
Automatic Generation of Graceful Programs

Yiyan Lin
Department of Computer Science and Engineering

Michigan State University
East Lansing, USA

linyiyan@cse.msu.edu

Sandeep Kulkarni
Department of Computer Science and Engineering

Michigan State University
East Lansing, USA

sandeep@cse.msu.edu

Abstract—Traditionally, (nonmasking and masking) fault-
tolerance has focused on ensuring that after the occurrenceof
faults, the program recovers to states from where it continues
to satisfy its original specification. However, a problem with
this limited notion is that, in some cases, it may be impossible
to recover to states from where the entire original specification
is satisfied. For this reason, one can consider a fault-tolerant
graceful-degradation program that ensures that upon the
occurrence of faults, the program recovers to states from
where a (given) subset of its specification is satisfied. Typically,
the subset of specification satisfied thus would be the critical
requirements.

In this paper, we focus on automatically revising a given
program to obtain a corresponding graceful program, i.e.,
a program that satisfies a weaker specification. Specifically,
this step involves adding new behaviors that satisfy the given
subset of specification. Moreover, it ensures that during this
process, it does not remove any behavior from the original
program. With this motivation, in this paper, we focus on
automatic derivation of the graceful program, i.e., a program
that contains all behaviors of the original program and some
new behaviors that satisfy the weaker conditions. We note
that this aspect differentiates this work from previous work
on controller synthesis as well as automated addition of fault-
tolerance in that this work requires that no new behaviors are
added in the absence of faults.

I. I NTRODUCTION

We are increasingly dependent on highly available com-
puter systems to provide fully functional and stable services.
However these existing programs are often subjected to new
types of faults that are not considered the original design.
This may occur due to changing user requirements or due
to deployment of the program in a new environment. It is
especially important that the addition of such fault-tolerance
be done correctly, i.e., the addition indeed provides the
required fault-tolerance and that the existing functionality
of the program is preserved.

Some of the existing approaches for automated addition of
fault-tolerance include [1]–[3], where three different levels
of fault-tolerance, namely nonmasking, masking and stabi-
lizing, are considered. In all these levels, if the fault perturbs
the program then it is guaranteed to recover to legitimate

This work is supported by NSF CNS-0914913 and AFOSR Award
FA9550-10-1-0178.

states from where it satisfies its specification. Masking fault-
tolerance includes an additional requirement that the safety
property is preserved during such recovery process. And,
stabilizing fault-tolerance requires that even if faults perturb
the program to an arbitrary state, the program still recovers
to legitimate states.

However, one limitation of these approaches is that in
many scenarios, it is impossible for the program to recover to
the original program behavior after faults occur. In such sce-
narios, it is desirable that the program exhibits some graceful
behavior, i.e., behavior that is close to its original behavior.
A canonical example of a graceful behavior program in-
cludes the case where the original program provides core
services and auxiliary services. However, after recovery,the
program may only provide core services and fail to provide
the auxiliary services. More generally, in such a system, it
is expected that the program will satisfy its specification
under normal circumstances. However, upon occurrence of
faults, it may satisfy (a given) weaker (respectively, relaxed)
specification.

The idea of such graceful degradation has been introduced
in [4], where authors consider the specification to consist
of a set ofn properties. Subsequently, they consider2n

possible specifications for each possible subset of thesen

properties. Thus, theoretically, we can consider2n possible
programs depending upon the exact subset of properties that
are expected to be satisfied under different circumstances.
In practice, however, considering such2n specifications is
unnecessary. For example, in the above scenario, there is
no need to consider a program that only provides auxiliary
services. Likewise, there is also no need to consider a
program that provides neither the core nor the auxiliary
services. In other words, in the above example, we need
to consider two programs, one that guarantees that both the
core and auxiliary services are provided, and another that
guarantees that at least the core services are provided.

To further illustrate application of graceful degradation,
we use the printer example shown in [4]. A printer system
consists of computers sending printing tasks to a collection
of printers. The tasks are organized in a queue and each
printer executes a transaction in which it dequeues only one
task and then prints it. In an ideal scenario, one may prefer

that printer system ensure that the printing occurs in FIFO
order, i.e., the task that is dequeued first is printed first.
Thus, in an ideal setting, the specification requires that at
most one dequeue operation can occur at a time. And, the
next dequeue operation occurs only after the current task is
printed. As one can imagine, although this is a very simple
specification, it results in reduced availability. Moreover, in
the presence of faults such as network delays, computer
crashes, it may not be possible to guarantee that the program
can recover to states from where this specification would be
satisfied. Hence, one possible weaker specification (consid-
ered in [4]) is to allow a limited out-of-order printing. For
example, the simplest such specification is that taskn is
printed only after taskn− 2 is printed although taskn may
be printed before taskn− 1.

Based on the above examples, we can view a graceful
degradation program to have the following properties. In the
absence of faults, the program satisfies its original (stronger)
specification. However, if faults occur then it is guaranteed
to recover to states from where it satisfies the degraded
(weaker) specification. Our goal in this paper is to focus on
automated addition of graceful degradation to an existing
program. Thus, in our algorithm, we begin with the fault-
intolerant program that satisfies the original specification,
the original and degraded specification and faults. And, the
goal of the algorithm is to obtain a fault-tolerant graceful
degradation.

One of the difficulties in generating the fault-tolerant
program that provides graceful degradation lies in the fact
that the input does not contain a program that satisfies the
weaker specification. Asking the designer to specify such a
program is undesirable, since it increases the overhead for
the designer.

With this motivation, in this work, we focus on generation
of a graceful program where we begin with a program,
sayp, that satisfies the original specification and constructs
a program, saypg, that satisfies the weaker specification.
Clearly, pg cannot satisfy the weaker specification in an
arbitrary way. Hence, we constrain this step to require that
pg has all transitions of programp. However, it may include
additional transitions that allow it to exhibit behaviors that
only satisfy the weaker specification.

Revisiting our previous example to illustrate generation of
graceful programs, we begin with a program that ensures that
the print ordering is FIFO. Our work will generate a program
that will include the FIFO behavior as well as the behavior
where some limited out-of-order printing is permitted. In
other words, the generated program will not prevent FIFO
behavior but it will not guarantee it. Additionally, it will
prevent excessive out-of-order printing.

Observe that the generation of the graceful program does
not take into consideration the effect of fault that may require
one to provide graceful degradation. Instead, it generates
a program,pg, whose behaviors could be used to provide

Relaxed

Specification

Legitimate

States

Program

Automatic

Program

Generation

Graceful

Program

Figure 1: Design of Graceful Program

recovery in the presence of faults. Although this part is
outside the scope of this paper due to reasons of space, one
can design a fault-tolerant graceful degradation programpf
using the algorithm in this paper. Specifically, in this case,
we use the input of the original program,p, the graceful
program,pg, and faults as input to generatepf such that
pf behaves likep in the absence of faults. However, in the
presence of faults, it recovers to the behaviors ofpg (instead
of p). We refer the reader to [5] for this extension.

Contributions of the paper. The contributions of the
paper are as follows:

− We define the problem of automated addition of grace-
ful degradation and present an algorithm to solve it.
Unlike previous algorithms [6] that focus on removing
behaviors in the absence of faults, this algorithm
focuses on adding new behaviors while ensuring that
these behaviors still satisfy the weaker specification.

− We illustrate our algorithm with one case study,
namely the printer system from [4].

Organization of Paper. The rest of paper is organized
as follows: We define the notion of program, specification
and specification relaxation in Section II. In Section III, we
formally state the problem of automated generation of the
graceful program. In Section IV, we present the algorithm
to generate the graceful program from the original program
and the specification (original and relaxed). In Section V, we
present one case study to demonstrate the graceful program
generation step by step. Finally, in Section VI we discuss
related work and in Section VII, we present the conclusion
and discuss future work.

II. PRELIMINARY

In this section, we give formal definitions of programs,
program specifications, and graceful degradation. The pro-
gram is specified in terms of its state space and transitions.
The definition of specification is adapted from [7]. The
notion of graceful degradation is adapted from [4].

A. Program

A program p, specified as a tuple〈Sp, δp〉, consists of its
state spaceSp and transitionsδp, whereδp ⊆ Sp × Sp. A
state predicate of p is any subset ofSp. A state predicate
S is closed in p (respectively,δp) iff (∀(s0, s1) ∈ δp : (s0 ∈
S ⇒ s1 ∈ S)). A sequence of states,〈s0, s1, · · ·〉 (denoted

by σ), is acomputation of p iff(1) ∀j : 0 < j < length(σ) :
(sj−1, sj) ∈ δp, and (2) ifσ is finite and terminates in state
sl then there does not exist states such that(sl, s) ∈ δp.
In other words, in each step of the computation ofp, some
transition ofp is executed. And, the computation is finite iff
p does not have any transition in the final state.

Theprojection of programp on state predicateS, denoted
asp|S is the program〈Sp, {(s0, s1) ∈ δp ∧ s0, s1 ∈ S}〉. In
other words,p|S includes transitions ofp that begin and end
in S.

Notation.In the remaining part of this paper, if the context
is clear, we usep andδp (transitions ofp) interchangeably.
Also, we say that a state predicateS is true in states iff
s ∈ S.

B. Specification

Following Alpern and Schneider [7], we let the specifica-
tion of program consisting of asafety specification and a
liveness specification. The safety specification is specified
in terms of a set of bad states, saySfbs, that program is
not allowed to reach, and a set of bad transitions,Sfbt, that
the program is not allowed to execute. Thus, a sequence
〈s0, s1, · · ·〉 (denoted byσ) satisfies the safety specification
iff (1) ∀j : 0 ≤ j < length(σ) : sj 6∈ Sfbs, and (2)
∀j : 0 < j < length(σ) : (sj−1, sj) 6∈ Sfbt.

The liveness specification, on the other hand, denotes
“good thing” happens during program execution. We use
leadsto property (L T) to denote liveness specification,
where bothL andT are state predicates. Thus, a sequence
〈s0, s1, · · ·〉 (denoted byσ) satisfies the safety specification
iff ∀j : (L is true in sj ⇒ ∃k : j ≤ k < length(σ) :T is
true in sk).

A specification, sayspec is a tuple〈Sf, Lv〉, whereSf
is a safety specification andLv is a liveness specification.
A sequenceσ satisfiesspec iff it satisfies Sf and Lv.
Hence, for brevity, we say that the program specification
is an intersection of a safety specification and a liveness
specification.

Given a programp, a state predicateS, and specification
spec, we sayS is invariant of p iff (1) S is closed onp; (2)
Every computation ofp that starts in a state, says, where
s ∈ S satisfiesspec; and (3)S 6= ∅.

C. Graceful Degradation

In graceful degradation, it is expected that the program
will satisfy a stronger specification under normal circum-
stances. And, it will satisfy a weaker specification under
some other circumstances (e.g., in the presence of faults).
Let spec = 〈Sf, Lv〉 and specr = 〈Sfr, Lvr〉 be two
specifications. We say thatspecr is weaker thanspec iff
for any sequenceσ if σ satisfiesspecr thenσ satisfiesspec.

III. PROBLEM STATEMENT

In this section, we formally define the problem of gen-
eration of program that satisfies the weaker specification

(cf. Problem 1). We begin with a programp that satisfies
the specificationspec from I. We derive a program, say
pg, and its invariantIg such thatpg satisfies a weaker
specification, sayspecr from Ig. Next, we consider the
relation betweenp and pg as well as I andIg to identify
the problem statement. One requirement onpg is thatpg is
supposed to add new behaviors that potentially violatespec

while satisfyingspecr. And, it is not allowed to remove any
behaviors ofp that satisfyspec. Since the correctness ofp
is known from its invariantI, based on this requirement,
it follows that I should be a subset ofIg. Additionally,
pg cannot remove any behaviors (respectively, transitions)
within the original invariantI. Thus, the problem statement
is shown as follows:

Problem Statement III.1:
Given p, I, spec and specr such that

p satisfies spec from I.
Identify pg and Ig such that:

A1: pg|I = p|I, I ⊆ Ig.
A2: pg satisfies specr from Ig.
A3: pg|I satisfies spec from I.

Remark. The above problem statement has a requirement
that I be a subset ofIg. This requirement differs from [6]
in that this enlarges the invariant by adding new states from
where the new specification can be satisfied. By contrast,
in [6], the problem statement requires that the generated
invariant be a subset of the original invariant. For this
reason, existing algorithms cannot be used to solve the above
problem.

IV. A LGORITHM FOR GENERATING GRACEFUL

PROGRAM

Specifically, we begin with the given programp, its
invariant I and its two specifications (stronger)spec and
(weaker)specr. In turn, spec and specr are specified in
terms of the corresponding safety and liveness specification.
Our goal is to constructpg and Ig such that they satisfy
constraints of Problem III.1.

Our program also takes an additional input which is a state
predicate, namelySa. The intuition forSa arises from the
fact that the program is expected to satisfy the specification
specr under certain constraints. PredicateSa is used to
characterize these constraints. If such constraints are not
easily identifiable,Sa can be instantiated to beSp − I, i.e.,
all states except those inI.

The algorithm first computesI∆ to be the set of states in
Sa except those that violate safety (i.e., those inSfrbs). The
first guess forIg, the invariant for the graceful program is
then set toI ∪ I∆ (Line 2). Then, the algorithm computes
the first guess forpg. Specifically, inpg, we reuse all the
transitions inp that begin inI. We also include all transitions
that begin inI∆ unless they violate safetySfrbt (Line 3).
Starting from Line 4, the algorithm revises the program by

ensuring the liveness specification is satisfied. From Line 6
to 9, for the generated program we first exclude the deadlock
states, i.e., states from where no transitions originate from
Ig. Then we recomputepg such that all the reachable states
by pg starting fromI ′(or I) remains inI ′(or I respectively).
To ensure liveness, we define a functionrank that assigns
each state an integer value that represents the length of the
shortest path from that state to reach a target state predicate
T . Then, on Line 11 and 12, we exclude transitions where
rank does not decrease. Removal of such transitions ensures
that there will be no cycles that prevent the program from
reachingT . One potential side effect of removing transitions
is that the new program may include deadlock states. To
resolve deadlock states we repeat the loop starting at Line
4. Finally, this process stops once a fixpoint is reached.

Algorithm 1 Graceful Program Generation

Input: state predicateSa, program transitionsp, invariant I ,
weaker specificationspecr including weaker safety specifi-
cation Sfr (consisting ofSfrbs and Sfrbt), and liveness
specificationLvr (consisting n leads-to properties of the form
Fi Ti, i ∈ 1 · · ·n).

Output: graceful programpg and invariantIg with weaker spec-
ification.

1: I∆ := Sa − Sfrbs
2: I ′ := I ∪ I∆
3: p′ := {(s0, s1)|s0, s1 ∈ I ′ :: (s0 ∈ I ∧ (s0, s1) ∈ p) ∨ (s0 ∈

I∆ ∧ (s0, s1) /∈ Sfrbt)}
4: repeat
5: Iold := I ′

6: repeat
7: p′ := maxp(p′, I, I ′)
8: I ′ := I ′ − deadlock(I ′, p′)
9: until Iold = I ′

10: Iold := I ′, pold := p′

11: p′ := p′ −
⋃

i∈1···n
{(s0, s1)|s0 ∈ I ′ ∧ rank(s0, Ti, p

′) ≤
rank(s1, Ti, p

′) ∧ rank(s0, Ti, p
′) 6= 0

∧rank(s1, Ti, p
′) 6= ∞}

12: I ′ := I ′ −
⋃

i∈1···n{s|rank(s, Ti, p
′) = ∞∧ s ∈ Fi ∧ s /∈

I}
13: until Iold = I ′ ∧ pold = p′

14: return p′ as pg, I ′ as Ig if I ′ 6= ∅, otherwise declare no
graceful program generated.

Function: maxp(t: transition predicate,S1,S2,· · · :set of state
predicates whereS1 ⊆ S2 ⊆ · · ·)
return {(s0, s1)|t ∩ (s0 ∈ S1 ⇒ s1 ∈ S1) ∧ (s0 ∈ S2 ⇒ s1 ∈

S2) ∧ · · · }

Function: deadlock(S: state predicate ,t: transition predicate)
return {s0|s0 ∈ S ∧ (∀s1 ∈ S : (s0, s1) /∈ t)}

Function: rank(s: state ,T : state predicate ,t: transition predi-
cate)
return the shortest path length froms to one of the state inT , if
the path(consisting only transitions int) exists; or∞, otherwise.

Theorem 1. Algorithm 1 is sound.

V. CASE STUDIES

In this section, we demonstrate process of generating the
graceful program with one case study, namely the printer
system. In the case study, we first define the program with
its specification (including the original and the graceful
specification). Then we simulate the algorithm on each case
study step by step.

A. Printer System

In the first case study, we focus on the printer sys-
tem considered in [4]. In the original specification, the
printer system is required to satisfy theFIFO specification.
However, as argued in [4], it may be necessary to relax
this requirement under certain constraints. In particular, the
weaker requirement considered in [4] requires that some out-
of-order printing is permitted.

To model this state space and transitions concisely, we
use variables (associated with a domain) andactions.
And, the state spaceSp of p is obtained by assigning
each variable a value from its respective domain. Thus,
the use of variables allows us to represent the state space
compactly. Additionally, to compactly representδp, we use
actions of the form:guard −→ statement whereguard

is a constraint involving program variables andstatement

updates program variables. An actionguard −→ statement

denotes the set of transitions{(s0, s1) : guard is true in
s0 and s1 is obtained by changings0 as prescribed by
statement}. We usex(s) to denote the value of variable
x in states.

Original program. The program in [4] consists of
several clients and several print servers. Using the trans-
action semantics, the clients ‘enqueue’ their print request in
a shared queue. The print servers remove from this queue
and print the task. For simplicity, we do not model the
transactions used for concurrency control. Furthermore we
omit the enqueue operation since it does not affect the
behavior we interested in.

Hence, the original program, sayA, consists of two parts
(1) onceith task has been dequeued (di = 1) and it has not
been printed (pi = 0), then print it(pi := 1) and (2) if the
ith task has been printed (pi = 1), then the next task (i+1)
in queue get a chance to be dequeued (di+1 := 1). Thus
actions are as follows:

di = 1 ∧ pi = 0 −→ pi := 1

pi = 1 −→ di+1 := 1

Safety Specification. Recall that the safety specification
in terms of a set of bad states program should not reach
and a set of bad transitions that the program should not
execute. The first specificationSfbs 1 is satisfied by the
original program and requires that the printing must occur in
order and, hence, taskj cannot be dequeued until taskj−1
is printed. The graceful specification permits the possibility
that taskj can be dequeued even if taskj−1 is not printed.
However, it requires that taskj cannot be dequeued until
taskj− 2 is printed. Thus, the safety specification (original

and graceful) that identifies the states that should not be
reached is specified as follows:

Sfbs 1 := ∃i, j ∈ 1 · · ·n, pi(s) = 0 ∧ dj(s) = 1 ∧ j > i
Sfbs 2 := ∃i, j ∈ 1 · · ·n, pi(s) = 0 ∧ dj(s) = 1 ∧ j > i+ 1

Observe thatSfbs 1 is the stronger specification capturing
the notion of FIFO, andSfbs 2 is a weaker specification
since it allows at most two tasks be dequeued without
finishing the pending printing. One could consider further
relaxation that allows more out-of-order printing. Our algo-
rithm can be applied in this context by applying Algorithm 1
to the program generated at the end of this section. However,
the detailed analysis of this generation is outside the scope
of this paper.

In addition to bad states, safety specification can include
bad transitions that the program is not allowed to execute.
The bad transitions,Sfbt c, describestructural constraints
that have to be satisfied by the printer system. In particular,
Sfbt c states that a printed task cannot be reset to unprinted.
Likewise, once the task has been dequeued it cannot be re-
enqueued. And, a task cannot be printed until it is dequeued.
Note that the structural constraints have to be satisfied in the
original as well as the graceful program. Also, at most one
variable can be changed in any transition. Thus,

Sfbt c := {(s, s′)|∃i, j ∈ 1 · · ·n,

(pi(s) = 1 ∧ pi(s
′) = 0)

∨ (di(s) = 1 ∧ di(s
′) = 0)

∨ (di(s
′) = 0 ∧ pi(s

′) = 1)

∨ (i 6= j ∧ di(s) 6= di(s
′) ∧ dj(s) 6= dj(s

′))

∨ (i 6= j ∧ pi(s) 6= pi(s
′) ∧ pj(s) 6= pj(s

′))

∨ (di(s) 6= di(s
′) ∧ pj(s) 6= pj(s

′))}

Thus, we identify safety specification for original program
as Sfbs 1 and Sfbt c; for graceful program asSfbs 2 and
Sfbt c. Note that although the set of bad transitions are the
same here, it is not a requirement for Algorithm 1.

Liveness Specification. The liveness specification re-
quires that eventually all tasks are printed. Thus,

Lv := true SL, whereSL := ∀i ∈ 1 · · ·n, di = pi(s) = 1

Application of Algorithm 1. We instantiate Algorithm
1 with following inputs:
− programp: is instantiated to be transitions correspond-

ing to programA. For simplicity, we assume that
there are three tasks in the system. Hence, the state of
the program is represented as(d1d2d3, p1p2p3), where
di (respectively,pi) denotes whether taski has been
dequeued (respectively printed).

− The safety specification is instantiated so that the set
of bad states isSfbs 2 and the set of bad transitions
is Sfbt c

− Liveness specification is specified to beLv.
− Invariant I is instantiated to be the states reached in

the computation ofA by starting from the initial state
(000, 000).

− State predicateSa is instantiated to beSp − I

First consider the candidate states generated outsideI

from Line 1 that also excludes those violateSfbs 2. In
general, as the weaker safety specification requires, new
program allows two tasks can be dequeued regardless either
one finished printing or not and a new task can then be
dequeued if either one of two previous dequeued tasks
finishes printing. In other words,

I∆ = {(110, 000), (110, 010), (111, 010), (111, 011),

(110, 110), (111, 100), (111, 101), (010, 000), (010, 010),

(011, 010), (011, 011)}

The new program transitions generated are all possible
pair of states inI∆ plus those recovered fromI∆ to I

provided that they do not violateSfbt c. There are no
deadlock states on Line 8. Moreover, since every state in
I or I∆ has a path to a state where all tasks are completed,
no state and transition are removed on Lines 11 and 12.

Now, we evaluate the new behavior of the printer system
in pg provided the context shown in figure 2. Ideally, the
program stays in invariantI while satisfyingSfbs 1, Sfbt c

andLv. However, if the program is perturbed to be outsideI

then it will satisfySfbs 2, Sfbt c andLv. Figure 2 shows the
behavior of the graceful program. Note that in this program,
the tasks being printed is not totally out of order, though
it is not FIFO. For example, task 3 cannot precedes task 2
provided that task 1 has not been printed.

000,000 100,000 100,100 110,100 110,110 111,110 111,111

111,100 111,101

110,000 110,010 111,010 111,011

101,100 101,101

010,000 010,010 011,010 011,011

Figure 2: Printer System with original invariantI =
{(000,000),(100,000),(100,100),(110,100),(110,110),(111,110),(111,111)}

and invariant (under weaker specification)Ig =
I ∪ {(110,000),(110,010),(111,010),(111,011),(110,110),(111,100),(111,101),

(010,000),(010,010),(011,010),(011,011)}

VI. RELATED WORK

The work in this paper is closely related to that of
controller synthesis, game theory and automated addition of
fault-tolerance. Controller synthesis considers the following
problem: Given two languagesU (plant) andD (desired
system), identify a third languageC (controller), such that
U ∩ D ⊆ C [8]. Thus, the goal is to begin with theplant
and addcontroller to obtain the desired system. The idea of
transforming a fault-intolerant system into a fault-tolerant
system using controller synthesis is was used in in [9]. Also
in [10], Girault and Rutten demonstrate the application of

discrete controller synthesis in automated addition of fault-
tolerance in the context of untimed systems. Our work in
this paper differs from this work in that we are trying to
relax the specification of the given system whereas they are
trying to strengthen it. In the context of game theoretical
approach for model revision, program is automatically fixed
as a game [11], [12]. The game is played on the model of
two players [13], i.e., program and environment. A program
is considered to win the game if the specification is always
satisfied no matter how the environment interacts with the
program. Game theoretic methods are generally based on
the theory of tree automata [14].

The model repair for probabilistic system [3] is to revise
a probabilistic systemM such that the new systemM ′

satisfies a probabilistic temporal logic formula.M ′ differs
from M only in the transition flows of controllable states.
Our work is orthogonal to that in [3] in that this work can
be extended in the context of dealing with probabilities and
their work can be extended to deal with addition of graceful
degradation. Algorithms for automatic addition of fault-
tolerance [1], [6] add fault-tolerance concerns to existing
untimed or real-time programs in the presence of faults, and
guarantee the addition of no new behaviors to the original
program in the absence of faults. In the context of this paper,
we utilize the synthesis algorithm for adding fault-tolerance.
Our work builds on this work by enabling repair in scenarios
where the previous work fails to perform repair or has a
significantly higher overhead for the designer.

VII. C ONCLUSION

In this paper, we presented the approach for generating
the graceful program. We presented a sound algorithm for it.
Additionally, we illustrated our approach with one example:
printer system. The example is chosen from [4] where a
similar graceful requirement is considered in the context of
manual design.

As we saw from the case study, the algorithm tries to
construct the graceful program to have maximal choice
(non-determinism). This algorithm also differs from previous
work on automated addition of fault-tolerance in that previ-
ous work on automated addition of fault-tolerance disallows
adding transitions in the absence of faults. By contrast,
in the design of graceful program,removing transitions is
disallowed. This ensures that the graceful program has all the
behaviors of the original program. Additionally, it adds new
behaviors that satisfy the weaker specification. These new
behaviors are crucial in providing recovery in the presence
of faults.

Although it is outside the scope of this paper, it
is possible to combine algorithms for adding fault-
tolerance/multitolerance to the problem of designing grace-
ful programs. Specifically, it is possible to add fault-
tolerance to the printer system discussed in this paper.
Other examples where this approach has been used include

byzantine agreement and ventilation control at Ohio Coal
Research Center (OCRC).

REFERENCES

[1] B. Bonakdarpour and S. S. Kulkarni, “Exploiting symbolic
techniques in automated synthesis of distributed programs,” in
In IEEE International Conference on Distributed Computing
Systems, 2007, pp. 3–10.

[2] F. Abujarad and S. Kulkarni, “Constraint based automated
synthesis of nonmasking and stabilizing fault-tolerance,” in
Reliable Distributed Systems, 2009. SRDS ’09. 28th IEEE
International Symposium on, sept. 2009, pp. 119 –128.

[3] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and
S. A. Smolka, “Model repair for probabilistic systems,” in
TACAS, 2011, pp. 326–340.

[4] M. Herlihy and J. M. Wing, “Specifying graceful degrada-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 2, no. 1, pp.
93–104, 1991.

[5] Y. Lin, S. Kulkarni, and W. Leal, “Tech-report: Automated
multi-graceful degradation: A case study,” inwww.cse.msu.
edu/∼sandeep/publications/ocrctech/ tech.pdf.

[6] S. S. Kulkarni and A. Arora, “Automating the addition
of fault-tolerance,” inFormal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), 2000, pp. 82–93.

[7] B. Alpern and F. B. Schneider, “Defining liveness,”Informa-
tion Processing Letters, vol. 21, no. 4, pp. 181 – 185, 1985.

[8] P. J. Ramadge and W. M. Wonham, “The control of discrete
event systems,”Proceedings of the IEEE, vol. 77, no. 1, pp.
81–98, 1989.

[9] K. H. Cho and J. T. Lim, “Synthesis of fault-tolerant su-
pervisor for automated manufacturing systems: A case study
on photolithography process,”IEEE Transactions on Robotics
and Automation, vol. 14, no. 2, pp. 348–351, 1998.

[10] A. Girault andÉ. Rutten, “Automating the addition of fault
tolerance with discrete controller synthesis,”Formal Methods
in System Design (FMSD), vol. 35, no. 2, pp. 190–225, 2009.

[11] A. Pnueli and R. Rosner, “On the synthesis of a reactive
module,” in Principles of Programming Languages (POPL),
1989, pp. 179–190.

[12] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair
as a game,” inConference on Computer Aided Verification
(CAV), 2005, pp. 226–238, LNCS 3576.

[13] W. Thomas, “On the synthesis of strategies in infinite games.”
in Theoretical Aspects of Computer Science (STACS), 1995,
pp. 1–13.

[14] ——, Handbook of Theoretical Computer Science: Chapter
4, Automata on Infinite Objects. Elsevier Science Publishers
B. V., 1990.

