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Abstract—In this paper, we present PDP, a distributed
polling protocol that enables a set of participants to gather their
opinion on a common interest without revealing their point of
view. PDP does not rely on any centralized authority or on
heavyweight cryptography. PDP is an overlay-based protocol
where a subset of participants may use a simple sharing scheme
to express their votes. In a system of M participants arranged
in groups of size N where at least 2k−1 participants are honest,
PDP bounds the probability for a given participant to have its
vote recovered with certainty by a coalition of B dishonest
participants by π(B/N)k+1, where π is the proportion of
participants splitting their votes, and k a privacy parameter.
PDP bounds the impact of dishonest participants on the global
outcome by 2(kα + BN), where α represents the number of
dishonest nodes using the sharing scheme.
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I. INTRODUCTION

The privacy has become one of the top concerns and

requirements of many distributed collaborative applications.

Collaborative tasks and computations are often conducted

based on the inputs supplied by the collaborative users.

Such computations could occur between trusted partners,

between partially trusted partners, or between competitors

[2]. Online Social Networks ‘OSN’ with up to a billion users

have dramatically raised concerns on privacy leakage. As

far as privacy is concerned, users’ personal data should be

accessible only to authorized users within such networks.

Recall that an OSN could be defined as a web-based

platform that allows users to share a variety of personal-

related information including: Ideas, activities, events and

interests within their individual networks. The user’s indi-

vidual networks are made up of individuals tied by one or

more specific types of interdependency, such as friendship,

common interest or other relationships. Hence, an individual

network consists in nodes (i.e. users) connected by different

types of ties which represent the relationships between such

nodes.

In some kind of social network application, even directly

connected nodes should not have access to various bits

of private information. Consider the following example of

polling within OSN: The users of a social network use

a polling to take decisions about political, professional or

social interests (e.g. the organizers of a Saturday night party

asking in a social group whether partners should be invited

too?). While participants care more and more about their

reputation, no one likes to disclose his point of view to the

other participants. Therefore, such groups need a way to

launch polling while maintaining the privacy of participant’s

point of view.

As authors of [1] point out, an easy way to conduct a poll

is to use a central server. Each participant sends its vote to a

central entity, which subsequently aggregates all votes and

computes the outcome. Besides the non-scalability of this

solution, the privacy is not ensured as participants might

generally not want their votes (and maybe even the subject

of the poll or the result) to be seen by a central entity, be it

trusted or not.

The above example could be seen as two or more parties

wanting to conduct a computation based on their private

inputs, but neither party is willing to disclose its own input

to anybody else. The problem is how to conduct such a

computation while preserving the privacy of the inputs. This

problem is referred to as Secure Multi-party Computation

problem ‘SMC’ in the literature [3].

Currently, to solve the above problems, a common strategy

is to assume the trustworthiness of the service providers,

or to assume the existence of a trusted third party, which

is risky in nowadays’ dynamic and malicious environment

[2]. Therefore, protocols that can support joint computations

while protecting the participants’ privacy are of growing

importance. In theory, the general secure multi-party compu-

tation problem is solvable [3]. However, using the solutions

derived by these general results for special cases of multi-

party computation can be impractical; special solutions

should be developed for special cases for efficiency reasons

[4].

In this paper, we consider a set of M participants P =
{p1, p2, ..., pm}, involved in a polling session (e.g. a set of

persons wish to launch a survey on a common interest).

Each participant will vote to express his own opinion. In

general, we denote vi the vote of the participant pi. After

the execution of the polling protocol, the output consists in

the sum of participants’ votes. The computed sum represents
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the tendency of the majority of participants. We consider

a fully decentralized scheme where there is neither central

trusted server nor an entity with a specific role. Hence,

all participants are involved in the computation of the

polling outcome. We consider polling within two choices.

Participants choose as input one of two values (e.g. (yes or

no), (agree or not agree), (support or against) etc).

Participants could either be honest or dishonest. An honest

participant strictly follows the protocol and contributes to the

verifications as long as its privacy is not compromised. A

dishonest participant may misbehave to reveal the opinion of

honest participants. An important issue is when a group of

dishonest participants, named coalition, conspires in order to

reveal the input of a given participant. We aim at enabling

participants to have precise polling’s output. At the same

time, no user should learn anything about the input of other

honest users, even if he colludes with the other malicious

users.

The key contribution of this paper consists in PDP, a

probabilistic Private Distributed Polling protocol that allows

a set of users to conduct a polling session without revealing

their choices. PDP ensures votes privacy such that, in a

system of M participants organized in groups of size N
where at least 2k−1 participants are honest, PDP bounds the

probability for a given participant to have its vote recovered

with certainty by a coalition of B dishonest participants

by π(B/N)k+1, where π is the proportion of participants

splitting their votes, and k a privacy parameter. Consider-

ing the uncertain detection where a coalition of dishonest

participants agrees on a probabilistic detection rule (section

VI. B), the probability of votes detection is represented by

the following formula : B
N [N−r

N + r(k+1)
∏B−1

i=0
N−2k−i

N−i ].
Further, PDP bounds the impact of dishonest participants on

the global outcome by 2(kα+BN), where α is the number

of dishonest nodes using the sharing scheme. To sum up,

our protocol has the following advantages: (1) The proto-

col’s output is computed by participants themselves without

interaction with any third entity; (2) The protocol preserves

data privacy such that the probability of vote detection is

related to the decision rule used by dishonest participants;

(3) The polling’s outcome is accurate when there is no

data loss or dishonest act; (4) The impact of dishonest

participants on the outcome is bounded. Moreover, PDP does

neither rely on heavyweight cryptographic techniques nor on

the trustworthiness of a third party. Reducing the usage of

cryptographic techniques helps voters to use the protocol

even with low-performance equipment. It also avoids the

need to manage key distribution.

Section 2 gives an overview of existing works. Section 3

describes the system model. The PDP protocol is described

in Section 4. In Section 5 we study the PDP performance.

In Section 6 a privacy analysis has been made. A discussion

about the impact of dishonest nodes is given in Section 7

where we compute the maximum gap on poll’s result due

to dishonest acts. Section 8 concludes the paper.

II. RELATED WORK

Several works have been proposed to ensure the privacy

and the anonymity of voting participants. Existing works

can be divided into two main categories: Protocols based on

cryptographic primitives and those based on secret sharing

techniques. In general, cryptographic based voting protocols

make use of one the following techniques:

• Mix-net (introduced by Chaum in [5]): In [9], the au-

thors proposed a secure anonymous channel that avoids

the problem of ciphertext length expansion. Thus, they

presented an election scheme based on the proposed

anonymous channel. Authors of [10] proposed the

Randomized Partial Checking in order to improve the

robustness of mix-net based e-voting protocols.

• Blind signature (introduced by Chaum in [6]): Authors

of [11] presented an electronic polling based on blind

signature and RSA algorithm. The considered architec-

ture assumes, in addition to the voters, a polling server

and a trusted third party.

• Homomorphic schemes based on ElGamal [7] or Pail-

lier [8] cryptosystems: In [12], the authors presented

a multi-authority secret ballot scheme based on the

ElGamal encryption. Authors of [13] proposed a voting

protocol based on [12] to improve the total complexity.

The ensured privacy relies on the trustworthiness of the

authorities. Several protocols based on homomorphic

schemes have been proposed [14-17].

The above solutions have an important computational

cost. Actually, the cryptographic based protocols help to

ensure data privacy. However, they are too complex and time

consuming for being used in a large scale polling system.

On the other hand, since the introduction of secret sharing

scheme based on polynomial interpolation by Shamir in

[18], several extensions and protocols have been proposed.

Authors of [19] and [20] proposed respectively the Verifiable

Secret Sharing scheme and a scheme to combine multiple

secrets by direct operations on the shares. The later was

extended in [21] where the authors showed how multiparty

computation may be conducted based on VSS. In fact, these

techniques may be used for polling application, but they

involve higher mathematics.

Moreover, based on a variation of Chaum’s mix nets,

Authors of [22] proposed AMPC (Anonymous MuliParty

Computation) which provides a generic building block for

electronic anonymity in various applications. AMPC and

enhanced check vector have been applied in [23] for e-voting

application. While powerful, this protocol differs from our

work since participants have distinct and predefined roles.

This may result in decreased scalability and robustness if

specific nodes fail. Therefore, the majority of the existing

works related to voting protocols is based on cryptographic
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Figure 1. The system model

primitives, trusted third parties, or assign specific role to

some entities.

Recently, the authors of [1] proposed DPol, a protocol for

distributed polling. This protocol is based on a simple shar-

ing scheme. In DPol, the authors do not take into account

the number of participants splitting their inputs, and assume

that all participants use an identical sharing scheme. Thus,

more messages are exchanged between participants. In this

paper, we propose a distributed polling protocol that takes

into account this parameter (i.e. The number of participants

splitting their inputs). We show that this reduces the number

of exchanged messages and the execution time. We consider

two types of detections in the privacy analysis (Section VI):

Reliable and Uncertain detection of a participant’s vote.

PDP reduces the probability of reliable detection, whereas in

the uncertain detection, malicious participants do not have

any insurance that the disclosed value represents the real

participant’s input.

III. SYSTEM MODEL

The model consists of M participants; each participant is

represented as a uniquely identified node. Each participant

has its private numerical input vi. The global outcome of the

polling protocol is the sum of votes made by the existing

participants (
∑

i vi).
The M nodes are clustered into G ordered groups, from g0

from to gG−1. Each group contains Nj nodes (
∑G

j=1 Nj =
M). A node pi in group gj maintains two sets of nodes: A set

Po of officemates containing all nodes belonging to the same

group (Po = gj\{p}) (i.e. the set of participants in gj except

p) and a fixed-size set Pp of proxies, containing a subset

of next group (Pp ⊆ gi+1modG). The number of proxies

for a given node is equal to 1 or 2k + 1. The procedure

to define the number of proxies is described later in this

section. Therefore, all groups virtually form a ring, g0 being

the successor of gG−1 (Fig. 1). Each group gj is a clique.

We define a client of p as a node for which p acts as a

proxy. In other words, if p is a proxy of q, then q is one of

its clients. Every node maintains a list of its clients in the

previous group (Pc ⊆ gi−1modG). A node discards every

message originating from a node that is not in Pc ∪ Po.

We assume: a random uniform distribution of nodes across

the G groups, nodes in the successor groups are distributed

uniformly at random as proxies in the predecessor groups

and messages arrive correctly to their destinations.

An overlay, respecting such system model, may be con-

structed based on Distributed Hash Tables (DHT), where

the group identifier of a given node is determined based

on the node’s id (e.g. idgrp = Hash(idnode)mod(G)). The

number of proxies assigned to a given node is based on a

computation that involves node and group identifiers (e.g.

we may compute the hash function of the node identifier

and the group number modulo a random value. If the result

is an odd number, then one proxy will be assigned to

that node, else we will associate 2k + 1 proxies). Then,

each node establishes a three-way-handshake protocol to

inform its proxies that it is one of their clients. Therefore,

each node gets the list of its clients and proxies. The list

of officemates is received by a simple request for nodes

having the same group identifier. Let us note that byzantine

agreement protocol might be used as subroutine to handle

the problem of dishonest nodes that may fake their group

membership. This issue is not treated in this work.

IV. PROTOCOL DESRIPTION

In the following, we give a description of the suggested

probabilistic Private Distributed Polling protocol (PDP). In

PDP, participants are clustered in fully connected groups

(or clusters). Participants may use a message sharing tech-

nique to encode their private inputs, in such a way that

it is not possible to differentiate a partial message from

the entire message. Then, they send the shares of their

inputs to proxies, belonging to another group. Each group

computes a partial tally that is further broadcasted to all

other groups. Each participant eventually outputs the same

global outcome.

PDP consists in three steps: Sharing, counting and broad-

casting. During the first step, a participant generates a single

message (mi = vi) or a set of shares reflecting the private

input (
∑

i mi = vi) and sends each generated share to one

of its proxies (Line 1 in Algorithm1). In the counting step,

each node will compute the sum of the clients shares (Line

2 in Algorithm1). Such sum is called individual tally. Then

each proxy will broadcast the result to its officemates. Each

participant will compute the local tally which is the sum

of the individual tallies received from its officemates (Line
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Figure 2. PDP protocol

Algorithm 1 Node p in group gi, i ∈ {0, .., G− 1}
Input: a vote v ∈ {−1,+1}
Variables:

an individual tally, it = 0
a local tally, lt = 0
an array of local tally sets, S[{1, .., G}]
a local tally array, T [1, .., G]

Output: the global tally gt
Polling Algorithm

1. vote(v, Pp)
2. local count(it, Pp)
3. lt = lt+ it
4. local tally broadcast(i, lt, Pp)
5. gt =

∑
i T [i]

3 in Algorithm1). Finally, the local tallies are forwarded

along the ring so that all nodes eventually compute the final

outcome, named global tally (Line 4, 5 in Algorithm 1).

Step 1: Sharing. (Fig. 2 (a)) Each participant node could

cast its vote as a single share or as a set of 2k + 1 shares.

Votes are encoded in boolean value (+1 or −1). To split

a vote into 2k + 1 messages, the messages and their sum

should belong to the set {−1,+1} (i.e.∀i,mi ∈ {−1,+1}
and

∑
i mi ∈ {−1,+1}), and k + 1 messages should be

identical. Since the votes and their shares belong to the set

{−1,+1}, participants cannot differentiate between a vote

and its shares. Hence, for a participant who wants to vote

for +1-value, the participant has to send k + 1 messages

containing +1-value and the other k messages with -1-value.

Let us recall that some participants could send their votes in

single shares (i.e. a single message containing −1 or +1).

Hence, when a proxy receives a message from a given client

node, the proxy could not distinguish if such share was

generated as a single one or it is one among the previously

generated 2k+1 shares. Once a node has generated its 2k+1
messages, it sends each of them to a distinct proxy. Once

every node in the system has received one share from each

of its clients, the sharing phase is over (Algorithm 2).

Step 2: Counting. (Fig. 2 (b)) Recall that in the sharing

Algorithm 2 Sharing phase

Procedure vote(v, Pp) is
1. m = v
2. if (|Pp| == 1) then
3. send[share,m](Pp)
4. else
5. for each proxy ∈ Pp do
6. send([share,m], proxy)
7. m = −m
8. end for
9. end if
upon event < receive|[share,m] > do
10. it = it+m

step, each participant node within a group gi−1, sends a

single share or (2k + 1) shares to its proxies in the group

gi. Now, in the intermediate counting step, each proxy

within the receiving group gi will compute the sum of the

received shares from its clients in the group gi−1 (Line 10 in

Algorithm 2). The value of the counted sum is designated as

the Individual Tally (ITj =
∑

i m
j
i , such that mj

i represents

a message sent from participantpi to pj). Note that each

proxy will have its own individual tally. Each node waits

for the reception of the expected number of shares from its

clients (i.e. based on the list of his clients).

Algorithm 3 Counting phase

Procedure local count(it, Po) is

1. for each officemate ∈ Po do
2. send([IndividualTally, it], officemate)
3. end for
upon event < receive|[IndividualTally, t] > do
4. lt = lt+ t

Once a participant node has received the expected number

of shares, it broadcasts the computed individual tally to its

officemates (Lines 1-3 in Algorithm 3). Each officemate will

compute the sum of the received individual tallies resulting

in a local tally of its group (LTj =
∑

p∈g ITp ) (Line 4

in Algorithm 3). Then, each officemate will forward the
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computed local tally to its proxies in the next group.

Step 3: Broadcasting. (Fig. 2 (c)) In the previous step,

each officemate has calculated the local tally of its group.

During the local tally forwarding step, each officemate will

send the local tally of its group to its proxies (Lines 1-

3 in Algorithm 4). If all the officemates are honest, their

computation leads to the same value of the local tally. Once

a participant node in the group gi receives the local tally of

its group gi from the client in the previous group gi−1, the

local tally is no longer forwarded. When a participant node

receives local tallies of all groups, the global tally will be

computed by summing these local tallies (GT =
∑G−1

g=0 LTg

). In this case, such value has crossed the ring and received

in its initial sender. This global tally is the global outcome of

the polling session. Note that all participants should compute

the global tally after reception of local tallies.

Algorithm 4 Broadcasting phase

Procedure local tally broadcast(i, lt, Pp) is
1. for each proxy ∈ Pp do
2. send([LocalTally, i, lt], proxy)
3. end for
upon event < receive|[LocalTally, igroup, t] > do
4. S[igroup] = S[igroup] ∪ t
5. if (S[igroup] = |Pc|) then
6. local tally broadcast(i, T [igroup])
7. end if

V. CORRECTNESS AND COMPLEXITY ANALYSIS

A. PDP’s Accuracy

In order to prove the correctness of the suggested PDP

algorithm, we assume that all participants are honest respect-

ing the protocol rules. An honest participant votes using a

single or 2k+1 messages and remains conform to the rules

of the PDP protocol.

Theorem: Assume a polling system with only honest

participants, where each participant votes with a single

message mi = vi or 2k + 1 messages
∑2k+1

j=1 mj = vi,
the PDP algorithm terminates and each participant node

eventually outputs the total sum of the participants votes

(
∑

p vp).

Proof: (Correctness). In order to prove the accuracy

of this protocol, we will start from the first phase. For

a given group gi−1 , the sum of messages sent by this

group is equal to S =
∑r

s=1

∑2k+1
j=1 mj,s +

∑|gi−1|
s=r+1 ms =

∑r
s=1 [(k + 1)vs + k(−vs)] +

∑|gi−1|
s=r+1 vs =

∑
p∈gi−1

vp.

Where p is a participant node, r is the number of participants

within the group gi−1 using 2k+1 messages to express their

votes and mj,s is thejth message sent by the participant s.

In the second step, members of the group gi will receive a

set of messages from the group gi−1. The computed local

tally of the group gi is equal to LT =
∑

p′∈gi
∑

p∈gi−1
mp′

p ,

where mp′
p is a message sent from participant p to p′. Since

we assume only honest nodes, the set of messages sent by

nodes in gi−1 is the set of ballots received in gi. Therefore,

the local tally computed in the given group gi reflects the

vote of all nodes in gi−1.

During the last step, each participant will forward local

tallies received along the ring. The global tally is computed

by each participant once all local tallies are received (i.e. the

number of local tallies is equal to the number of groups).

Since participants do honestly forward the local tallies along

the ring and the messages are eventually received, each node

ends up with the correct values for the local tallies of every

group, thus the correct global tally GT =
∑G−1

g=0 LTg =∑
p∈{N1} vp +

∑
p∈{N2k+1} vp, where {N1} is the set of

participants using a unique message and {N2k+1} represents

the set of participants using 2k+1 messages to express their

votes.

Proof: (Termination). In the proposed protocol each

participant knows the number of its proxies, its clients and

its officemates. So nodes know the number of messages they

are supposed to receive in each step. Since every participant

node sends the required number of messages and every

message eventually arrives, each step completes. As the

algorithm is a finite sequence of steps (i.e. 3 steps), it is

guaranteed to eventually terminate.

B. PDP’s Complexity

In order to compare the complexity of DPol, the dis-

tributed polling protocol proposed in [1], and PDP, we have

measured the average of the number of messages sent by a

participant during different phases of the protocol, and the

average time spent to execute the algorithm. Let us note

that the performance measurements are made based on an

experimentation of the PDP protocol.

In DPol, all participants share their votes into 2k + 1
messages. The asymptotic average number of messages sent

by a node in group gi is O(G.k + |gi|) [1]. Since in

PDP only a subset of participants will share its votes into

2k+1 messages, we predict that DPol will be r times more

expensive than PDP in terms of message complexity, where

r is the proportion of nodes voting with a single message.

The protocols were launched several times, varying the

number of nodes and the number of groups. Figures [3 -

6] show the impact of the number of nodes on the number

of exchanged messages and voting duration. The number of

nodes varies from 50 to 400. It shows that PDP requires

fewer messages than DPol and the execution time is lower

compared to DPol’s voting duration even if they have the

same number of steps. Figure 3 shows that the number of

messages increases linearly with the number of nodes for

both protocols, but PDP scales better than DPol. In figure 4,

the difference in the number of messages between DPol and

PDP becomes increasingly wide, which is due to the fact
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Figure 3. Number of messages vs. Number of nodes (10 groups)

Figure 4. Number of messages vs. Number of groups (10 nodes per group)

Figure 5. Voting duration vs. Number of nodes (10 groups)

that increasing the number of groups leads to an increase in

the number of nodes.

Figure 6. Voting duration vs. Number of groups (10 nodes per group)

The aim of figures 5 and 6 consists in studying the impact

of the number of nodes and groups on voting duration for

DPol and PDP. Figures 5 and 6 show the gain in terms

of duration. The figures depict that the necessary time for

the voting session increases with the increase of number of

groups and nodes.

VI. PRIVACY ANALYSIS

A. Reliable Detection

In this section, we will discuss the case when the vote

of a given participant may be disclosed. Let us recall that

participants express their votes either in the form of 2k+ 1
messages or by sending only a single message. There are

two cases where the vote of a participant can be surely

disclosed. The first case is when k + 1 dishonest proxies

received k + 1 messages containing the most represented

value. The second case consists in participants using only 1
message to express their votes. In order to know the type

of a given message, at least N − 2k + 1 dishonest proxies

must collude, where N is the number of participants in a

group. Therefore, if one of them receives the message of

a participant using a single share, the vote of the sender

will be certainly disclosed. Since the nodes are uniformly

distributed, we can estimate the upper bound of the number

of dishonest nodes in a group. Let us note B the maximum

number of dishonest participants in a group.

Lemma 1: The probability, for a given participant using

2k + 1 messages, to have its vote recovered by a coalition

of B ≥ k + 1 dishonest nodes is bounded by ( r
N )(BN )k+1.

Proof 1: Participants using 2k + 1 messages to express

their votes, send k+1 messages with a given value (i.e. −1
or +1). The vote of such participant is surely revealed by a

coalition of dishonest participants if and only if k+1 proxies

that received the k+1 shares containing the most represented

value collude. In PDP, only r participants split their votes,
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so the probability that the vote of these participants to be

disclosed is ( r
N )[

(
B

k+1

)
/
(

N
k+1

)
] ≤ ( r

N )(BN )k+1.

Lemma 2: The probability, for a given participant using

a single message, to have its vote recovered by a coalition

of B ≥ N − 2k + 1 dishonest nodes is (BN )(N−r
N ).

Proof 2: The vote of a participant, using only a single

message to express its vote, can be disclosed if and only

if N − 2k + 1 dishonest proxies collude and one of these

proxies receives the vote of the victim. This is due to the

fact that the messages do not contain any information about

their types either being a single or a shared message (i.e.

the sender has split its vote or not). Thus, the probability

that the vote of a participant using a single message to be

surely disclosed is (BN )(N−r
N ), where r is the number of

participants sharing their votes.

Theorem: When at least 2k−1 participants are honest, the

probability for a given participant to have its vote recovered

with certainty by a coalition of B dishonest nodes is bounded

by ( r
N )(BN )k+1.

Proof: The vote of a participant using 2k + 1 messages

can be disclosed only if k+1 proxies that received the most

represented value collude. Accordingly, if the number of

dishonest nodes B is less than k+1, the vote of a participant

using 2k+1 messages cannot be surely revealed even if all

dishonest nodes collude. However, if they are more than

k + 1 dishonest nodes, the probability that the vote can be

disclosed is bounded by the value ( r
N )(BN )k+1 (Lemma 1).

On the other hand, the votes of participants using single

messages require at least N − 2k + 1 colluding dishonest

nodes to be disclosed with certainty, and the probability

of a certain detection is equal to (BN )(N−r
N ) (Lemma 2).

Summing the conditional probabilities (Lemmas 1 and 2)

bounds, in the worst case (i.e. where B ≥ N − 2k + 1),

the probability of a certain detection by : ( r
N )(BN )k+1 +

(N−r
N )(BN ). However, saying that B ≥ N − 2k + 1 means

that less than 2k−1 participants are honest. This condition is

rarely true. Therefore, the probability in general is bounded

by ( r
N )(BN )k+1.

Privacy comparison

In order to compare the privacy in DPol with the privacy

ensured by PDP, we have traced the curves that represent

the probability that the vote of a given participant will be

certainly discovered. Figure 7 displays the variation of this

probability according to the number of dishonest nodes.

In this study, we consider a group of 100 participants

with k = 1 (i.e. participants using 2k + 1 messages will

send 3 messages to express their votes). r is the number of

participants using 2k + 1 shares, this value changes from

one curve to another in figure 7. In the x-axis, we have the

number of dishonest participants and the y-axis represents

the probability that the vote of a participant is certainly

disclosed.

Figure 7. Privacy in PDP and DPol

Figure 8. Impact of participant sharing their votes on the probability of
reliable detection

As depicted in figure 7, PDP in all its variants offers

more privacy than DPol as long as the number of dishonest

participants does not exceed N − 2k+1. In addition, when

the number of participants using 2k+1 messages decreases,

the privacy increases. Thus, we get the maximum privacy of

PDP, based on reliable detection, when just one participant

shares its vote and the number of dishonest participants is

less than N − 2k + 1.

Figure 8 represents the impact of the parameter r (i.e. the

number of participants expressing their votes with 2k + 1
messages) on the probability of reliable detection. From this

figure, we can easily conclude that the privacy decreases

with the increase of the parameter r.

These results are due to the fact that, dishonest nodes are

willing to be sure about the disclosed participants’ votes.

If dishonest nodes receive a single message from an honest

participant, they have to verify that this participant has a

single proxy. This verification cannot be done if they are

less than N − 2k + 1 nodes. Thereby, detecting votes of

participants using 2k + 1 messages is easier than detecting
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votes of participants using single messages since k + 1
dishonest nodes suffice. For this reason, when the number

of participants sharing their votes increases, the probability

of the certain detection increases.

Let us recall that the current analysis consists in re-

liable detection of honest participant’s vote. This means

that dishonest nodes will be sure that the revealed value

represents the real vote. In the next subsection, we focus on

the uncertain detection where participants are not sure of the

certainty of the detected vote.

B. Uncertain Detection

The aim of the subsection is to study the uncertain

detection of an honest participant’s vote. The uncertain

detection consists in detecting votes without sureness. This

happens when a set of dishonest participants agree on the

following rule: {upon reception of a single message, it will

be considered as the sender’s vote}. This means that, when

a set of dishonest proxies receives a single message from an

honest client, they will suppose that the received message is

the client’s vote. When their decision is correct, they succeed

to discover the vote. However, they fail if the node has sent

2k+1 messages to express its vote, and the set of dishonest

nodes received only a message which does not represent

the participant’s vote. Dishonest participants will succeed to

disclose the vote if one of the following events occurs:

• The honest participant has sent only a single message

and it was received by dishonest proxies.

• The second case is when the following conditions are

satisfied:

– The client has sent 2k+1 messages to express his

vote.

– The set of dishonest proxies received only one

message representing the participant’s vote.

– The other k messages and their complementary

were received by honest participants.

The probability to discover the vote of an honest par-

ticipant is P = P (Dj/j∈{N2k+1}).P (j ∈ {N2k+1}) +
P (Dj/j∈{N1}).P (j ∈ {N1}) where {N1} represents the set

of participants voting with single messages and {N2k+1} is

the set of participants voting with 2k + 1 messages. While

r is the number of participants sharing their votes, P (j ∈
{N2k+1}) = r

N and P (j ∈ {N1}) = N−r
N . It is clear that

the probability of the first event is equal to P (Dj/j∈{N1}) =
B
N . The probability of the second event is expressed

after reduction by the formula: P (Dj/j∈{N2k+1}) =

[
(
B
1

)(
N−B

k

)(
N−B−k

k

)
/
(

N
k+1

)(
N−k−1

k

)
]. By summing the

conditional probabilities, we can conclude that the probabil-

ity of the uncertain detection may be expressed as follows:

P = B
N [N−r

N + r(k + 1)
∏B−1

i=0
N−2k−i

N−i ].
Figure 9 shows the impact of dishonest nodes on the

probability of the uncertain detection. As depicted in this

figure, the probability of uncertain detection increases with

Figure 9. Uncertain detection

the decrease of the number of participants sharing their

votes. Therefore, the reliable detection of participants’ votes

decreases if the number of participants sharing their votes

decreases. But, this is offset by the increasing uncertain

detection. This suggests that the parameter r that represents

the number of nodes splitting their votes should be chosen

according to the strategy of dishonest participants. If we

assume that dishonest participants will try to get any in-

formation about participants’ votes, we should augment the

value of r resulting in a decreasing probability of uncertain

detection. Otherwise, we should choose a smaller value of

r to decrease the probability of the reliable detection.

C. Combining Reliable and Uncertain Detections

In this subsection, we consider dishonest nodes trying

to disclose an honest participant vote either being sure of

the detected value or not. The dishonest participant will

firstly try to detect certainly the participant’s vote (respecting

reliable detection rules). If they did not succeed to disclose

the vote with certainty, they will use the uncertain detection

(based on uncertain detection rule).

The probability of detecting a participant vote, consider-

ing such adversary act, is equal to the maximum of certain

and uncertain detection probabilities.

Figure 10 shows the probability of detection with an

increasing number of nodes sharing their votes. We consider

the case where a group of 100 participants uses either 1 or 3
messages to express their votes (i.e. k = 1), and B = 3N/4
are dishonest. As depicted in the figure, in a system of

N = 100 nodes where 3N/4 are dishonest. We get the

best privacy when r = 62 participants split their votes into

3 messages, leading to a maximum probability of detection

equals to 0.3476.

VII. MALICIOUS ACT ANALYSIS

After studying different possibilities to reveal participants’

votes, the aim of this section is to look into the impact

of dishonest nodes on the final outcome of the protocol.
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Figure 10. Maximum of the probabilities of detection

Dishonest participants may lead different types of attacks.

These attacks aim at biasing the global outcome.

Participants splitting their votes may affect the global

outcome without being detected with probability 1 by one

of the following attacks:

• They can send more than k+1 messages with the same

value. This attack may occur during the first phase of

the protocol (i.e. the sharing phase).

• During the computation of the individual tally, a dis-

honest participant may invert the content of some

messages.

A participant expressing its vote with a single message

may affect the global outcome without being detected with

probability 1 only during the computation of the individual

tally. As a dishonest node receives |Pc| messages, in the

worst case, the node receives N messages, thus the maxi-

mum impact is 2N .

As discussed above, participants sending 2k+1 messages

to express their votes may affect the global tally by two

ways. The first way consists in sending more than k + 1
messages with the same value (i.e. k+5 +1-messages, k−4
-1-messages). In the worst case, the client sends 2k + 1
messages with the same value leading to a maximum impact

on the outcome equals to 2k. The second kind of dishonest

acts occurs during the individual tally computation where

the impact on the output is bounded by 2N . This leads to

a global impact of 2(k + N) for participants sharing their

votes.

Assuming that α dishonest nodes share their votes, the

impact of the set of dishonest participants on the global

outcome is bounded by 2(kα+BN).
Therefore, the number of nodes splitting their votes has

an impact on the protocol complexity, the ensured privacy,

and on the result’s accuracy due to dishonest act. If the votes

require higher privacy, we can assume the uncertain detec-

tion. Thus, we should advance the number of participants

sharing their votes to enhance the privacy. Consequently,

the complexity and the impact on the outcome will increase.

Otherwise, if we care only of the certain detection of partici-

pants’ votes, the number of nodes splitting their votes should

be decreased in order to reduce the number of exchanged

messages and the impact on the global outcome.

VIII. CONCLUSION

This paper presents PDP, a probabilistic Private Dis-

tributed Polling protocol that allows a set of users to conduct

a poll without revealing their inputs. The polling result

is computed by participants themselves without interaction

with a third entity, be it trusted or not. PDP does not

rely on heavyweight cryptographic techniques. We proved

that data privacy preserved by the protocol is ensured with

certain probability and it is related to a decision rule used

by dishonest participants. PDP ensures privacy such that a

participant input is only known with certainty to its owner

when the number of dishonest participants is not over a

threshold. In the absence of data loss or malicious acts, the

polling protocol is accurate. We proved also that the impact

of dishonest participants on the global outcome is bounded

by 2(kα + BN). As future work, we plan to enhance the

robustness of the protocol and we plan to study its behavior

under node departure.
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