no delay in establishing a handshake with the DN, performing authentication, or

21

Figure 3.2: System Prior to (a) and Following (b) Failure of a DN

any other initial connection tasks specific to a particular encapsulation implementation.

When a secondary DN begins receiving traffic from the EN, it marks itself as the primary

for this EN, and updates the EN-DN Mapping Table to inform all other DNs and ESRs

that it is now responsible for packets destined to the specific EN. Figure 3.2 shows a simple

example of a single EN and two DNs that experience a DN failure. Here, the system is

functioning normally in Figure 3.2 (a), and once DN1 has failed Figure 3.2 (b) shows

the result of the EN failing over, with DN2 adding the EN host address into the EN-DN

Mapping Table.

At this point, all traffic from the client is properly redirected back to the EN over one

of the secondary DNs without a substantial interruption of service. While some packets

are lost, including all outstanding packets in transit to the primary DN along with any

22

packets returning to the DN from the destination server before the routing rule is applied,

this likely constitutes a small fraction of all the packets that are transmitted during the life

of a typical encapsulation session. This can be partially remedied by performing buffering

on the EN if packet loss is found to be a substantial issue; this possibility has not been

explored further here as transport-level retransmissions were considered sufficient.

Handling DN recovery has two elements; how the restarted DN handles new clients,

and how ENs that previously used the DN are migrated back. When a DN first starts,

it reads the EN-DN Mapping Table and notes any addresses from its address range that

are currently in use by other DNs. It then ensures that it does not assign any of these

addresses to newly connecting clients. When a DN handling clients that are not part of

its primary subnet notices that the DN for this subnet is alive, it informs the EN that the

primary DN is available again. The EN uses this information to establish a new session

with the DN and once it has completed the initialization routine it marks the original

DN as primary again and informs the secondary DN. The secondary DN, upon receiving

this message, removes any information it had in the EN-DN Mapping Table, allowing the

default rule to again take effect and have the client resume communication through the

primary DN. Cleaning up the mapping table is important; if default rules are not relied

upon it is possible for the table to grow in an unwieldy manner as DNs hosting secondary

subnets fail and need to be further split.

3.2 Detecting Failures

The types of failures that the DN-FD needs to be capable of handling depends on the

expected failure model of the system; the interaction between the DN-FD and the system

is shown in Figure 3.3. Here it is assumed that the failures experienced by both the

DN and the hardware that the DN is executing on are classified as fail-stop; unexpected

states cause the DN software to crash, while hardware issues cause the entire system to

go down. Should the DN-FD detect packet corruption, memory corruption, or any other

‘soft’ failures then it will kill the system, enabling a fail-stop model to be used to describe

all classes of failures that the system experiences. The DN-FD should be liberal in what it

23

Figure 3.3: DN-FD Architecture

determines to be a failure state — it is desirable to have a failure detector that is capable

of identifying every error condition even if it has a non-zero false positive detection rate.

As long as the false negative rate is zero the system will operate without issue; bringing

the false positive rate down is merely an efficiency issue. This is preferable to the system

experiencing a correctness issue by having a non-zero false negative rate.

The EN is able to detect a DN failure using one of two approaches: detecting the

DN failure itself, or having the secondary DN notify it that the primary has failed. The

former approach can signal an error relatively quickly when failures are isolated to the DN

software; the DN host returns a Port Unreachable message to the EN as soon as data is

sent. The latter approach requires additional complexity in the DN cluster, however it

results in a faster failover when the DN host fails because the EN is not stuck waiting for a

host that is no longer available to respond. A basic monitoring strategy would be for every

secondary DN to monitor all of the DNs that its connected ENs are using as the primary.

If an error occurs, all of the secondary DNs would then notify the EN of the failure. This

approach has room for optimization, both from the perspective of how the EN is notified

of a failure and the amount of processing that each DN is required to perform to ensure

24

the EN is informed of a failure quickly.

The distributed nature of the described encapsulation system adds many different

sources of failures to the system. There are three major classes of failures that can be

encountered: network failures, hardware failures, and software failures. Network failures

are considered last; first the impact that hardware and software failures have on the be-

haviour of the system is explored.

The use of commodity hardware as the underlying platform for the DNs exposes the

system to many hardware failures; cost is often the primary concern when building com-

modity systems and reliability is often sacrificed to meet this goal (error-correcting RAM

is rarely used, as one small example). Hardware failures on a given DN can be detected

by the DN-FDs running on the other DNs in the cluster; given that all the DNs are well-

connected, there is minimal overhead in having a sub-second heartbeat shared by each

DN-FD. It is difficult for ENs to rapidly detect a DN failure caused by hardware failure;

connections do not immediately time out and there is also the path latency between EN

and DN slowing things down. Having each DN monitor the status of all other DNs enables

a secondary DN to inform all of its ENs that their primary has failed and they should

initiate a failover.

The implementation complexity of typical encapsulation software virtually guarantees

that there will be failures caused by the DN software; it is the primary responsibility of the

DN-FD to catch these and terminate the DN. It is possible for the DN-FD to monitor not

just the DN software but also operating-system behaviour to detect anomalous conditions.

As mentioned earlier, these are solved by immediately killing the DN; there is little cost

in doing this because of the seamless-failover mechanism.

Rapidly detecting failure of the network is, in contrast, difficult to accomplish in a

data-efficient manner due to the difficulty in distinguishing arbitrary packet loss from a

failure case. The proposed failover architecture does not provide IP continuity in most

network-failure cases, because the DNs and ESR are located in the same logical network

location. Loss of connectivity to one DN as a result of a network failure, then, implies that

connectivity has been lost to all DNs. Handling DN failure across independent network

locations is an area of future work; it is clearly difficult to ensure IP continuity for the

25

Figure 3.4: Network Failure Scenarios

client across independent network locations. It is assumed that the DN cluster is deployed

in a hub-and-spoke fashion, with each DN, ESR and border gateway connected to the

subnet through a single L2 link. Thus, network failure either occurs by partitioning a

single DN from the network (link failure) as shown in Figure 3.4 (a), or the hub dies and

removes connectivity to all DNs, shown in Figure 3.4 (b). It is not expected that multi-

node partition scenarios will be encountered. If a link failure occurs within the DN cluster

it will be detected in the same manner as DN host failure; the DN-FD running on other

DNs will be unable to reach the DN and will mark it as dead.

26

3.3 ESR Failover

Introducing the ESR component into the architecture has the potential to add another

failure point into the system; however, the simplicity of the ESR role makes it easy to sup-

port failover using existing protocols. Fundamentally, the role of the ESR is to determine

which DN is able to reach a specific network address. It accomplishes this by participating

in a routing algorithm in which all of the DNs also participate. It advertises itself as the

next hop for all DN-assigned addresses and, as a result, it functions in a similar manner

to a peering router in a standard routing architecture.

Accomplishing the above tasks in a failover-capable manner is something that every

common enterprise router needs to accomplish; as a result, many standards have been

developed to enable this functionality. Running a pair of commodity routers, either hard-

ware or software, that share a virtual IP address using any existing protocol (HSRP [23],

VRRP [16], or Common Address Redundancy Protocol (CARP) [25]) will enable a cluster

of ESRs to provide fully transparent failover to the DNs without requiring any DN-specific

logic. In fact, existing hardware can be re-purposed to accomplish this.

3.4 Analytical Analysis of a Failover

In order to characterize the behaviour of the system during a failure a brief analysis of

the operation of the system during a failure has been performed. This analysis will help

to provide context to the results in Chapter 5 and provide a brief sanity check to ensure

that the measured results are logical. Recovering from a node failure in the system is

characterized by three key events which all impact the speed at which a failover will occur.

The system is shown in Figure 3.5, where a failure occurs at time T0. Prior to T0 the

system is behaving properly; traffic is being encapsulated at the EN and is flowing through

DN1. At T0, the DN software running on DN1 experiences a failure and is killed. This

stops all traffic flowing between the client application and the server.

At time T1, the EN detects that DN1 has failed. The exact nature by which the client

determines the existence of a failure is not relevant here, as the minimum bound can be

27

Figure 3.5: Timeline Of System States During Failover

calculated independently of failure detection mechanism. The minimum value of T1 is:

T1 >= T0 + δ +
RTT

2
(3.1)

It will take at least half of a round trip for the notification to travel from the DN to the

EN; it will also take δ time for the DN host to to detect that the DN process has died

and close the connections previously owned by this process. At time T1 the EN changes

its behaviour and begins directing all of the client-application traffic to DN2. DN2 first

determines that a failure has occurred at T2, when it receives a message from the EN.

This will occur approximately RTT
2

seconds after T1, assuming that the message is not

delayed or lost due to unfavourable network conditions. At time T2 DN2 marks itself as

28

the primary DN for the EN, and injects a route into its local routing table. This means

that at T2 the client application is able to send traffic to the server properly; unfortunately,

the server is not able to pass data to the client application, because the reverse route from

the server to client has not yet propagated to the ESR.

Once the DN daemon running on DN2 has injected the EN route update, a variable

amount of time will pass before the routing daemon, also running on DN2, will detect the

routing-table change. T3 is defined as the time when the routing daemon has detected

the addition to the routing table, at which point the routing daemon broadcasts this

information to the other DNs and the ESR in an update message. The ESR, connected on

the same subnet to both DNs, will receive this update message some time after T3. Once

the routing daemon running on the ESR has processed the packet and has injected the

route into its routing table, the system will have reached time T4. T4 is defined as the time

when the system is again functioning properly and traffic can flow bidirectionally between

the client application and the server.

One possible, but somewhat complex, optimization that can be made to reduce the

overall time to complete a failover involves DN2 detecting the failure of DN1 itself. This

would allow the time between T3 and T4 to proceed in parallel with the time between T1

and T2, reducing the failover time to the maximum of these two time intervals. Given that

the typical latency between a client and server running over the Internet is in the range

of tens or hundreds of milliseconds, having DN2 mark itself as primary before the EN has

detected the failure would result in a decrease in the failover time observed by the EN.

This optimization is safe even if DN1 has not died — traffic originating from the EN will

continue to pass through DN1, while traffic returning to the EN will pass through DN2.

This asynchronous routing situation is not ideal; however, traffic is still able to flow in

both directions because both links are available.

In addition to understanding the sources of delay, it is important to understand the

characteristics of each delay source to help improve the understanding of why certain results

are observed in the experimental results. The differences between T0 and T1 and T1 and T2

are likely to be somewhat static regardless of the test, as the RTT in a typical environment

is likely to be relatively stable. The difference between T2 and T3 is much more variable,

29

however, as the routing daemon polls the routing table on a fixed interval, yet the EN

route can be injected at any point in this interval. The scanning interval configured on our

system was 1 second, the smallest value supported by the bird routing daemon. Finally, the

time between T3 and T4 is going to depend upon the behaviour of the DN/ESR network

and the current packet loss rate, as the multicast delivery mechanism does not guarantee

that a routing update be received by all the other nodes. With a presumed low loss rate,

and a high-speed DN/ESR network, this should be quite low, on the order of single-digit

milliseconds.

30

Chapter 4

Implementation

The proposed endpoint reliability architecture has been implemented within the context

of an existing encapsulation system named Accoriem. This encapsulation system was

designed to provide mobility and aggregation services to multi-interface mobile devices

and uses a combination of a TCP-based control channel and a UDP-based data channel

that runs on each available physical interface, enabling potential bandwidth aggregation,

seamless handoffs between networks, and remote manageability of the device. This system

is believed to be a reasonable example of a real-world encapsulation system — it maintains

multiple independent connections between the client and the server and requires both

transport and application-level state to be maintained between endpoints. It was not

developed simply for this thesis — it is a system that existed prior to this thesis and has

seen real-world adoption. Implementing the encapsulation endpoint reliability architecture

within the Accoriem system allows for an EN to function seamlessly in the presence of DN

failures.

4.1 Accoriem

To provide some context to the discussion of the failover implementation, a brief description

of the standard Accoriem architecture is provided. Figure 4.1 shows the primary compo-

nents of the system involved in establishing a connection from the EN to the DN and then

31

Figure 4.1: Accoriem System Components

passing encapsulating application traffic between the endpoints. A detailed description of

the Accoriem system can be found in Practical Multi-Interface Network Access for Mobile

Devices [20]; however, it provides substantially more detail than is required here.

The EN is composed of a series of modules that are responsible for encapsulating and

decapsulating traffic and maintaining connection with the DN. As shown in Figure 4.1,

there are four core modules in the EN. The tunnel module is responsible for handling the

virtual-tunnel interface, including reading and writing IP packets entering and leaving the

system and assigning the virtual IP address to the interface. The connector module is

responsible for detecting physical-interface state changes and connecting to the DN when a

new interface is available. This module receives configuration state from the DN, including

the virtual IP address. Once the connection has been established the link is passed to

the host module. The host module is responsible for maintaining the links with the DN,

sending and receiving packets over the appropriate interface, detecting DN loss, and other

similar tasks. The client module acts as a go-between for the other modules; it does not

have a major role in the base Accoriem system.

The DN is built in a similar manner, both the tunnel and host modules are the same

as in the EN because they perform the same roles regardless of which side of the link they

32

are on. The connection handler module handles incoming connection requests from new

clients, and is responsible for getting the client into a configured state before the EN is

ready to pass traffic; once the host has been configured, the connection is passed to the

server module. The server module is responsible for maintaining the collection of host

objects; one for each connected EN. The server is more complex than the equivalent

client module, however, as packets received by the tunnel module are not all destined

for the same EN. In the EN case, all received packets are destined for the DN, so they are

all passed to the same host. The server module maintains a lookup table of host objects

indexed by their virtual IP address, allowing packets received by the tunnel to be passed

quickly to the appropriate EN. This lookup mechanism is also used to ensure that new

connections are passed from the connection handler to the correct host.

4.2 EN and DN Modifications

A high-level architecture of both the failure-tolerant EN and DN can be found in Figure

4.2; the modules with a gray background required modifications to support DN failover.

It is shown that changes were required on both the EN and DN; however, it is notable

how isolated the required changes were. The existing data path was essentially untouched,

suggesting that the addition of DN failover capabilities should not change the overhead or

delay introduced by the system during normal operation.

Changes to the EN involved two major components: the connection-initiation and

connection-management modules. The connection-initiation module required two addi-

tions: detecting the existence of the backup DNs and sending additional configuration

parameters from the EN to the backup DNs. Given that each set of connections to a DN

is independent from all other DNs, it was possible simply to introduce a collection of DNs

to connect to, and duplicate the existing connection initiator so that each one properly

connected to its respective DN. Initially choosing the primary DN is simple — the first one

to successfully connect is the primary. This not only ensures that the client is connected

as quickly as possible, it also simplifies the connection process by having a generic con-

nection approach (rather than different behaviours for the primary and secondary links).

33

Figure 4.2: Accoriem Components: Modified Modules shown in Gray

Sending additional configuration parameters just extended the existing post-connection

configuration logic to inform the backup DNs of the encapsulated IP address of the given

host.

The EN-side changes to the connection-management module primarily involved repli-

cating the existing connection management and DN control logic to support multiple DNs.

The host module was initially responsible for transferring commands between the EN and

DN, determining how to split traffic between the existing interfaces, and managing link

information (latency, packet-loss rate, etc.). Rather than complicate the existing link-

management code an additional layer of abstraction was added in the form of the client

module, which receives packets to be encapsulated from the tunnel and passes them to

the host for transmission to the DN. This was also done to avoid complicating the design

34

by introducing additional failure-tolerant code into the host module. Instead of handling

a single host, the client maintains a collection of host objects; each representing an

active DN. When the primary host informs the client it has disconnected, the client

chooses another host from its collection and begins passing all traffic over this host. The

DN failure-detection code already existed, and changes to the client were constrained to

how the client received newly created host objects from the connector and which host

would be passed traffic from the tunnel module.

The DN required changes in two modules: the initial client-connection handler and the

packet-processing module. It also required the creation of a new module to handle route

injection. The initial client-connection handler was modified to take encapsulator address

information from the client on backup DNs, a trivial extension of the existing configuration

mechanism. The creation of a module to inject routes was similarly straightforward: by

hooking into the Linux kernel netlink interface, the process of adding routes took little

additional code. The packet-processing module changes were solely to detect that a DN

has changed from backup to primary via the arrival of encapsulated packets from the client,

in order to trigger an injection of the EN IP address into the DN routing table. Clearly,

this adds a bit of additional overhead into the data path (a single additional conditional

check is executed for every packet), but it was decided this was preferable to relying on the

EN explicitly notifying the DN it has become master. A data packet almost always arrives

more quickly at the DN than a control message, making the control message redundant

data. The use of control messages was thus deemed to be the suboptimal approach.

As described above, the reliable EN implementation has additional complexity as com-

pared to the unreliable implementation, increasing the probability that the EN itself will

experience a failure due to a bug in the code. This is unavoidable given the architecture

of the EN; in order to establish a connection properly with multiple DNs and fail over be-

tween these connections, it is necessary to modify how the EN maintains this information

internally. While the EN is more complex, it is not substantially more complex (compared

to the overall complexity of the entire system). Further, the additional logic is exercised

whenever a client changes DNs, which is expected to be a relatively frequent operation.

This increases the probability of any new bugs being exposed, since the majority of the

35

changes reside in a code path that is exercised regularly.

Like the EN, the DN implementation that supports the reliable architecture is more

complex than the unmodified DN; unlike the EN, however, this complexity does not increase

the chances of a failure. This is because the system is designed to detect and handle DN

failures; if the modified DN encounters an error then either the DN will kill itself or the

DN-FD will detect the failure and kill the DN. In both cases the EN will fail over to a

secondary DN and continue passing traffic without substantial interruption.

4.3 EN-DN Mapping Table

One of the new components introduced by the reliability architecture is the EN-DN Map-

ping Table; a distributed data store that is read by the ESR and both written to and

read from by the DNs to ensure that each node in the system knows how to reach every

EN. This mapping table is structured much like a routing table, and it was decided to

take advantage of this similarity by choosing a dynamic routing protocol to implement the

EN-DN Mapping Table in Accoriem, specifically OSPF. Utilizing an existing distributed

data store reduces the chances of introducing additional software failures, since OSPF im-

plementations are relatively common and used by a large number of other systems. OSPF

was chosen over alternatives (such as RIP or IS-IS) due to its straightforward configu-

ration, well-understood behaviour, widespread deployment, and fast re-convergence time.

The OSPF protocol maintains connectivity information about every other peer in its area;

this information can be used to detect hardware failures in other DNs without requiring

additional implementation work in the DN-FD.

Once a primary DN has failed, all of the clients assigned to that DN will migrate to

other, functioning DNs, continuing operation with addresses contained within the subnet

allocated to the first DN. Upon recovering from the failure, the DN needs to ensure that

it does not assign any addresses that are already in use to new clients, otherwise they will

never receive any traffic. This is because the existing host routes will override the network

route and cause the initial client assigned this address to receive both its normal traffic and

the traffic from the newly connected host. The DN, however, is able to determine which

36

addresses from its subnet are in use by other clients via its copy of the routing table. The

routing table on each DN should be synchronized, within the routing propagation time,

simplifying this process and making it DN-agnostic.

4.4 Routing-Table Growth

One concern that arose during implementation involved the size of the routing table that

would eventually result if many DNs ended up failing and if ENs were not migrated

promptly back to their primary DN upon its return to service. There are several dif-

ferent ways to solve this problem — the cleanest but most complex involves re-addressing

ENs that have failed over to a secondary DN if it is detected that no connections are

currently in use. By readdressing the EN to an address from the secondary DN pool it is

possible to remove the lingering route, ensuring that the routing table remains as small as

possible. There are two significant issues with this solution — first, detecting that an EN

has no running connections; second, there is no guarantee that an EN will ever become

ready to be readdressed (that is, an EN may continually send traffic).

An alternative approach that is both simpler and easier to manage is to inject subnet

routes instead of host routes by intelligently assigning addresses to clients. Essentially,

on startup each DN performs subnetting on the address range it is assigned, based upon

the number of other DNs that are available for an EN to fail over to. Then, as clients

connect, they are assigned an address from the range that matches with the secondary

DN to which they are connected. Thus, when the primary DN fails, each secondary DN

only has to specify that all clients in the subnetted address range are reachable though it,

instead of each host individually. One benefit that this scheme provides is that as soon

as one client detects a failure, the DN can inject the subnet route and ensure that traffic

for all ENs that were previously attached to the failed DN begin receiving the traffic they

expect (potentially before an EN even notices that the DN has failed). This reduces the

visibility of a failure even more than the base system allows for. Secondary DNs can either

be configured with the size of the subnet to assign or dynamically calculate the subnet size

based upon the number of DNs in the cluster and the addresses that the connected ENs

37

have been assigned.

4.5 Routing in the DN Cluster

If the ESR is a logically separate device from the default gateway on the DN network, then

by default all decapsulated traffic from the clients will be sent to the wrong device (the

default gateway instead of the ESR). Preventing this from occurring requires the use of

source-based routing rules applied to each DN. The source-based routing rule directs all

traffic from the client subnets to the ESR instead of the default gateway, allowing the ESR

to process the decapsulated traffic as required. This source-based rule can be statically

applied at startup and does not need to change as a result of client failovers (as long as

the specified client subnet is large enough to encompass all possible client addresses). This

simplifies deployment by allowing the existing default gateway to be utilized. This will not

be necessary in situations where different network-layer protocols are used. For example,

if the EN connects to the DN over IPv4 but passes IPv6 traffic, then it is only necessary to

configure each DN to utilize the ESR as the default gateway for all IPv6 traffic (bypassing

source-based routing entirely).

38

Chapter 5

Experimental Validation

Using the solution implemented above, several micro-benchmarks have been run to validate

the proposal in the context of an actual implementation. The micro-benchmarks were run

in a setup consisting of five machines as illustrated in Figure 5.1: an EN running the client

software, two DNs running the server software, an ESR running standard routing software,

and a standard router acting as the Internet. The EN has two interfaces configured on

different subnets, the DNs and ESR are all located on a third subnet. All traffic uses IPv4;

the ESR performs NAT before forwarding traffic onto the Internet. The EN and DNs

are separated by a sub-millisecond-latency link with an available bandwidth of 1 Gbps

dedicated to the EN.

The performance of the system was evaluated in three different environments: one built

entirely using virtual machines, one built entirely using low-powered commodity boxes,

and one with a low-powered commodity client and a server cluster built from virtual

machines. The first environment was designed to reflect the possible ‘best case’ deployment

scenario — powerful machines all interconnected using a high-speed backbone. The second

environment was designed to show the behaviour on hardware that is truly commodity —

this hardware is obtainable by any individual for a lower cost than a typical desktop.

The final scenario was designed to represent a reasonably realistic deployment scenario —

low-powered clients such as mobile smartphones connected to a typical virtualized data

centre.

39

Figure 5.1: Experimental Testbed Setup

It is important to observe that the characteristics of the test network are somewhat

different from what would be experienced on the Internet, both in terms of the latency

and bandwidth available between the EN and DN. The latency between the EN and

DN is sub-millisecond for all three testbeds, yet the latency separating the EN and the

DN on the Internet is likely to have be much higher. Conversely, while the bandwidth

of the link separating the EN and DN is one Gigabit per second, it is much more likely

to be on the order of several Megabits per second on the Internet. The exact latency

and bandwidth that exists between the EN and DN is going to depend heavily on the

specific deployment scenario; rather than attempt to characterize the performance of the

solution for all potential network configurations this thesis presents results from the best

case scenario and provides a framework to determine the impact that varying the latency

will have on the solution. The major factor that will impact this solution on the Internet is

the latency separating the EN and the DN; the minimal amount of additional information

transmitted during a failover prevents bandwidth from impacting the speed of a failover.

The OSPF routing protocol is used to synchronize the address state between the DNs

and the ESR; on the DN the chosen OSPF implementation was bird [9], an open-source

routing daemon maintained by CZ.NIC. The choice of bird over the better-known quagga

[27] was made for two reasons: quagga has some known stability issues and bird is simpler

to configure. On the ESR, the OSPF implementation selected was OpenOSPFd [26], an

40

open-source implementation of OSPF developed by the OpenBSD team (and included in

the base operating system). All devices were configured as members of the OSPF backbone

area, with each daemon set to check the routing table once a second (the lowest configurable

interval) for route updates.

All of the ENs and DNs ran Ubuntu 10.04.1 with the 2.6.32-26 kernel. Each system was

configured to have TCP metric-saving disabled, to ensure that TCP behaved in the same

manner over multiple test runs. The ESR ran OpenBSD 4.7, a commonly used software

routing platform, due to its strong support for IP and firewall failover between hosts. The

virtual machines were all hosted on a VMware ESXi host consisting of an Intel Xeon E5420

processor with 12 GB of ECC RAM. All virtual machines were configured with the same

scheduling priority and each VM was assigned a single virtual processor and 256 MB of

RAM. The virtual machine host was not dedicated to the test; other machines were also

running, simulating the typical environment in which a virtual cluster would be deployed.

The virtual NICs used the standard E1000 driver. The commodity machines all had a 1.2

GHz VIA processor and 1 GB of RAM, and utilized the onboard VIA NIC.

In each failover case it is assumed that a failure had been detected and the DN-FD

process forcibly terminated the DN. This is simulated by sending a SIGKILL to the DN

process, ensuring any packets in transit were not processed and that the connections were

not properly closed. The encapsulation system has been configured to use a UDP data

channel; that is, there is no assumption that an encapsulated packet will properly arrive

at the DN. The raw test data is available online [19].

5.1 Packet Loss During Failover

For the system to be considered reliable, it is necessary not only to prevent the client

from losing connectivity, it is also necessary to ensure that any interruptions in service are

minimal, ideally small enough to be indistinguishable from normal network anomalies. To

determine the interruption of service experienced during a failover by Accoriem, a constant

stream of Internet Control Message Protocol (ICMP) packets were sent from the client to

a remote server, and the number of packets that were lost when the primary DN failed

41

was measured. The rate at which the ICMP packets were sent depended on the test; the

experiment was run with two rates, one of 10 packets per second (pps) and the other of 100

pps. Each of the packet rates was tested 45 times in each of the three test environments,

yielding a total of 270 data points to characterize the behaviour of the system. In every

case packets were lost consecutively — once the EN started receiving packets again, all

subsequent packets were received.

Data on the loss rate experienced by clients sending at rates higher than 100 pps

was not used because the different test environments had very different maximum packet

transmission rates — when the server cluster was hosted on virtual machines it was possible

to send packets at a rate of close to 1000 pps, yet when the server cluster was hosted on

physical machines a rate of only ∼215 pps was achieved. This difference was observed to be

the result of the relatively high CPU requirements of the encapsulation system; the physical

machine CPUs were hitting 100% utilization around 215 pps while the virtual machines did

not reach 100% CPU until around 1000 pps. The tests were conducted using the ICMP

protocol instead of TCP to avoid introducing retransmissions into the measurement —

sending both retransmitted packets in addition to new packets could introduce additional

packet delays and potentially reordering — the impact that failure has on TCP streams is

examined in Section 5.2.

The first experiment, sending packets at a rate of 100 packets per second, has results

that contain several key observations about the operation of the system. First, the be-

haviour of the system is quite similar regardless of the test environment, second, there

exists a component in the system that causes a variable but bounded number of packets

to be dropped, third, the majority of test runs on all platforms experienced approximately

1 second or less of loss. These results are summarized in Figure 5.2. For clarity, three

outlying values were omitted from the figure; the Virtual/Virtual (V/V) environment lost

approximately 250 packets twice, and the Physical/Virtual (P/V) environment lost ap-

proximately 430 packets once.

The results show that the three environments had very similar behaviour, with the

majority of measurements showing between 20 and 110 packets lost. This corresponds

to a loss of packets lasting between 1
5

th
of a second and 1 second. As was discussed in

42

Figure 5.2: Packet Loss Count During A Failover (Rate of 100 Packets Per Second)

Section 3.4 there are three sources of potential delay in the failover process, and given that

several experiments showed no packet loss it is possible to have all three of these sources

of delay equal zero, resulting in a seamless failover. This occurs when the round trip time

between the EN and DN is quite small, and the time between the injection of the route

in the DN software occurs immediately before the routing daemon running on the DN

polls the system routing table for updates. One or more of these sources of delay are not

always zero, as the majority of tests experienced some packet loss. This is quite likely the

result of the time it takes the routing daemon to scan the table to detect the EN route, as

the number of packets lost is on the same order of magnitude as the scanning time. The

impact of RTT on the results is evident in the differences between the V/V environment

and the P/V and Physical/Physical (P/P) environments — when using virtualization the

43

cross-node latency is effectively 0 as the network link is essentially just a shared section

of memory on the virtual machine host. In both environments that had physical latency

to contend with the packet loss times were slightly longer, shifting all the results up by a

constant factor (the RTT).

Considering other sources of delay in the system also suggests that the OSPF routing

daemon behaviour is not the only component contributing to the observed packet loss

behaviour. It is unlikely that either the EN and DN themselves are contributing to this

behaviour — neither component contains a non-uniform logic path. The DN code is always

the same regardless of a failure (the DN datapath was not modified to support failover),

and the EN codepath simply detects a failure and starts writing to the same datapath

contained in a different logical object. There is no reason that any of these elements would

have a consistently non-uniform runtime. It is expected that both the operating system

scheduler and virtual machine scheduler will schedule the DN process differently on each

test run, however the similarity of the results across testbeds running on vastly different

hardware suggests these scheduling differences do not have a significant impact on the

system performance. While the OSPF daemon was configured to scan the routing table

once every second, it is quite likely that this polling did not happen in an exactly uniform

manner — network software often adds random delays in between periodic events like

scanning to avoid potential conflicts with other nodes. One additional factor that likely

introduced some variability into the results is the amount of time it took the operating

system to detect that the DN process had been killed and subsequently close the TCP

connection. This would impact the time between T1 and T2 independent of the RTT,

however it was difficult to precisely measure the impact this factor had.

It is not quite as easy as just attributing the different packet loss rates to the routing

daemon, however, as the results in Figure 5.2 shows that each test environment has results

which tend to cluster along one of two values. For example, the V/V test environment

has results which are clustered around 200 ms and 600 ms, while the P/V environment

has results clustered near 250 ms and 1 s. This suggests that some factor like the speed

of detecting DN termination and the operating system closing all the open connections on

this DN could be responsible for the observed clustering results. There are also several

44

outliers, including several measurements showing more than 250 packets lost, that could

have resulted from the DN operating system occasionally taking a long time to close the

open DN sockets.

There is really only one factor that is determined by the EN that is likely to differ in

the different test environments: the speed at which the link is determined to have died.

In the tested implementation, the link is detected as dead when the DN operating system

sends a TCP Close message to the client upon detecting that the DN daemon has died.

The OSPF polling time is DN-side, the EN does not perform packet buffering, and those

are really the only other major components that are involved during a failure event. The

processing speed of the EN is relevant only with respect to how long it takes the client to

detect link failure; it would not affect the number of packets processed because a failure

does not introduce additional logic into the data path. Consequently, it appears that the

more powerful client simply takes a shorter amount of time to detect that the link has

died.

The experiment was also performed with a transmission rate of 10 pps, the results of

these tests are shown in Figure 5.3. These results were obtained to provide a sanity check

against the 100 pps results; it is expected that the drop counts in the 10 pps tests will be

approximately 1
10

th
of the results shown in Figure 5.2. This graph also omits two outliers

for clarity; the V/V environment dropped approximately 50 packets once, and the P/V

environment dropped approximately 45 packets once.

On first inspection the results in Figure 5.3 validates the results obtained in Figure

5.2 — a sending rate of 10 pps shows packet drop rates between 2 and 10 packets, which

also corresponds to an approximate loss of one second of connectivity. Clearly, the results

obtained by sending at a rate of 10 pps are likely to be a coarser representation of the

packet drop rate, this is to be expected given that there are fewer data points available

in each run to measure the performance of the system. One interesting observation which

can be made about the 10 pps experimental results is that the V/V test environment does

not show the same performance as it does in the 100 pps case — the results are clustered

around 200 ms and 1.2 s as compared to 200 ms and 600 ms. Indeed, in the 10 pps case

the P/P testbed the results show clusters around 200 ms and 1 s, showing perhaps slightly

45

Figure 5.3: Packet Drop Count During A Failover (Rate of 10 Packets Per Second)

faster performance on the slowest testbed. The distribution of the clusters is also not the

same between the two test setups — the 10 pps case had results that cluster around the

smaller of the two values at approximately twice the rate experienced in the 100 pps case.

The difference between the results obtained for the different packet sending rates is

likely the result of when the packets were sent and how the system detected a failure.

In the implemented system, the backup DN asserts itself as the new primary after two

events have occurred: the EN detects that the primary DN has failed, and the backup DN

successfully receives the next packet sent by the EN. There is no out-of-band signaling

involved — the backup DN only knows of the failure after the EN has sent its next data

packet to the DN. As a result, a slower sending rate is going to mean that the ESR will, on

average, receive the updated EN host route at a later point in time. This helps to explain

46

why the V/V test environment has longer failovers in the 10 pps setup, and why all three

environments show similar failover rates when the packet transmission rate is lower.

The difference in clustering ratios between the 10 pps and 100 pps case does not have

as clear an explanation; decreasing the rate of packet arrival at the backup DN would not

logically increase the likelihood that fewer packets will be dropped by the system. One

possible factor is that the lower packet rate reduces the processing overhead each system is

handling, allowing the EN to detect the failure of the primary DN more quickly, reducing

the number of packets lost. Another possible factor is that a lower packet rate enables

the operating system to more quickly detect the termination of the DN software and more

quickly close the sockets that were associated with the now-dead DN process. This would

allow the EN to be notified more quickly, reducing the number of packets lost.

From a higher-level perspective, all of the environments experienced a very small period

over which packets are lost, and the number of packets lost in all cases is also quite low. The

visibility of this packet loss will depend upon the characteristics of the application running

during a failure; web browsers will likely not experience a visible impact, streaming media

with buffering will also likely not be disrupted, while a voice call could have a noticeable

but limited interruption of service (a sub-second hiccup) with the observed packet-loss

behaviour.

5.2 Impact on Long-Lived TCP Flows

In order to measure the effect of a failure in the middle of a TCP session, a HyperText

Transfer Protocol (HTTP) file download was initiated by the EN to an Apache web server

one network hop past the ESR. Once the EN received approximately 40% of the file, the

primary DN experienced a forced failure, causing the EN to switch to the secondary DN.

The failure was triggered at the 40% mark to provide the application TCP flow sufficient

time to fully maximize its congestion window, while still allowing time for the stream to

ramp up the congestion window again after the failure. The failure results are compared

against an identical download that was conducted without the primary DN experiencing a

failure. The test is repeated 30 times each for two different sizes of files, one that is 63 MB

47

and one that is 625 MB. The 625 MB file size was chosen to represent a typical video file,

while the 63 MB file size was chosen to represent a reasonably small file yet still take long

enough to download so that a failure could be introduced and measured (smaller files would

download completely before a failure could be introduced). The amount of time the file

takes to download is being used to measure the impact of a failure — if a failure increases

the download time it is considered to have had a negative impact on the behaviour of the

system.

While running the experiments on the completely physical testbed both the EN and

DN were found to be CPU-capped; it was not possible to achieve rates higher than 4.7

MB/s because neither end could process packets faster than that. The testbed consisting

of a physical client and a virtual server cluster resulted in only the EN being CPU-capped,

limiting the file download rate to around 5.3 MB/s. The completely virtual testbed was

able to obtain download rates of nearly 16 MB/s. The VMs were not able to saturate the

Gigabit link due to packet and processing overheads. However, the relative speeds of these

environments are not the focus of this set of experiments — TCP segment loss and total

download times are.

It is hypothesized that a DN failure will not cause a noticeable delay in the download of

a file, based upon the packet loss numbers observed in Section 5.1. In the following analysis,

the null hypothesis is that a failure will not cause a noticeable increase in file download

times; the alternative hypothesis is that a failure does cause a noticeable increase in file

download times.

Table 5.1 shows the average download times (in seconds), the standard deviations of the

download times (in seconds), and the 95% confidence ranges (in seconds) for the results of

both file sizes in all of the test environments. Due to the physical client being CPU-bound

it can be observed that the P/V and P/P tests had longer average download times. It

is also observed that in all cases the average download time increased when a failure was

simulated, and in almost all cases the standard deviation was higher for the failure case —

this is expected based upon the packet loss rates discussed in Section 5.1.

To determine whether the increases in average download times and standard deviation

under the failure cases are statistically significant, the following approach is used. First,

48

Table 5.1: Impact of Failure on HTTP File Download Times (UDP channel)

63 MB File 625 MB File

Mean Std Dev 95% Conf Int Mean Std Dev 95% Conf Int

Typical (V/V) 4.326 0.571 0.204 40.284 3.406 1.219

Failure (V/V) 5.784 1.471 0.526 42.993 2.892 1.035

Typical (P/V) 11.823 0.149 0.053 123.296 2.119 0.758

Failure (P/V) 14.060 2.204 0.886 123.605 2.421 0.866

Typical (P/P) 13.656 0.094 0.033 141.180 2.473 0.885

Failure (P/P) 15.342 1.703 0.609 142.603 2.723 0.974

to determine the type of test statistic to use, it is necessary to determine whether the raw

test data follows a normal distribution. The one-sample Kolmogorov-Smirnov test was run

on each of the 12 data sets of 30 runs each assuming a normal distribution. The results

are in Table 5.2, which shows both the Kolmogorov-Smirnov Z-statistic and the 2-tailed

asymptotic significance of each case.

In none of the three typical small file size cases it is possible to reject the null hypothesis

of normality as the asymptotic significance exceeds 10%. In all cases where a failure was

forced with the 63 MB file the normality of the test data is rejected at a 1% significance

level. Nonetheless, since there is a sample size of 30 runs for both typical and failure cases

it is possible to rely upon the Central Limit Theorem and conduct a standard difference-

of-means test. For robustness, however, it is possible to augment the difference-of-means

test with a difference-of-medians test for the 63 MB file size simulations. For the 625 MB

file size simulations it is not possible to reject the null hypothesis that the test data follows

a normal distribution at a 5% significance level in all cases, and at the 10% level in all but

the typical virtual/virtual case. Thus, it is possible to rely upon the standard z-test for

the difference of means.

Given that the null hypothesis is structured in an equals/not-equals fashion, the two-

49

Table 5.2: Kolmogorov-Smirnov Test for Normality on the HTTP File Download Times

(UDP channel)

63 MB File 625 MB File

K-S Z-Stat Asympt Sig (2-tail) K-S Z-Stat Asympt Sig (2-tail)

Typical (V/V) 1.191 0.117 1.236 0.094

Failure (V/V) 1.746 0.005 1.089 0.187

Typical (P/V) 0.932 0.350 0.910 0.379

Failure (P/V) 1.760 0.004 0.852 0.462

Typical (P/P) 0.965 0.310 0.814 0.522

Failure (P/P) 2.130 0.000 0.562 0.910

tailed test for significance will be used. The test statistic under consideration is the t-

statistic:

t =
(x̄1 − x̄2) − (µ1 − µ2)

(
s21
n1

+
s22
n2

)
1
2

(5.1)

where x̄ is the sample mean, µ is the hypothesized value of the sample mean, and s is the

standard deviation. Given that the majority of the measurements have been determined to

fit a normal distribution using the Kolmogorov-Smirnov test, the difference-of-means z-test

was chosen to test the null hypothesis that the average download time for the failure case

equals that of the typical case in order to demonstrate that a failure does not noticeably

increase the download time of the file. The variances of the typical and failure cases in

each environment have been measured as being different, so each sample variance is used

to estimate the variability of the population. The results of the difference-of-means tests

for each test situation can be found in Table 5.3.

To verify the above difference-of-means test, a Wilcoxon two-sample test is used to

determine whether the typical and failure cases have the same median value. The median

50

Table 5.3: Difference-of-Mean HTTP File Download Times (UDP channel)

63 MB File 625 MB File

V/V 1.458 s * 2.710 s *

P/V 2.238 s * 0.309 s

P/P 1.686 s * 1.423 s **

* Reject, 1% Significance

** Reject, 5% Significance

download times, and the differences, are shown in Table 5.4. In all cases except the 625 MB

file being download by a physical EN through a virtual DN, both the difference-of-means

test and the difference-of-medians test shows that the typical and failure download times

differ by a statistically significant amount.

One final test is to see if introducing a failure changes the uncertainty about the down-

load time. In this case, the uncertainty is measured using the standard deviation of the

download time across the 30 test runs. It is possible to use the F-distribution to test the

null hypothesis that the typical and failure test runs have the same variance. In this case

the test statistic is defined as:

F =
S2
1

S2
2

(5.2)

where S1 is the standard deviation of Sample 1 and S2 is the standard deviation of Sample

2. This test statistic needs to exceed 1 so Sample 1 is chosen to be the one with the larger

value. This test statistic is distributed with (29,29) degrees of freedom. The null hypothesis

of equal variance is rejected for all small file cases, but it is not possible to reject the null

for the large file cases. Based upon these results, the null hypothesis has been dis-proven

and a failure does cause a statistically significant increase in the download time of the file.

Given that there is a statistically significant difference in file download times, the ques-

tion becomes whether this increase is significant to users of the system. Table 5.3 shows

51

Table 5.4: Difference-of-Median HTTP File Download Times (UDP channel)

63 MB File 625 MB File

Median D/L Time Median D/L Time

Typical Failure Delta Typical Failure Delta

V/V 4.195 s 5.426 s 1.234 s * 40.025 s 21.723 s 1.698 s *

P/V 11.782 s 13.144 s 1.362 s * 122.556 s 123.21 s 0.661 s

P/P 13.620 s 14.877 s 1.258 s * 141.073 s 142.229 s 1.156 s **

* Reject, 1% Significance

** Reject, 5% Significance

that at most 2.7 seconds was added to the download time; with more than half of the

experiments adding under 2 seconds to the download time. It is important to observe that

the amount of the delay did not depend on the size of the file; the system introduces a

reasonably fixed amount of time to each file download. This is entirely expected — the

system downloads part of the file normally, experiences a brief period where the download

slows down as it recovers from the failure, and then resumes downloading the file normally.

In the 63 MB file download on the V/V testbed the slowdown period constituted a signifi-

cant portion of the total download time because both of the normal periods elapsed quite

quickly, however in the 625 MB file download the P/P testbed the slowdown period was

a minor component of the total download time because both normal periods lasted much

longer.

The size of the file being downloaded and the available bandwidth of the link then

determines whether the slowdown caused by the failure is significant to the user. The

testbeds used to perform these experiments are a somewhat unrealistic simulation of In-

ternet behaviour as links rarely have an available rate of 1 Gbps. A smaller link rate will

increase the amount of time it takes to download a file of equal size, and given that a failure

has been shown to introduce a fixed amount of time to a download the relative impact of

52

a failure will decrease as the link rate decreases. Given that each application has different

requirements it is not realistic to state that this solution is going to provide a suitable

failover speed for all environments, but it is possible to say that a failure introduces a

fixed, several second delay to an HTTP download.

5.3 Impact of TCP Retransmissions

The increase in download times was initially believed to be the result of packets lost in

the failover process; measuring the TCP retransmission statistics on the web server showed

that a variable number of segments were retransmitted during each run. The exact number

of retransmissions were plotted against the total download time in Figure 5.4 and in Figure

5.5 for the P/P testbed. The scatter plots of retransmissions versus download times shows

that there is no obvious correlation between the number of retransmitted packets and the

amount of time the file took to download. Also, the retransmission behaviour of the system

varied depending on the size of the file. In the 63 MB file case, there appears to be a few

very distinct download times (15 seconds, 16 seconds, 20 seconds) that are measured with

a wide range in the number of retransmitted packets — the system was able to download

the file in 15 seconds while retransmitting between 3 and 73 segments. In the 625 MB file

case, the amount of time the file took to download was not quite as strictly aligned, but it

still exhibited a single download time (around 141 seconds) while retransmitting between

3 and 100 segments.

It is expected that the exact number of packets that need to be retransmitted will vary

based upon a number of factors, particularly where the TCP stream was with respect to

the outstanding acknowledgments when the failure occurred as well as a variety of other

tuning parameters that are dependent on the current state of the TCP stream. However,

it was initially expected that this would correspond to the amount of time the file ended

up taking to download — because retransmissions slow down the TCP stream and increase

download times in standard packet-loss scenarios. The measured results suggest that the

increase in download times is not only being caused by TCP retransmissions; there is

another aspect of the system that is influencing the behaviour of the TCP stream during

53

Figure 5.4: Impact of Retransmissions on Download Time (63 MB File, P/P)

the failover. If TCP retransmissions were solely responsible for the slowdown then Figure

5.4 and Figure 5.5 would show that test runs with more retransmissions would take longer;

however, the results do not show this. Two other factors that contribute to the increase

in download time have been previously discussed — the variable amount of time taken by

the OSPF routing daemon to update the routing tables in the cluster, and the variable

amount of time it takes the EN to detect that the primary DN has failed.

It is likely that the TCP retransmissions do have some impact on the performance of

the system; as discussed in Section 5.1 the system experience between 200 ms and one

second worth of packet loss when only ICMP packets were sent, yet Table 5.3 shows that

a HTTP session experiences up to 2.7 seconds worth of delay during a failure. There are

clearly some differences in the two scenarios — a significant difference is that the ICMP

scenario did not send packets at the maximum rate supported by the link. As was observed

in Section 5.1 the system had a higher probability of taking one second to recover from

a failure when packets were sent at 100 pps as compared to 10 pps; this suggests that

higher packet rates negatively impact the speed of recovery from a failure. This likely

54

Figure 5.5: Impact of Retransmissions on Download Time (625 MB File, P/P)

contributes to TCP sessions experiencing a longer interruption than a stream of ICMP

packets; it is also likely that TCP retransmissions contribute to TCP sessions exhibiting a

slower recovery from DN failure than an ICMP stream.

The retransmission behaviour of TCP in the physical/virtual environment is similar to

both the purely virtual and the purely physical environment as shown by Figure 5.6 and

Figure 5.7.

As the scatter plot of segment retransmission count to download time shows in both Fig-

ure 5.8 and Figure 5.9, the fully virtual environment experiences the same results whereby

the number of retransmitted segments does not correlate to the download time of the file.

55

Figure 5.6: Impact of Retransmissions on Download Time (63 MB File, P/V)

Figure 5.7: Impact of Retransmissions on Download Time (625 MB File, P/V)

56

Figure 5.8: Impact of Retransmissions on Download Time (63 MB File, V/V)

Figure 5.9: Impact of Retransmissions on Download Time (625 MB File, V/V)

57

5.4 Impact of Reliable Encapsulated Packet Delivery

The results shown in Table 5.1 show the behaviour of the system during a failover from a

UDP data channel to another UDP data channel. While a UDP data channel is preferable

over a TCP data channel for a number of previously elaborated reasons, it is sometimes

necessary to utilize TCP for the data channel. The behaviour of a TCP channel is suffi-

ciently different than that of a UDP channel to believe that the previously obtained results

are not an accurate reflection of the failover times that a system with a TCP data chan-

nel would experience. This comes from the well-understood impact of running TCP over

TCP [28] — namely that in the case of packet loss the back-off algorithm implemented

by TCP causes the connection to degrade quickly. To determine the impact that using

a reliable data channel has on failover times, the experiments run in Section 5.2 were re-

peated with Accoriem configured to utilize a TCP data channel. Instead of having 30

experimental runs for each case, only 15 were performed for each case.

The results of running the HTTP file download test on the P/P and V/V testbeds

are shown in Table 5.5, which contains both the mean download times and the standard

deviation of each set of download times. The run times without failure are similar to those

found previously in Table 5.1. The use of a TCP tunnel introduces additional overhead into

the system, however. The congestion-control algorithm limits the number of outstanding

packets based upon the current packet-loss state; since UDP does not implement this there

is a period of time as the TCP tunnel is ramping up that it transmits slower than UDP.

This increases the time it takes to download an equivalently sized file. Also, the extra

12 bytes of header in every TCP packet increases the required number of bytes that are

transmitted to completely download a file, also increasing the time a file download will

take. This is demonstrated in Table 5.5, where the 63 MB file took an additional 0.2

seconds to download, and the 625 MB file took an additional 3.5 seconds to download.

The header overhead negatively impacts larger files more than smaller files because per-

packet overhead is cumulative, while the additional congestion-control overhead is the same

regardless of file size because congestion-control overhead is determined by packet loss, not

file size.

During a failure the impact of using a TCP tunnel is more visible; the 63 MB file takes

58

Table 5.5: Impact of Failure on HTTP File Download Times (TCP channel)

63 MB File 625 MB File

Mean Std Dev Mean Std Dev

Typical (V/V) 4.150 s 0.285 s 39.777 s 2.522 s

Failure (V/V) 8.382 s 1.990 s 48.519 s 2.702 s

Typical (P/P) 13.898 s 0.183 s 145.534 s 2.621 s

Failure (P/P) 16.924 s 0.937 s 150.279 s 6.949 s

approximately 4 seconds to recover from a failure, while the 625 MB file takes nearly 10

seconds to recover. This is a drastic change from the UDP tunnel results, where both

the 63 MB file and the 625 MB file managed to recover in less than 3 seconds. The

impact of packet loss rates with a UDP tunnel were explored in Section 5.2, and it was

determined that the three main causes of delay in failure recovery were the OSPF daemon

routing-table scan time, the amount of time it took the EN to detect a failure, and the

HTTP TCP session retransmitting the lost packets. The results in Table 5.5 show that

running a TCP-based HTTP download over a TCP-based data channel results in even

worse performance than using a UDP tunnel — the question is why. The OSPF daemon

routing-table scan time did not change, and the EN should be able to detect a failure just

as quickly because the failure detection mechanism is independent of the tunnel transport

protocol. Therefore, the increase in recovery time is likely due to the interaction of packet

retransmission between the HTTP TCP session and the Accoriem TCP session. The HTTP

download is forced to wait for more packets as Accoriem retransmits the packets that were

lost in its TCP session. The loss of packets causes Accoriem to back off, which delays the

acknowledgments to the HTTP session which forces it to back off. This effect causes the

HTTP download to slow down much more than if it was handling packet loss recovery (as

it does when using a UDP tunnel. This is, fundamentally, why TCP-in-TCP is considered

to be such a bad idea — small slowdowns at one point in the link have a cascading effect

on all of the internal traffic.

59

5.5 Experimental Observations

While evaluating the implementation it was noticed that, immediately following a failover,

the IP time-to-live (TTL) values on packets being sent to the client through the encapsula-

tion system were one hop smaller than expected for a short (∼50 ms) period of time, before

returning to the expected value. It was discovered that this was caused by the particular

OSPF implementations used (bird on the DNs and OpenOSPFd on the ESR). While the

OSPF update is received at both the primary DN and the ESR immediately following a

failover (verified using packet traces), it appears that bird applies these updates immedi-

ately while OpenOSPFd applies these updates approximately 50 ms later. Consequently,

packets being sent from the ESR were routed to the primary DN, which then routed them

to the secondary DN, which then sent them to the client properly. While this does not

impact our experimental results (because the primary DN was still accessible), this would

clearly introduce another delay (of around 50 ms) into the system should the primary DN

be unable to route packets (either due to a hardware failure or a routing table error).

While experimenting in the virtual environment, it was observed that the choice of

virtual network driver impacts the speed of failover; the system experienced slightly slower

failover when using the VMXNET3 driver as compared to the E1000 driver. The resulting

performance difference could be a result of how the VMXNET3 driver handles the initial-

connection process or it could be due to the VMXNET3 driver being manually compiled

on the virtual machines (E1000 support is built into the Linux kernel, VMXNET3 is not).

Either way, the E100 driver was selected for all of the experiments.

60

Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis has presented a new architecture for developing fault-tolerant encapsulation

systems that support IP continuity without requiring complex server-side state synchro-

nization. Not only does this solution provide transparent failover between DNs, it does so

in a manner that is relatively straightforward to configure and expand as additional DNs

are required. The proposal was validated via an implementation that is integrated into

an existing encapsulation solution, and it was demonstrated that the costs of adopting

this approach are minimal. Experimentally, it was shown that this solution functions for

both unreliable and reliable protocols (ICMP and HTTP, respectively), introducing only

minor packet loss during a failure event while providing IP continuity across endpoints.

This encapsulation reliability architecture has been adopted by a commercial encapsulation

solution (Pravala’s Accoriem) to allow for transparent failure of decapsulators.

6.2 Future Work

The solution previously presented has focused entirely on handling DN failures in a cluster

that is co-located — the DNs and ESR are all located on the same subnet. This is required

61

to ensure that the encapsulated IP address exposed by each client is routed properly, with

all traffic going through the ESR and the proper DN. While adding a high level of reliability

to a cluster located in a single datacentre, it does nothing to allow the client to seamlessly

fail over in the case of a datacentre failure. Dealing with datacentre failover is a much more

complex problem because it becomes necessary to redirect traffic destined to a specific IP

prefix to a new datacentre. The process of designing and developing the solution in this

thesis included some work in solving this problem, but there are a number of issues that

need to be handled before any solution is ready for deployment. This includes determining

an efficient way to allow the same IP address subnet to be announced to the Internet

from multiple, distinct physical locations, and quickly updating distributed routing tables

in a manner to ensure that complete loss of any one location does not prevent the other

locations from being able to quickly take over responsibility for the shared address space.

The encapsulation endpoint reliability architecture presented to this point has been

entirely focused on providing IP continuity in the event of a DN failure; however there are

many additional situations in which the ability to transparently migrate a client from one

DN to another would prove to be useful. Another situation in which the above architecture

can be utilized is DN load balancing, where clients from overloaded DNs can be migrated

to less heavily loaded DNs without interrupting client traffic. Integrating dynamic load

balancing into the design is conceptually a relatively straightforward process — when it

is determined that a server has become too heavily loaded, it can simply close a set (all

hosts in a subnet) of client connections and trust that they will fail over to their backup

DN. Determining which set of hosts to kill is likely to be one of the most difficult parts of

integrating this functionality into the system.

While implementing the architecture it became apparent that it may be possible to

implement a similar solution without any changes on the DN; depending on the design of

the DN a separate module running on the same machine could enable similar functionality.

Such a module would enable existing encapsulation systems to support transparent failover

with only client-side changes, simplifying deployment and speeding adoption. This module

would work by sniffing incoming traffic on the DN client-connected interfaces and recording

which IP address is assigned to which connection. The module would then sniff every packet

62

prior to its reception by the DN, look for any addresses not included in the DNs address

pool, and perform IP replacement on the encapsulated IP header prior to its processing

by the DN. This will enable the host to continue using its old IP address, while the DN

receives the packet as if it came from a new one (a crude form of NAT, in effect). This

approach requires application-level intelligence though, making it difficult to develop a

generic module for all encapsulation systems. As well, this approach requires that the

payload of the packets be unencrypted (though encryption could be handled by extending

this approach into a full-blown proxy running in tandem with the DN). This solution is

not investigated further here because the authors had full control over the implementation

of both the EN and the DN; however, it could be worth investigating further if others

encounter environments where the DN cannot be modified.

63

APPENDICES

64

Appendix A

List of Acronyms

CARP Common Address Redundancy Protocol

CPU Central Processing Unit

DFZ Default Free Zone

DN Decapsulation Node

DN-FD Decapsulation Node-Failure Detector

EN Encapsulation Node

ESP Encapsulating Security Protocol

ESR Edge Service Router

FT-TCP Fault-Tolerant Transmission Control Protocol

GRE Generic Routing Encapsulation

HSRP Hot Standby Router Protocol

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

65

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service Provider

L2 Layer 2

L3 Layer 3

MAC Media Access Control

NAT Network Address Translation

OSPF Open Shortest Path First

P/P Physical/Physical

P/V Physical/Virtual

PA Provider Assigned

PI Provider Independent

RIP Routing Information Protocol

SCTP Stream Control Transfer Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

V/V Virtual/Virtual

VM Virtual Machine

VPN Virtual Private Network

VRRP Virtual Routing Redundacy Protocol

66

References

[1] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagoodnov, “Wrapping

server-side TCP to mask connection failures,” in Proceedings of the IEEE Conference

on Computer Communications, 2001. 7

[2] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, E. Kohler,

M. Manesh, S. Nedevschi, and S. Ratnasamy, “Can software routers scale?” in Pro-

ceedings of the ACM Workshop on Programmable Routers for Extensible Services of

Tomorrow. New York, NY, USA: ACM, 2008, pp. 21–26. 14, 15

[3] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last longer with Vi-

Aggre,” in Proceedings of the 6th USENIX Symposium on Networked Systems Design

and Implementation. Berkeley, CA, USA: USENIX Association, 2009, pp. 453–466.

15

[4] M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,” in

Proceedings of the 7th Symposium on Operating Systems Design and Implementation.

Berkeley, CA, USA: USENIX Association, 2006, pp. 335–350. 20

[5] G. Candea and A. Fox, “Crash-only software,” in Proceedings of the 9th HotOS Work-

shop on Hot Topics in Operating Systems. Berkeley, CA, USA: USENIX Association,

2003. 16

[6] J. Dean and S. Ghemawat, “MapReduce: similified data processing on large clusters,”

in Proceedings of the 6th Symposium on Operating Systems Design and Implementa-

tion. Berkeley, CA, USA: USENIX Association, 2004, pp. 335–350. 16

67

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,

M. Manesh, and S. Ratnasamy, “RouteBricks: exploiting parallelism to scale software

routers,” in Proceedings of the ACM SIGOPS 22nd Symposium on Operating System

Principles. New York, NY, USA: ACM, 2009, pp. 15–28. 15

[8] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy, “Towards

high performance virtual routers on commodity hardware,” in Proceedings of the 2008

ACM CoNEXT Conference. New York, NY, USA: ACM, 2008, pp. 20:1–20:12. 14

[9] O. Filip, L. Forst, P. Machek, M. Mares, and O. Zajicek, “BIRD internet routing

daemon.” [Online]. Available: http://bird.network.cz 40

[10] J. Hamilton, “On designing and deploying Internet-scale services,” in Proceedings of

the 21st conference on Large Installation System Administration Conference. Berke-

ley, CA, USA: USENIX Association, 2007, pp. 18:1–18:12. 16

[11] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network Address

Translations (NATs),” RFC 4380 (Proposed Standard), Internet Engineering

Task Force, Feb. 2006, updated by RFC 5991. [Online]. Available: http:

//www.ietf.org/rfc/rfc4380.txt 1

[12] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg, “UDP

Encapsulation of IPsec ESP Packets,” RFC 3948 (Proposed Standard), Internet

Engineering Task Force, Jan. 2005. [Online]. Available: http://www.ietf.org/rfc/

rfc3948.txt 7

[13] M. Isard, “Autopilot: automatic data center management,” SIGOPS Operating Sys-

tem Review, vol. 41, pp. 60–67, 2007. 16

[14] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC

4301 (Proposed Standard), Internet Engineering Task Force, Dec. 2005. [Online].

Available: http://www.ietf.org/rfc/rfc4301.txt 1

68

http://bird.network.cz
http://www.ietf.org/rfc/rfc4380.txt
http://www.ietf.org/rfc/rfc4380.txt
http://www.ietf.org/rfc/rfc3948.txt
http://www.ietf.org/rfc/rfc3948.txt
http://www.ietf.org/rfc/rfc4301.txt

[15] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: a scalable Ethernet

architecture for large enterprises,” in Proceedings of the ACM SIGCOMM 2008 Con-

ference on Data Communication. New York, NY, USA: ACM, 2008, pp. 3–14. 12

[16] S. Nadas, “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and

IPv6,” RFC 5798 (Proposed Standard), Internet Engineering Task Force, Mar. 2010.

[Online]. Available: http://www.ietf.org/rfc/rfc5798.txt 27

[17] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrish-

nan, V. Subramanya, and A. Vahdat, “PortLand: a scalable fault-tolerant Layer 2

data center network fabric,” in Proceedings of the ACM SIGCOMM 2009 Conference

on Data Communication. New York, NY, USA: ACM, 2009, pp. 39–50. 12

[18] C. Perkins, “IP Mobility Support for IPv4,” RFC 3344 (Proposed Standard), Internet

Engineering Task Force, Aug. 2002, updated by RFC 4721. [Online]. Available:

http://www.ietf.org/rfc/rfc3344.txt 1

[19] R. Robinson, “Failover test results.” [Online]. Available: http://ccng.uwaterloo.ca/

∼r3robins/masThesis/results 41

[20] J. Schmidke, “Practical multi-interface network access for mobile devices,” 2010.

[Online]. Available: http://ccng.uwaterloo.ca/∼skjakubc/pravala/AccoriemTechDoc.

pdf 32

[21] W. Simpson, “IP in IP Tunneling,” RFC 1853 (Informational), Internet Engineering

Task Force, Oct. 1995. [Online]. Available: http://www.ietf.org/rfc/rfc1853.txt 1

[22] C. Systems, “Cisco Secure Remote Access Cisco ASA 550 Series SSL/IPsec

VPN Edition.” [Online]. Available: http://www.cisco.com/en/US/prod/collateral/

vpndevc/ps6032/ps6094/ps6120/prod brochure0900aecd80402e39.html 13

[23] ——, “Hot Standby Router Protocol features and functionality.” [On-

line]. Available: http://www.cisco.com/en/US/tech/tk648/tk362/technologies tech

note09186a0080094a91.shtml 27

69

http://www.ietf.org/rfc/rfc5798.txt
http://www.ietf.org/rfc/rfc3344.txt
http://ccng.uwaterloo.ca/~r3robins/masThesis/results
http://ccng.uwaterloo.ca/~r3robins/masThesis/results
http://ccng.uwaterloo.ca/~skjakubc/pravala/AccoriemTechDoc.pdf
http://ccng.uwaterloo.ca/~skjakubc/pravala/AccoriemTechDoc.pdf
http://www.ietf.org/rfc/rfc1853.txt
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/ps6094/ps6120/prod_brochure0900aecd80402e39.html
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/ps6094/ps6120/prod_brochure0900aecd80402e39.html
http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml
http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml

[24] ——, “Using HSRP for fault-tolerant IP routing.” [Online]. Available: http:

//www.cisco.com/en/US/docs/internetworking/case/studies/cs009.html 8

[25] O. D. Team, “Common Address Redundancy Protocol.” [Online]. Available:

http://www.openbsd.org/cgi-bin/man.cgi?query=carp 27

[26] T. O. D. Team, “Open Shortest Path First daemon.” [Online]. Available:

http://www.openbsd.org/cgi-bin/man.cgi?query=ospfd 40

[27] T. Q. D. Team, “Quagga Routing Suite.” [Online]. Available: http://www.quagga.net

40

[28] O. Titz, “Why TCP over TCP is a bad idea.” [Online]. Available: http:

//sites.inka.de/bigred/devel/tcp-tcp.html 58

[29] C. Vogt, “Six/one router: A scalable and backwards compatible solution for Provider-

Independent addressing,” in Proceedings of the 3rd International Workshop on Mo-

bility in the Evolving Internet Architecture. New York, NY, USA: ACM, 2008, pp.

13–18. 10, 11

[30] L. Wang, D. Jen, M. Meisel, B. Zhang, H. Yan, D. Massey, and L. Zhang, “Towards a

new Internet routing architecture: arguments for separating edges from transit core,”

in Seventh Workshop on Hot Topics in Networks, 2008. 10, 11, 15

[31] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. Bressoud, “Engineering fault-tolerant

TCP/IP server using FT-TCP,” in Proceedings of the International Conference on

Dependable Systems and Networks, 2003. 7

70

http://www.cisco.com/en/US/docs/internetworking/case/studies/cs009.html
http://www.cisco.com/en/US/docs/internetworking/case/studies/cs009.html
http://www.openbsd.org/cgi-bin/man.cgi?query=carp
http://www.openbsd.org/cgi-bin/man.cgi?query=ospfd
http://www.quagga.net
http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html

	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Traditional Encapsulation Systems
	Traditional Encapsulation Failover
	The Complexity of IP Continuity
	Address Translation
	Datacentre Networking

	Software Routing
	Handling Decapsulator Failure

	Design
	DN Failover
	Detecting Failures
	ESR Failover
	Analytical Analysis of a Failover

	Implementation
	Accoriem
	EN and DN Modifications
	EN-DN Mapping Table
	Routing-Table Growth
	Routing in the DN Cluster

	Experimental Validation
	Packet Loss During Failover
	Impact on Long-Lived TCP Flows
	Impact of TCP Retransmissions
	Impact of Reliable Encapsulated Packet Delivery
	Experimental Observations

	Conclusion and Future Work
	Conclusions
	Future Work

	APPENDICES
	List of Acronyms
	References

