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Abstract—This paper presents a storage enforcing re-
mote verification scheme, PGV (Pretty Good Verification).
While existing schemes are often developed to handle a
malicious adversarial model, we argue that such a model
is often too strong of an assumption, resulting in over-
engineered, resource-intensive mechanisms. Instead, the
storage enforcement property of PGV aims at removing a
practical incentive for a storage server to cheat in order
to save on storage space in a covert adversarial model.

At its core, PGV relies on the well-known polynomial
hash; we show that the polynomial hash provably possesses
the storage enforcement property and is also efficient
in terms of performance. In addition to the traditional
application of a client verifying the storage content at a
remote server, PGV can also be applied to de-duplication
scenarios where the server wants to verify whether the
client possesses a significant amount of information about
a file (and not just a partial knowledge/fingerprint of the
file) before granting access to an existing file.

We theoretically prove the power of PGV by com-
bining Kolmogorov complexity and list decoding and
experimentally show the simplicity and low overhead of
PGV by comparing it with existing schemes. Altogether,
PGV provides a good, practical way to perform storage
enforcing remote verification.

Keywords-storage enforcement, proof of retrievability,
cloud storage, proof of data possession, proof of ownership

I. INTRODUCTION

A general structure of the remote storage verification
problem is the following: a verifier (client) (i) uploads
its data to a remote prover (cloud storage), (ii) deletes
the local copy (to save on storage), and (iii) at some later
point, tries to verify if the prover is storing the data
correctly i.e. assurance of integrity and retrievability.
Existing PDP or POR schemes [1], [2], [3], [4], [5],
[6], [7] consider a malicious adversarial model [8],
which translates to assuming that legitimate cloud stor-
age providers such as Amazon will behave arbitrarily
to tamper with client’s data. In order to satisfy this
strict adversarial model, existing schemes are complex
(including modification of original data [2], [6], [3])
and performance inefficient (both in time and space
requirements [1], [3], [4], [7]).

The primary motivation for this paper is to show
that if we relax this strict adversarial model and focus

instead on a more practical adversarial model, we can
develop a simpler, far more light-weight verification
scheme. Therefore, instead of considering a malicious
adversarial model, we consider a covert adversarial
model [9]. This model assumes that the adversary is
willing to cheat if: (i) it has some incentive, and (ii)
it will not be caught. It nicely captures many real
world scenarios including remote storage verification
where there is a practical incentive for a provider to
cheat in order to save on storage as long as it is not
caught. This is more practical since storage is the main
commodity for storage providers—a storage provider
typically charges its clients primarily for the amount of
storage that each client uses. Also, the provider incurs a
significant amount of cost in handling and managing the
storage for its clients such as the costs for hard drives,
storage area networking, and power consumption [10],
[11]. Thus, there is a practical incentive for a provider
to cheat in order to save on storage.

The main contribution of this paper is a storage en-
forcing remote verification scheme, PGV (Pretty Good
Verification). This means roughly that, in order to pass
our verification, a prover has to commit as much storage
space as the information content of the original data.
This removes storage saving as an incentive of cheating
for the prover. More specifically, if the prover passes
our verification of the original data x with probability
ε > 0, then the prover has to store C(x) bits of data
up to a very small additive factor. C(x) is the plain
Kolmogorov complexity of x, which is the size of the
smallest algorithmic description of x ( [12], [13]). The
reason why we enforce C(x) instead of x is because we
cannot prevent a prover from compressing x; C(x) is
a natural way to represent the amount of information
stored in x.

We also show that PGV has application in proof
of ownership [14]. Consider the case when a client
wants to upload its data x to a storage service (such
as Dropbox) that uses deduplication. To save on com-
munication, the server asks the client to send it a hash
h(x) and if it matches the hash of the stored x on
the server, the client is issued an ownership of x. As



identified by [14], this simple deduplication scheme
can be exploited for malicious purposes if the server
doesn’t verify the ownership. Since the prover and the
verifier are reversed from the client verifying storage
provider scenario, the performance restriction is even
more severe. The computation that runs at the client-side
has to be light-weight because of the limited capacity of
client devices such as smartphones. Further, we cannot
expect the client to modify the data to aid in the
verification process (as it is needed in some existing
PDP/POR schemes). Therefore, PGV can also handle
such verification efficiently.

We have implemented our widely applicable storage
enforcing remote verification scheme, PGV and evalu-
ated through extensive experiments with data files of
sizes 1 MB to 1 GB. Our experimental results demon-
strate that PGV is significantly performance efficient
compared to existing proof of data possession (PDP [1])
and proof of ownership (PoW [14]) schemes.

II. PRETTY GOOD VERIFICATION

This section presents the general construction of our
storage enforcing remote verification scheme, PGV and
outline of the guarantees it provides.

A. Basic Scheme

The scheme has two main phases: pre-processing
and hash generation and challenge generation and
verification phase.

Pre-processing and hash generation: To compute
a polynomial hash, a verifier needs to pick system-
wide parameters once and perform three steps in the
pre-processing phase. There are two important system-
wide parameters: the finite field size q (e.g., 232 or
equivalently, 4B) and the block size (e.g., 64KB).
Picking the right values for these parameters involves
considerations for performance and security. We discuss
these considerations in our evaluation in Section III.

Once the verifier finishes picking the system-wide
parameters, the verifier can compute a polynomial hash
for each data block: (i) pick a random number (our key)
β from the field, (ii) divide the data block into equal-
sized symbols, S0, . . . ,Sk−1, where the size is equal to
the field size (e.g., 4B), and (iii) compute the polynomial
hash Hc = ∑

k−1
i=0 Siβ

i. This is equivalent to computing a
single entry in a Reed-Solomon code word.This process
is per-block. For a file, there is one additional step that
divides the file into blocks. Then the verifier needs to
repeat the above three steps for each block. Once the
polynomial hash is computed for each block, the verifier
stores the random keys and hash values locally and
uploads the file to remote storage.

Challenge generation and verification: To verify a
data block in a storage enforcing fashion, the verifier
sends the key β associated with that block to the remote
storage. The remote storage compute the polynomial
hash Hc = ∑

k−1
i=0 Siβ

i and sends back to the verifier. If
this hash matches the locally stored hash by the verifier,
the verification succeeds. By default, PGV is designed
to perform complete verification of the remote storage.
However, PGV also supports a probabilistic framework
of sampling similar to existing schemes such as PDP
which is detailed in Section II-C. The idea of sampling
is to partially verify the data and get a probabilistic
guarantee instead of complete verification.

B. Summary of Our Guarantees
We can summarize our two main results for remote

verification as follows:
• If the prover can pass our verification protocol

with a probability greater than ε (where ε can
be made to be very small, e.g. 1%), then the
prover must provably store almost as much as the
Kolmogorov complexity of the user string. Another
way to state this is that, if, for example, ε = 1%
and the prover stores slightly less than Kolmogorov
complexity C(x), then the prover will be caught
with probability at least 99%.
• If the prover can pass our verification protocol

with a probability greater than 1/2+γ (where γ can
be very small, e.g. 1%), then the prover has enough
information to recreate the user string. Another
way to state this is that, if, for example, γ = 1%
and the prover cannot recreate the user data, then
it will be caught with probability at least 49%.

The proofs take advantage of the fact that a poly-
nomial hash is just a single entry in an appropriately-
chosen Reed-Solomon code word. The proofs and the
scheme itself in fact generalize to any error-correcting
code and corresponding universal hash function the
details of which can be found in [15].

C. Sampling
Although PGV prefers and is able to efficiently

handle complete verification of the data (i.e. all the data
blocks in a file), PDP uses sampling to scale with the
increment in file sizes. To make a fair comparison, we
now discuss a probabilistic framework of error detection
using PGV. Let’s assume a scenario where the server
cheats1 t blocks out of an n-block file. Let, rPDP and

1Cheating in the case of PGV means that the server stores less
than the Kolmogorov complexity of the block. This e.g. can handle
the case when sufficiently bits from a block has been erased. For PDP
this means that the server alters the block so that it cannot re-create
the original block.
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rPGV be the number of sampled blocks during the
verification in PDP and PGV, respectively. Let p be
the probability that the server can avoid detection of its
cheating. For PDP, p is the probability that none of the
sampled blocks match the blocks on which the server
cheats; i.e., we have: p = (1− t

n )
rPDP which leads to

rPDP = (
log 1

p
log n

n−t
). For PGV, p will have two components,

one component is due to the sampling error and another
component is the verification error ε (we get the latter
from Corollary 18 in [15]). So, p = (1− t

n )
rPGV + ε. If

we use weight 0 6 α 6 1 as a factor of p for these
two components, we have: (1−α)p = (1− t

n )
rPGV and

αp= ε. The first term gives us: rPGV =(
log 1

(1−α)p
log n

n−t
) which

is equivalent to rPGV = (rPDP +
log 1

(1−α)

log n
n−t

). When t = 1%
of n, if we want a 99% detection rate (i.e. p = 1%), and
α = 8

10 , we get: rPGV = (rPDP +23) blocks. Now, from

Corollary 18 in [15], we have ε6
√

k
q , or k 6 ε2q where

q is the number of field elements and k is the number
of symbols in each block. In turn, this bounds the block
size for PGV to be b 6 log8 qε2q bytes. When we use
GF(232), if we want a 99% detection rate (p = 1%), we
get b = 1677α2KB since αp = ε. For α = 8

10 , the block
size can be as large as 1.04MB.

D. Repeatability

PGV can overcome the bounded repeatability by
piggybacking the generation of new hashs with regular
block access operations. To make the discussion more
concrete, let us compare PDP (which has unbounded
repeatability) and PGV (with the piggybacking scheme).
In particular let (gPDP,vPDP) and (gPGV ,vPGV ) be the
generation time and verification time for one block for
PDP and PGV respectively. Further define Rg = gPDP

gPGV
.

Let B be the maximum number of hashs that the PGV
keeps at any point of time per block. Since PDP has
unbounded repeatability, it only needs to store one hash
per block. Next we try to figure out what B should be in
order to keep the overall overhead of PGV still smaller
than PDP.

At the beginning both PDP and PGV need to generate
the hashs. Thus, PGV spends B ·gPGV time while PDP
spends gPDP time. Thus, to be ahead of PDP at this
stage, we need to make sure

B 6
gPDP

gPGV
= Rg. (1)

Now later on, we will have verification for the block
interspersed with normal reads for the block. Let us
assume that C > 0 is the maximum number of verifica-
tion calls between two normal reads for a block. Now

consider any “run” of x consecutive verification calls
followed by a normal read (so we have x 6 C). Note
that in this case for PGV we (i) need to make sure that
B > x as we cannot “replenish” the buffer till get to
the normal read and (ii) make sure that the overhead
incurred by PGV is smaller than PDP. For (ii) we note
that the time expended by PDP is x · vPDP while the
time expended by PGV is x(vPGV +gPGV ) (as it needs
to perform x verifications and replenish as many hashs
in its buffer). Thus, PGV would have a lower overhead
if

vPGV +gPGV 6 vPDP (2)

Note that we have ended up with the following con-
straints on B:

C 6 B 6 Rg.

In our experiments (Section III), we have found that
(2) is satisfied. (In fact, we observe that gPGV > vPGV .
Further, vPDP > 10 · gPGV , which implies that PDP is
at least five times as slow as PGV with B hashs
during the verification phase.) Finally, we observe in
our experiments that Rg > 10. So if we pick B =C and
if we have C < 10 (the latter is a realistic assumption for
the cloud computing applications we envision for PGV),
then PGV comes out ahead even in the hash generation
part.

III. CLIENT VERIFYING STORAGE PROVIDER
EXPERIMENTS

This section presents various performance aspects of
PGV as well as comparisons with the performance of
a crypto-based scheme, PDP [1]. We emphasize that
we have only considered the main schemes in PDP,
although there are many variants of the main schemes.
Since the variants of each main scheme make design
tradeoffs on multiple properties, it is difficult for us to
consider those variants altogether.

A. Experimental Platform and Parameters

We use open source C libraries on an Intel Centrino
Duo machine at 1.73 GHz with 2.5 GB memory running
Linux kernel 2.6.32 to compare PGV with existing
schemes. We use a single thread in all implementation
and measurements. For cryptographic operations, we
use OpenSSL 0.9.8k. For field operations and erasure
coding, we use James Plank’s Galois field library [16]
and Jerasure library [17].

B. Hash Generation Time

For PDP, the hash generation time includes the time
required to generate the asymmetric keys, file I/O and
per-block hash generation time. Figure 4 shows the hash
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Figure 1. hash generation time for PGV.
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Figure 2. Challenge generation and verification time for PGV.
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Figure 3. Hash storage for PGV for different file sizes.

generation time comparison between PDP and PGV.
(For both schemes we used a block size of 16K.) As
shown in the figure, PGV has little overhead as it just
evaluates the polynomial hash. PDP has higher overhead
as it relies on computationally intensive cryptographic
primitives. It uses asymmetric cryptographic primitive
based on modular exponentiation. On average, PGV
is approximately 25 times faster than PDP in hash
generation for different files sizes.
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Figure 4. Preprocessing and hash generation time comparison for
PDP and PGV
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C. Challenge Generation, Verification, and Sampling
Analysis

Figure 5 compares PDP verification time with PGV
considering both completeness (i.e. in both cases we
verify all the blocks) and sampling (Section II-C with
the following setting of parameters: t/n = 1%, p = 1%,
α = .8 and q = 232). PDP incurs the most overhead
due to asymmetric cryptographic operations in all three
phases. It also shows the sampling verification time with
99% detection rate. As discussed earlier, in the proba-
bilistic framework, PDP can guarantee 99% detection
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rate by sampling 460 blocks. For PGV, it can guarantee
the same detection rate by sampling 483 blocks. As
in hash generation, PGV outperforms PDP since it
involves only a number of simple finite field additions
and multiplications. On average, PGV verification is
almost 120 times faster than PDP verification.

D. Storage overhead

Figure 3 shows the PGV storage overhead for dif-
ferent file sizes and block sizes. Comparison of storage
overhead with PDP is shown in Figure 6. PDP stores its
tokens (authenticators) on the server side. These hashs
are usually 1024 bits long. Unlike these schemes, PGV
does not have any server-side storage overhead. We only
need to store hashs at the client side.

IV. SERVER VERIFYING CLIENT EXPERIMENTS

In this section, we compare PGV with PoW [14] in
terms of client time (the time required by the prover to
compute the proof of ownership of deduplicated data).
We also compare both of the schemes’ network time to
a naive approach where, instead of deduplication, the
complete file is transfered over the network.
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Figure 7. Client time comparison for PoW and PGV.

 0.1

 1

 10

 100

 32 64  256  512

P
er

fo
rm

an
ce

 (
S

ec
)

File Size (MB)

Naive
PoW
PGV

Figure 8. Overall time comparison (client time + network time) for
PoW and PGV with a naive approach with no deduplication over a
100 Mbps network.

A. Client time

Figure 7 compares client times for PGV and PoW
for different file sizes. As we can see from the figure,
PGV performs faster than PoW in client time for the
reported file sizes from 32MB to 512MB. However, as
the file size increases, the performance follows similar
trend. For instance, PoW and PGV takes 15.29 sec and
16.98 sec, respectively for a 1024 MB file. However,
note that PoW is optimized only for proof of ownership
whereas PGV supports two-way verification with proof
of storage enforcement.

B. Network time

Network time in PGV corresponds to sending ran-
dom numbers β to the client and get the computed
hashes back from the client. As we have discussed in
Section III-C, PGV can guarantee 99% detection by
checking 483 blocks. So, in total PGV transfers around
30K data on the network as a part of the protocol data.
For similar guarantee, PoW reports 20K data transfer
requirement as it needs to transfer 20 leaves to the
provers. Figure 8 shows the overall time (client time and
network time) required by PGV and PoW, compared to
a naive scheme which always transfers the complete file
over the network without deduplication for different file
sizes. Our results show that PGV performs better than
both PoW and naive approach. Note that, both PGV and
PoW will require additional time to verify the hashes
which is 0.5 sec for PGV and 0.6 ms for PoW.

V. RELATED WORK

In contrast with our coding based storage enforce-
ment scheme, Golle et al. [3] had proposed a crypto-
graphic primitive called storage enforcing commitment
(SEC) which probabilistically guarantees that the server
is using storage whose size is equal to the size of the
original data to correctly answer the data possession
queries. Dodis et al. [18] provided theoretical studies on
different variants of existing POR scheme. Note that,
one of variants in [18] is stucturally similar to poly
hash but, we differ in adversarial modelling, storage
enforcement property, proof technique and wide range
of application demonstration with experimental results.

VI. CONCLUSIONS

This paper presents PGV (Pretty Good Verification),
a multi-purpose storage enforcing remote verification
scheme that utilizes polynomial hash for storage ver-
ification. In particular, its simplicity allows for bi-
directional verification (i.e., client can verify that the
server is storing its data and the server can verify that
a (new) client that has data that it is claiming to have).
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We prove using a novel combination of Kolmogorov
complexity and list decoding that the polynomial hash
provides a strong storage enforcement property as well
as proof of retrievability. Our experimental results sup-
port our claim of low overhead in pre-processing, token
generation, verification, and extra storage space. Our
overall results show that it is a good, practical choice
for multi-purpose remote storage verification.
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