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Abstract—Not only does storing data in the cloud utilize
specialized infrastructures facilitating immense scalability and
high availability, but it also offers a convenient way to share
any information with user-defined third-parties. However, storing
data on the infrastructure of commercial third party providers,
demands trust and confidence. Simple approaches, like merely
encrypting the data by providing encryption keys, which at most
consist of a shared secret supporting rudimentary data sharing,
do not support evolving sets of accessing clients to common
data. Based on approaches from the area of stream-encryption,
we propose an adaption for enabling scalable and flexible
key management within heterogeneous environments like cloud
scenarios. Representing access-rights as a graph, we distinguish
between the keys used for encrypting hierarchical data and
the encrypted updates on the keys enabling flexible join-/leave-
operations of clients. This distinction allows us to utilize the high
availability of the cloud as updating mechanism without harming
confidentiality. Our graph-based key management results in an
adaption of nodes related to the changed key. The updates on the
keys again continuously create an overhead related to the number
of these updated nodes. The proposed scalable approach utilizes
cloud-based infrastructures for confidential data and key sharing
in collaborative workflows supporting variable client-sets.

I. INTRODUCTION

Storing data in the internet is more or less a synonym
for storing data in the cloud. Google, Amazon or Microsoft
as Cloud-Service Providers(CSPs) provide a specialized set
of products satisfying any needs of customers and providers.
CSPs thereby have full access to any information stored on
their infrastructure even though some of them offer encryption
performed directly on their infrastructure.

Simply encrypting the data before upload guards the in-
formation against unauthorized access. Satisfying common
understandings of security (e.g. the NIST-definition [1]), en-
crypting works well for a limited amount of accessing users
due to the necessary sharing of a common secret. The flexible
utilization of cloud storages results in collaborative workflows
where different users work on common data. Shared secrets
neither offer secure ways to support such workflows nor utilize
the availability and scalability of cloud-based services since
changes within the set of authorized clients result in complex
re-encryption operations and the distribution of new shared se-
crets to all authorized clients. Versioning of the data provided
by multiple CSPs further complicates the key handling since
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the access to specific versions relies on corresponding specific
shared secrets.

Our approach tackles the challenge of managing access
rights upon shared versioned data on cloud infrastructures
for a restricted, flexible group with the help of the following
techniques:

o Disjunct clients share common data utilizing hierar-
chical organized access rights. The hierarchy related
to these access rights relies on a Directed Acyclic
Graph(DAG) where Encryption Keys(EKs) represent
group-keys and summarize disjunct clients represented by
Client Keys(CKs).

o Updates on the keys ongoing with changes on the
set of authorized clients occur encrypted and scalable
based upon well-established approaches from the area of
stream-encryption.

o Access rights are applied to any stored element within
past versions, the current version or future versions.

Our approach consists of three components, namely a global
Key Graph stored on a trusted third party environment, en-
crypted updates on the Key Graph as well as versioned data,
both stored encrypted in the cloud. The Key Graph relies
on existing graph-based key management approaches namely
VersaKey [2] extended as a DAG similar to [3]. This approach
binds key material to nodes related to each other representing
the DAG where the source nodes (represented by the “Client
Keys”(CKs) with the Key Graph) constitute the client rights
and the terminal nodes represent the most common access
rights called “Encryption Keys”(EKs).

Another adaption on VersaKey, includes the persistence of
the updates applicable on the Key Graph. These updates,
denoted as Key Trails, are not only broadcasted to the clients
once but stored in the cloud for on-demand updates of the
client keys as well. Similar to VersaKey, the nodes are ver-
sioned whereas each version of each node contains unique
key material to decrypt an element of the versioned data.

Any modification of the Key Graph results in an update
of all reachable EKs originating from the adjusted access
right represented by single nodes within the Key Graph. The
update includes the generation of new key material for these
nodes broadcasted over Key Trails. The resulting Key Trails,
consisting of the fresh key material encrypted with the related
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valid nodes, scale with the number of updated nodes since
each Key Trail relies on an edge incident to the updated
nodes. Instead of updating all shared keys, we therefore only
update the summarizing groups. We furthermore extend the
VersaKey-approach to utilize the version stored within the
nodes to provide temporal-aware access rights represented by
past versions of the data, the current version of the data and
future versions of the data.

By applying stream-based key management to versioned
data, we extend well-established graph-based key management
schemas and utilize the generation of encrypted key updates
by storing these Key Trails on high available and scalable but
untrusted cloud-infrastructures parallel to the encrypted data.

II. RELATED WORK

Related approaches in this area cover the scalable han-
dling of keys with the help of Key Graphs combined with
encrypted data on untrusted components represented by cloud-
infrastructures.

Sato [4] proposes a trust model for secure cloud usage. The
proposed model contains key management functionality al-
though no concrete key management approach was described.
Damiani and Pagano [5] propose an hierarchical organization
of the keys used for encrypting and storing data on the cloud.
The exclusion of existing users is performed by propagating
new keys after re-encryption of the data. Xu [6] proposes the
separation of content and format as a base for storing data
secure on the cloud. The data is encrypted by public/private
keys making collaborative key handling obsolete. Lou et al [7]
proposes a schema similar to ours despite the fact, that their
approach is in need of re-encrypting the data within changes of
the authorized users whereby this task is delegated to the CSP
as well. Capitani et al [8] offers a model for key management
for untrusted storages similar to ours. Keys are re-encrypted
to distribute the ability to access the data over the provider
and the user whereas we re-encrypt the keys to offer a secure
way to propagate updates over the cloud.

Storage upon untrusted components always needs sophisti-
cated approaches to grant disjunct, fixed defined users access
to common data without exposing any information about
the underlaying group management. Cryptree [9] represents
an approach to store data in an hierarchical manner with
permission-rights on subtrees mapped on groups. The under-
laying recursive data-structure scales with the numbers of keys
since the keys are inherited top-down in the tree. The focus
of Cryptree is similar to ours since we rely on hierarchical
group permissions suitable for hierarchical data structures as
well. Our approach extends Cryptree by versioning all keys
and the data. The access of former versions utilizes therby
the distributed environment while the distribution of the keys
leverages from the availability of the CSPs.

Multiple approaches exist to map key management to
graphs. Waldvogel [2] proposes the arrangement of client-
bound keys to an overall encryption key within a tree-structure
called VersaKey. We use the model of this approach for
updating the nodes.
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Fig. 1: Classic Key Graph

These approaches are extended to offer an even more
efficient key handling by Wong [10] where the key graph
propagates any changes via UDP/IP multicast. Forward error
correction reduces the messages for efficient and reliable key
updates.

Hassen [11] proposes another extension by introducing
intra-level changes on the tree. This approach enables key
graphs to change the affiliation of a node to a group.

The EKs in these approaches ensure scalability within join-
/leave-operations of clients and utilize their keys for direct
encryption within our approach. The resulting structure is not
a tree anymore but a DAG as proposed in [3], [12].

In our approach, we rely on this architectural style of
modeling hierarchical access rights into a DAG-structure. Even
though the scaling of the DAG degenerates within consecutive
changes on the keys, the combination of nodes to reduce
the DAG to a more efficient DAG-representation as proposed
in [13] stays out of focus since we use the hierarchy within
the Key Graph as semantic representation for organizational
issues.

III. GRAPH-BASED KEY MANAGEMENT FOR CLOUD
STORAGE

Figure 1 shows a DAG constructed similar to classic stream-
bound approaches [3], [12], [13].

Any data is encrypted with the help of EKs. To ensure
scalability within updates, CKs are combined with the help
of the EKs. Each client contains a subgraph consisting of its
own CK and the descendants whereas one global Key Graph
manages join-/leave-operations of nodes as well as insert-
/remove-operations of edges. If a client, represented by a CK,
joins or leaves the set of authorized clients, only parts of the
keys stored within each client must be updated. These parts
include the descendants of modified nodes.

Fig. 1 shows the insertion of the client 7 with the global
Key Graph. As a consequence of the insertion, the nodes 67,
47 and K2 have to update their key material to ensure that
the new client has the ability to access the data encrypted
by the descendants of its CK. Since each node contains a
version counter, represented by the number in the subscript
of the actual node identifier, the version of the updated nodes
increases.

Based on this graph-representation, VersaKey encrypts the
new key material of the updated descendants with the keys
stored in the adjacent nodes staying valid after the modifica-
tion. These encrypted updates, represented by the edges within
the Key Graph, are called Key Trails. One Key Trail thereby



is represented by an edge connecting two nodes (representing
single rights). The updates are propagated in a secure manner
by encrypting the Key Trails. For each dotted line in Fig. 1,
one Key Trail is computed as update e.g. Fg7, (471) where the
updated node 47 is encrypted with the updated node 67.

A. Key Graphs and Data Storage

VersaKey is originally applied to stream-based architectures
whereas access to former encrypted data is not necessary.
Regarding the usage of evolving Key Graphs for encrypting
data within storage, three adaptions must be made to apply
VersaKey on data storage:

1) The data to be encrypted is versioned. Stream-based
encryption abdicates the availability of former keys and
former data. The keys as well as the encrypted data are
only valid within a given point of time. Regarding data
storage, the sustainability of the data to be encrypted must
respect the changes within the key management ongoing
within single join-/leave-operations. The gained aware-
ness is achieved by versioning the data to be encrypted.

2) The Key Graph is versioned equivalent to the versioning
of the data. Since the key material changes regarding
different versions of the same node, all former keys from
the Key Graph must be available to ensure access to all
versions of the data. After each update on the Key Graph,
all modified nodes are therefore stored related to their
version.

3) The updates on the Key Graph occur only over Key Trails.
Since we rely on a versioning of the Key Graph, we use
the Key Trails not only for on-the-fly adapting of the Key
Graph but also as format for deltas between two versions
on the Key Graph. The set of Key Trails must therefore
respect the versions of the incident nodes. The encrypted
nature of the Key Trails is utilized to store updated key
material in the cloud as explained in Sec. III-B.

The defined adaptions result in a versioning of the Key
Graph independent from the versioning of the data. The data
is encrypted with the key material of the most recent version
of a suitable node. The decrypting of the data is provided by
the version of the corresponding node at the point of time of
modification. Old versions of the data are thereby only able to
be decrypted with fitting versions of Key Graph-nodes while
the current version of the Key Graph-nodes encrypts ongoing
modifications. Because of the binding of node-versions to data-
versions, re-encrypting the data within key changes is not
necessary. Figure 2 shows an evolving Key Graph, the related
Key Trails and an hierarchical data-structure.

CK u?2 leaves the group gl updating the same nodes like
the insertion of the new CK u0. The version of the nodes gl
and p is thereby increased twice. The join of the existing CK
ul to the group g2 however results in the update of the nodes
g2 and p whereas g1 stays unmodified. The updated nodes
receive new key material and increase their version number.
The old versions of the nodes stay accessible containing their
original key material and the corresponding pointers to their
environment.
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Fig. 2: Evolving Data, Key Trails and DAG

Independent from the updates of the Key Graph, the data
undergoes modifications. The keys on higher-levels in the Key
Graph encrypt higher-level elements within the hierarchical
data to benefit from inherited access rights similar to Cryp-
tree [9]. The related data encrypted with these nodes must
be aware of the current version of the Key Graph within each
modification. Fig. 2 shows the change on the Key Graph where
the CK u2 is excluded from the group g1 occuring before the
modification of the file “Filel”. The EK used for encrypting
the new version of “Filel” is based upon the new version of
the node g1. If the modification on the data occurs before the
update of the Key Graph, u2 has still access to the related
version of gl and therefore “Filel”.

All modifications on the Key Graph result in the generation
of the Key Trails depending on the set of modified nodes. The
Key Trails represent retrievable deltas replaying any changes
upon the Key Graph whereas the Key Trails are versioned as
well. Related to the example represented by Fig.2, CK 10 has
access to the most recent EK p by decrypting the Key Trail
E.0(gl2) and, with the resulting access on the most recent
node version of the node g1, the Key Trails Eg1,(p2) and
Eg1,(p3). With the help of the Key Trails, any version of the
Key Graph can be reconstructed out of a former version of the
Key Graph depending on the initial set of nodes.

B. Synergies between the Cloud and the Key Management

The aim of the appliance of our approach to cloud-based
infrastructures is to utilize the high available but untrusted
[14], [15] components within the cloud.

We therefore distribute the Key Graph, the data and the Key
Trails over different components as shown in Fig. 3:

o The key management is provided by two types of Key
Graphs:

— A centralized instance upon a trusted component repre-
sents the overall Key Graph called Key Manager. The
Key Manager contains all nodes within all versions and
triggers all changes upon the authorized client-set.

— Besides the centralized instance containing all valid
keys, each client holds its specific CK representing its
specific access rights in the defined versions.

o The Key Trails, fully encrypted by default, are stored in
the cloud. Due to the high availability and the scalability
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Fig. 3: Overview of proposed architecture

of the cloud-based services, the Key Trails stay accessible
for any accessing client even if the centralized Key
Manager is not available. Since the key material in the
Key Trails is encrypted, the CSP has no ability to access
any encrypted data in the cloud. The cloud is only utilized
for storing the updates and offer easy propagation of the
Key Trails to the clients.
o The data itself is stored encrypted in the cloud as well.

In Fig. 3, the Key Manager handles changes within the set of
authorized clients and computes the Key Trails pushed in the
cloud afterwards. The clients update their keys (if necessary
and possible) while the black arrows denote the transfer of
any data in/from the cloud. The access on the data is thereby
bound to the keys stored within the clients. Client 0 as one
example has only access to one version while the other clients
cache multiple versions since the related CK 0 was introduced
later in the global Key Graph.

IV. VERSIONED-BASED ACCESS

Even though the modifications on the Key Graph are inde-
pendent from the modifications on the data, one node of the
Key Graph in one version must map to one data element in
one version. Depending on the granted access rights, a client
might have the non-exclusive access on former versions of the
data, on the current version of the data or on future versions
of the data. To offer version-granular access on the data, an
extension to our approach must be made, since one version of
an EK has the ability to cover multiple versions of the data. If
a client should gain access only to the current status without
the ability to read former versions, simple sharing the related
node violates this restriction.

Figure 4a describes this problem: Consecutive modifications
on the “File2” are encrypted with one version of g2. Based
upon the usage of one EK to protect multiple versions, the
sharing of this key results in the access of all guarded versions.
A CK joining ¢2 within its first version automatically has
the ability to access all versions of “File2”. An access to
only version 2 of the data is not supported by the classic
VersaKey-mapping. Sections IV-A and IV-B describe two
possible extensions to our approach offering version-granular
access even on former versions of the data.

A. Shadow Structure

The first proposed extension to our approach restricting
access to only the recent version is represented by the insertion
of additional structures related to the Key Graph and the
data called shadow structures within the rest of the paper.
While the shadow structure of the Key Graph needs to be
versioned similar to the Key Graph itself containing own keys,
the shadow structure of the data is a clone of the data within
its most actual version. All modifying requests on the data
are thereby encrypted by a node from a shadow-Key Graph
called Shadow Key and applied to an unversioned shadow
structure of the data called Shadow Data. This operation takes
place simultaneously to the described encryption of the data
performed by the Key Graph for the versioned data storage.
The Shadow Key is implemented as extension to the original
Key Graph containing additional key material stored within
each node of the DAG to access only the Shadow Data
consisting of only the most recent version of the data. Since
the Shadow Data consists of only the current version of the
data, no access to former data versions is provided. As a result,
the Shadow Key is distributed and updated the same way as
the normal Key Graph including the storage of corresponding
Key Trails related to the Shadow Key in the cloud.

Figure 4b represents an example of the shadow structures.
While the data is encrypted and versioned with the help of
the EKs, the most recent modification is also applied to a
copy encrypted by the Shadow Key. Therefore, the access to
“File2” is provided not only via g2 but via the related Shadow
Key. Even if g2 within its version 0 guards several versions
of the data, the related Shadow Key guards only the most
recent version stored in the Shadow Data. If a client should
only access the latest version, the Shadow Key is published in
version O and suitable Key Trails are provided to reconstruct
its version 1. Besides, g2 is only provided within its most
recent version. The client, accessing the Shadow Key within
all of its versions, has the ability to access the Shadow Data.
The provided g2 with its latest version offers no access to
former versions of the normal data. Therefore, the client has
only access to the most recent version of “File2”: The access
to the versioned storage is only provided by non-accessible
versions of g2 while the Shadow Data is encrypted with the
accessible versions of the related Shadow Key.
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B. Token-based Extension

Another mechanism for restricting the access to defined
former versions on the client is the deployment of an au-
thorization layer within the distributed environment. The Key
Manager contains a list of resources applied to the nodes. This
mapping between the nodes and the data is enriched by the
versions being valid for the different clients. For each client,
the resources in the data encrypted with a node are bound
to versions. The additional authorization structure is deployed
additionally to the global Key Graph within the Key Manager.
The binding between the versioning of the Key Graph and the
data is represented by this structure.

Figure 5 shows an example: “Client 0" has access to version
3 of g1 whereas “Client 1" has the ability to access all versions
stored under the same EK. Since the mapping between DAG
and data takes place by a dedicated structure, each client
contains all descendants of the own CK in all versions. Related
to the example of Fig. 5, “Client 0” contains all versions of
g0 since the authorization for different versions is not in need
of the Key Graph.

Each descendant of each CK represents at most one rule
mapping the versions of the data to the versions of the Key
Graph for the accessing clients. The rules are thereby not
bound to the different versions of one node but to the node
itself. Regarding the example of Fig. 5, “Client 0” contains
three descendants of the own CK resulting in at most three
rules represent the version-mapping between “Client 0” and
the Key Graph.

The proposed access-structure acts as a base for a token-
based approach including the cloud, the disjunct clients and the
centralized Key Manager. The workflow is denoted by Fig. 5.
The client requests a version. The requested access is verified
against the proposed authorization structure within the Key
Manager. Based upon the versions allowed for this client and
the requested resource, a token is negotiated between the Key
Manager and the cloud-instance. The token is encrypted and
only readable for the cloud and the Key Manager representing
a single rule for a dedicated client. After negotiation, the
resulting token is sent to the client. The client is not able
to decrypt the content neither to modify the content without
violating it. With every request, bound to the fixed resource
within one of the desired versions, the token must be delivered
to the cloud-instance from the client. The cloud has the ability
to decrypt the token and to verify the access on the requested
version of the data.

Due to the encryption of the modifications with the help
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of the different EKs, the awareness of the data by the CSP is
constricted only to the versioning and not to the data itself. The
client has the ability to encrypt all data stored in the cloud with
the help of the decrypted Key Trails resulting in a subgraph of
the global Key Graph. Based upon the authorization structure
mapping the versions of the Key Graph to the versions of the
data, the access on the encrypted data in the cloud is guarded
additionally to the encryption by the Key Graph.

V. IMPLEMENTATION, EVALUATION AND SCALING

The proposed approach was implemented within the secure
storage system Treetank [16], [17] as extension containing
a random generated DAG. The DAG, representing our Key
Graph, is generated randomly with 250, 500 and 1000 nodes
and consists of 10 levels whereas these parameters are chosen
arbitrarily to benchmark the scaling of our approach. While the
EKs are distributed equally on maximal 10 levels, 8 terminal
nodes are included in this set of EKs. The outdegree of each
node, except the terminal nodes, is at most 3, meaning that
each node has at most 3 children. The indegree of the EKs in
opposite is not restricted.

Incrementally, 6400 different CKs are deployed to the
resulting DAG. Each CK is linked to between 1 and 3 random
selected EKs. After each CK-insertion, a new version for all
descendants of the inserted CK is created. After a fixed number
of insertions (50, 100, 200, 400, 800, 1600, 3200 and 6400),
the generated Key Trails and the updated nodes are traced.

Within the insertion of single CKs, only a constant number
of related EKs is updated as shown in Fig. 6b since the edges
between the EKs are already existing before the insertion of
the CKs.
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Figure 6a shows the scaling of updated nodes cumulated
within all versions whereas the y-axis again denotes the num-
ber of EKs updated and the x-axis represents the CKs joining
the DAG. The number of nodes scales linear with the number
of CKs inserted as expected. This scaling substantiates our
assumption that only a constant number of nodes is updated
within each CK-insertion.

Figure 6¢ shows the number of Key Trails camulated over all
versions whereas the y-axis represents the Key Trails generated
(scaled logarithmically) and the x-axis denotes the CKs joining
the DAG. Logically, the more CKs are introduced in the DAG,
the more Key Trails are generated. Since the Key Trails are
computed based upon the incident edges on the modified
nodes, the scaling is linear. Any modification on the DAG
results in only a constant number of updated nodes, namely
the descendants of the modified node.

VI. CONCLUSION AND FUTURE WORK

Within our approach, we successfully bring stream-based
Key Graph-approaches to the area of cloud storage. Our
proposed distributed architecture versions not only the data but
also the Key Graph enabling changes within accessing clients
without the need of re-encrypting any data. Modifications
on the Key Graph update the descendants of the modified
node. The updates themselves are introduced as Key Trails
representing the edges within the Key Graph. Since the Key
Trails are encrypted and stored, we use the high availability of
untrusted cloud-based services propagating any changes within
the clients. The access to former versions is provided either
by a separate shadow-structure of the data and the Key Graph
or by utilizing the distributed architecture of our approach.
Even though this enables access to former versions within
new clients, we believe that in this area more sophisticated
ideas can be developed by utilizing the distributed architecture.
Further improvements of our approach include the distribution
of the key management to make the centralized Key Manager
obsolete similar to the original VersaKey-approach. Since we
update the Key Graph manually, we further evaluate function-
based adaptions of updated nodes making the manual key
generation within each node obsolete and utilizing the dif-
ference between join- and leave-operations of CKs similar to
VersaKey. Utilizing the keys within a versioned storage offers
us furthermore an inclusion of higher level security goals like

non-repudiation [1] when equipping the Key Graph with a
node-unique signature signing all version on the data.
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