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Abstract—We present here a transaction management protocol
using snapshot isolation in partially replicated multi-version
databases. We consider here replicated databases consisting of
multiple disjoint data partitions. A partition is not requi red to
be replicated at all database sites, and a site may contain replicas
for any number of partitions. Transactions can execute at any
site, and read or write data from any subset of the partitions. The
updates in this model are performed using asynchronous update
propagation. The protocol ensures that the snapshot observed by
a transaction contains data versions that are causally consistent.
In developing this protocol, we address the issues that are unique
in supporting transactions with causal consistency together with
the snapshot isolation model in partially replicated databases.
Such a model is attractive in geo-scale systems because of its
support for partial replication, use of causal consistencymodel
which does not require a global sequencer, and asynchronous
propagation of updates.

I. I NTRODUCTION

Providing transaction support is an important requirement
of a database system, since transaction semantics are often
needed in many applications for atomically executing a se-
quence of operations. In large-scale systems, the databaseis
typically replicated across multiple sites/hosts, which may be
distributed geographically. Database replication poses funda-
mental trade-offs between data consistency, scalability,and
availability. Synchronous replication, in which the updates of a
transaction are propagated synchronously to other sites before
committing the transaction, provides strong consistency but
incurs high latencies for transactions. Moreover, this maynot
be practical under wide-area settings [1], [2]. In asynchronous
replication, the transaction is first committed locally andthen
its updates are asynchronously propagated at a later time.
Asynchronously replicated systems provide lower latencies
in transaction execution, high availability, but provide only
eventual consistency [1] or causal consistency [3], [4], [5].
Furthermore, in this model because the data read by trans-
actions may not be current, a validation phase is typically
required during transaction commit.

In this paper, we address the problem of providing transac-
tion support for partially replicated databases which use asyn-
chronous replication. Partial replication is useful for scalability
since the data items need not be replicated at all sites and thus
the updates need to be propagated only to the sites replicating
the updated data items. There can also be other reasons for
partial replication such as replicating data only at the sites in
the geographic regions where data is likely to be accessed

most frequently. Our goal is to provide causal consistency
of data under partial replication. Causal consistency provides
more useful semantics than eventual consistency and can
be supported under asynchronous replication and even under
network partitions.

In our earlier work [4], we have presented a transaction
model, calledCausally-coordinated Snapshot Isolation (CSI),
which provides snapshot isolation (SI) [6] based transactions
with causal consistency of data for asynchronously replicated
databases. This model builds upon the approach presented
in [3], but eliminates false causal dependencies. The CSI
model does not enforce a total ordering of transactions across
sites, since implementing it requires a global sequencer mech-
anism, which can become a scalability bottleneck and is not
practical under wide-area settings. The CSI model provides
total ordering of transactions only within a site, and across
sites it provides causal ordering of transactions. We define
the causal ordering (≺) between two transactions as follows.
TransactionTi casually precedes transactionTj (Ti ≺ Tj), or
in other wordsTj is causally dependent onTi, if Ti andTj

are not concurrent and ifTj reads any of the updates made by
by Ti or creates a newer version for any of the items modified
by Ti. Also, this relationship is transitive, i.e. ifTi ≺ Tj and
Tj ≺ Tk, thenTi ≺ Tk. The causal ordering defines a partial
ordering over transactions.

The CSI model guarantees that a transaction observes a
consistent snapshotwhich has the properties ofatomicityand
causalityas defined below.

• Atomicity: If the transaction sees an update made by a
transactionTi then all other updates ofTi are also visible
in its snapshot.

• Causality: The database state observed by the transaction
is consistent with causal ordering of transactions, i.e. if
the transaction sees effects of transactionTi, then effects
of all the transactions causally precedingTi are also
visible in its snapshot.

Moreover, the CSI model ensures that when two or more
concurrent transactions update a common data item, only one
of them is allowed to commit. The snapshot observed by a
transaction may not always reflect the latest versions of the
accessed items, but it is guaranteed to be consistent.

The CSI model assumes database is fully replicated, i.e.
data items are replicated at all sites. In this paper, we present
a transaction model, referred to as thePartitioned-CSI (P-CSI)



which extends the CSI model for partially replicated database
systems. We consider a replication model in which database
is partitioned in multiple disjoint partitions and each partition
is replicated at one or more sites, and a site may contain any
number of partitions. A transaction may be executed at any
site and may access items in any of the partitions. The P-CSI
model provides for a partitioned database all the guarantees
provided by the CSI model, as described above, These guar-
antees are preserved even when a transaction accesses items
belonging to multiple partitions stored at different sites.

In this paper, we present a protocol which preserves the
causal guarantees noted above and requires communicating
updates only to the sites storing the updated data items.
Towards this goal, we address a number of issues that arise due
to partial replication with asynchronous update propagation.
The first set of issues are related to ensuring that a transaction
observes aconsistent snapshotunder the asynchronous update
propagation model. The second set of issues that we address
is related to executing a transaction that involves accessing
partitions stored at different site. When executing such a
transaction, we must ensure that the snapshots used for ac-
cessing different partitions together form a globally consistent
snapshot with respect to theatomicityandcausalityproperties
described above. The P-CSI model ensures these properties.

We elaborate the above issues and describe the P-CSI model
and its transaction management protocol. We also discuss the
correctness of the protocol in ensuring the properties noted
above. We implemented a prototype system for evaluating the
P-CSI model. Our evaluations demonstrate the scalability of
the P-CSI model and its performance benefits over the full
replication model.

The rest of the paper is organized as follows. In the next
section we discuss the related work. In Section III, we give
a brief overview of the CSI model. Section IV highlights
the problems arising in supporting transactions with causal
consistency in partial replication. In SectionV, we describe
the P-CSI model. Evaluations of the proposed models and
mechanisms are presented in Section VI. Conclusions are
presented in the last section.

II. RELATED WORK

The problem of transaction management in replicated
database systems has been studied widely in the past. Initial
work on this topic focused on supporting transactions with
1-copy serializability [7]. Transaction execution models in
replicated systems broadly fall into two categories: symmetric
execution model where transactions can be executed at any
site containing a replica, or asymmetric model where the
transaction is executed only on some designated sites. In
cluster-based environments, approaches for data replication
management have mainly centered around the use of the state
machine model [8], [9] using atomic broadcast protocols.
Examples of such approaches include [10], [11], [12], [13],
[14], [15], [16], [17].

The issues with scalability in data replication with strong
consistency requirements are discussed in [18]. Such issues

can become critical factors for data replication in large-scale
systems and geographically replicated databases. This has
motivated use of other models such as snapshot isolation
(SI) [6] and causal consistency. The snapshot isolation model
is a multi-version scheme in which a transaction reads only
committed version of data. Thus read-only transactions never
abort. An update transaction is committed only if no concur-
rent committed transaction has modified any of the items in its
write-set. This requires execution of a validation phase atthe
commit time. The validation phase is required to be executed
in a sequential order by concurrent transactions.

Replication using snapshot isolation (SI) has been studied
widely in the past [19], [14], [20], [10], [21], [22], [23],
[16]. SI-based database replication using lazy replication ap-
proach is investigated in [22], however that approach used the
primary-backup model. Compared to primary-backup model,
the symmetric execution model is more flexible but requires
some coordination among replicas to avoid update conflicts.
Many of the systems for SI-based database replication [14],
[19], [20], [24] based on this model use eager replication
with atomic broadcast to ensure that the replicas observe a
total ordering of transactions. The notion of1-copy snapshot
isolation in replicated database systems is introduced in [14],
which means that the schedule of transaction execution at
different replicas under the read-one-write-all (ROWA) model
are equivalent to an execution of the transactions using theSI
model in a system with only one copy.

Recently, many data management systems for cloud data-
centers distributed across wide-area have been proposed [1],
[2], [25], [5], [3]. Dynamo [1] uses asynchronous replication
with eventual consistency and do not provide transactions.
PNUTS [2] also does not provide transactions, but provides a
stronger consistency level than eventually consistency, called
as eventual timeline consistency. Megastore [25] provides
transactions over a group of entities using synchronous repli-
cation. COPS [5] provides causal consistency, but does not
provide transaction functionality, except for snapshot-based
read-only transactions. PSI [3] provides transaction function-
ality with asynchronous replication and causal consistency.
The CSI model, which builds upon the PSI model, provides
a more efficient protocol for ensuring causal consistency by
eliminating false causal dependencies.

Another approach for achieving higher scalability is to use
partial replication instead of replicating the entire database
on all sites [26], [27], [28], [29], [30], [31]. The approach
presented in [26] guarantees serializability. It uses epidemic
communication that ensures causal ordering of messages using
the vector clock scheme of [32], where each site knows how
current is a remote site’s view of the events at all other
sites. Other approaches [27], [30], [33], [34] are based on the
database state machine model [8], utilizing atomic multicast
protocols. The notion ofgenuine partial replicationintroduced
in [34] requires that the messages related to a transaction
should only be exchanged between sites storing the items
accessed by the transaction. These approaches support 1-copy-
serializability. In contrast, the approach presented in [31] is



based on the snapshot isolation model, providing the guarantee
of 1-copy-SI. This model is applied to WAN environments
in [35] but relies on a single site for conflict detection in
the validation phase. The system presented in [33] uses the
notion of generalized snapshot isolation (GSI) [20], wherea
transaction can observe a consistent but old snapshot of the
database.

In contrast to the above approaches, the P-CSI model
presented here provides a weaker but useful model of snapshot
isolation, based on causal consistency. Because it does not
require any total ordering of transactions during validation, it
provides greater concurrency towards scalability. The P-CSI
model presented here avoids sending update messages to the
sites that do not contain any of the accessed and modified
partitions and thus it eliminates some of the issues raised in
regard to the use of causal consistency [36] model in replicated
systems.

III. OVERVIEW OF THE CSI MODEL

We present here a brief overview of the Causally-
coordinated SI model. The details of this model are presented
in [4]. This model forms the basis for the development of the
P-CSI protocol.

A. System Model

The system consists of multiple database sites and each site
is identified by a uniquesiteId. Each site has a local database
that supports multi-version data management and transactions.
Data items are replicated at all the sites. For each data item,
there is a designatedconflict resolver sitewhich is responsible
for checking for update conflicts for that item. Transactions
can execute at any site. Read-only transactions can be executed
locally without needing any coordination with remote sites.
Update transactions need to coordinate with conflict resolver
sites for update conflict checking for the items in their write-
sets.

B. CSI Model

As noted earlier, the total ordering on transactions is not
enforced by the CSI model. This eliminates the need of a
global sequencer. Instead, a transaction is assigned a commit
sequence numberseq from a monotonically increasing local
sequence counter maintained by its execution site. Thus, the
commit timestamp for a transaction is a pair<siteId,seq>.
Similarly, a data item version is identified by a pair<siteId,
seq>. The local sequence number is assigned only when the
transaction is guaranteed to commit, i.e. only when there are
no update conflicts. Thus, there are no gaps in the sequence
numbers of the committed transactions. A transaction first
commits locally and then its updates are propagated to other
sites asynchronously. A remote site, upon receiving a remote
transaction’s updates, applies the updates provided that it has
also applied updates of all the causally preceding transactions.
The updates of the transactions from a particular site are
always applied in the order of their sequence numbers, i.e. a
transaction with sequence numbern from sitei is applied only

when all the preceding transactions from sitei with sequence
number up ton-1 are applied. All the updates of a transaction
are applied to the local database as an atomic operation, which
also includes updating a local vector clock.

Each site maintains a vector clock [37], [38], which we
denote byV , indicating the updates of the transactions from
other sites that it has applied to the local database. Thus, a
site i maintains a vector clockV , whereV [j] indicates that
site i has applied the updates of all transactions from sitej

up to this timestamp, moreover, sitei has also applied all the
other updates that causally precede these transactions. Inthe
vector clock,V [i] is set to the sequence number of the latest
transaction committed at sitei.

Snapshot-based access: A transactiont executing at sitei is
assigned, when it begins execution, astart snapshot timestamp
St, which is set equal to the current vector clockV value
of site i. When t performs a read operation for itemx,
we determine the latest version ofx that is visible to the
transaction according to its start snapshot timestamp. Note
that, because there is no total ordering, the versions can not be
compared based on the timestamps assigned to the versions.
Instead the versions are ordered based on the order in which
they are applied. Thus, for a data item, the most recently
applied version indicates the latest version of that item. Recall
that the causal consistency property described above ensures
that a data item version is applied only when all the preceding
versions are applied. For each data itemx, we maintain a
version log which indicates the order of the versions. When
t performs a read operation onx, we check for every version
< j,n>, starting from the version that is applied most recently,
if the version is visible in the transaction’s snapshot or not, i.e.
if St[j] ≥ n. We then select the latest version that is visible
in t’s snapshot. Whent performs a write operation, writes are
kept in a local buffer until the commit time.

Commit protocol: If t has modified one or more items, then
it performs update conflicts checking using a two-phase com-
mit (2PC) protocol with the conflict resolver sites responsible
for those items. In the prepare message to each site,t sends
St and the list of items it has modified for which that site is
the conflict resolver. Each site checks, if the latest versions
of those items are visible int’s snapshot and that none of the
items is locked by any other transaction in its conflict detection
step. If this check fails, then the resolver sends a ‘no’ vote.
Otherwise, it locks the corresponding items and sends a ’yes’
vote. If t receives ‘yes’ votes from all conflict resolvers,t is
assigned a monotonically increasing local sequence number
by t’s local site. First,t commits locally, applying the updates
to the local database. The local site’s vector clock is advanced
appropriately. It now sends a commit message, containing the
sequence number, to all the conflict resolvers. Otherwise, in
case of any ’no’ vote,t is aborted and an abort message is
sent to all the conflict resolvers. Upon receiving a commit
or abort message, a conflict resolver releases the locks, and
in case of commit it records the new version number as a
2-tuple: (<siteId, seq>). After performing these operations,
the local site asynchronously propagatest’s updates to all the



other sites. If all the items thatt has modified have local site
as the conflict resolver thent’s validation can be performed
entirely locally.

Update propagation: For ensuring causal consistency,t’s
updates are applied at remote sites only after the updates of
all the causally preceding transactions have been applied.For
update propagation, we define theeffective causal snapshot,
which indicates, for each site, the latest event from that site
which is ‘seen’ by the transaction based on the items it read
or modified. In contrast to the PSI model [3] the approach
taken in the CSI model avoids false causal dependencies. In
other words, we capture causal dependencies with respect to
a transaction rather than a site. The effective causal snapshot
for a transactiont, executed at a sitei is defined as a vector
timestamp denoted byEt, and is determined as follows.Et[i]
is set equal ton-1 where n is t’s sequence number. This
indicates thatt can be applied only when the transaction
immediately precedingt at site i is applied. The other
elements ofEt, i.e. those corresponding to the remote sites,
are determined as follows:

∀j; j 6= i : Et[j] = max{seq | ∀x s.t.(x ∈ readset(t)∨x ∈
prevwrites(t)) ∧ (version(x) =< j, seq >)}

Here,prevwrites(t) is the set of latest versions visible at
that site for the items in the write-set oft. If this information
about the write-set is not included, then it may happen that
for a particular data itemx modified byt, a remote site may
store the version created byt without having all the preceding
versions ofx. We call it themissing versionproblem. This
can violate the basic multi-version semantics of snapshot-
based access in cases such as time-travel queries, which read
from a specific older snapshot. It also complicates the version
ordering logic described above. It should also be noted thatthe
effective causal snapshotvector for a transaction is determined
at the end of the transaction execution, and therefore the
information about the read/write sets is needed only after the
transaction execution has finished.

The update propagation protocol uses theEt value of
transactions while propagating their updates. Upon receiving
updates, the remote site compares its vector clock withEt
vector to ensure that an update is applied at that site only when
it has seen all the causally preceding updates. On applying the
updates, the vector clock of the site is advanced appropriately.

IV. I SSUES IN SUPPORTING CAUSAL CONSISTENCY UNDER

PARTIAL REPLICATION

We now discuss the issues in extending the CSI model
to provide causal consistency under partial replication. In a
partial replication scheme, data items are not replicated at
all sites. Ideally, one of the advantage of partial replication
scheme is that the updates of a transaction need to be propa-
gated only to the sites that store the data items accessed by the
transaction. This reduces the communication cost comparedto
the full replication scheme as the updates are not required to be
propagated to all sites. However, propagating a transaction’s

updates only to the sites containing the items modified by
the transaction raises issues with respect to supporting causal
consistency.

Ensuring causality guarantees requires that for applying a
given transaction’s updates to a partition replica at a site, all its
causally preceding events, including the transitive dependen-
cies, must be captured in the views of the local partitions of
that site. We illustrate this problem using the example scenario
shown in Figure 1. In this example, partitionP1 containing
item x is replicated at sites 1 and 3. PartitionP2 containing
item z is replicated at sites 1, 2, and 3. PartitionP3 containing
y is replicated at sites 2 and 4. TransactionT 1 executed at
site 1 updates itemx and creates versionx(100). This update
is asynchronously propagated to site 3, shown by a dashed
arrow in the figure. TransactionT 2 executed at site 2 reads
x(100) from partition P1 at site 1 and updatesy to create
version y(200). Later transactionT 3 is executed at site 2,
which readsy(200) and modifiesz to create versionz(300).
Note that versionz(300) causally depends onx(100). The
update ofT 3 is propagated asynchronously to sites 1 and 3.
Suppose the update ofT 3 for z(300) arrives at site 3 before the
update of transactionT 1 for x(100). In case of full replication
using the CSI model, all transactions’ updates are sent to all
sites and the update ofT 3 in the above scenario would only
be applied after the updates of transactionT 1 and T 2 are
applied. However, with partial replication shown in Figure1,
the updates ofT 2 would never be sent to site 3. Therefore,
we need update synchronization mechanism that selectively
waits for the updates of transactionT 1 but notT 2. Applying
the updatez(300) before applying the update ofx(100) will
result in causally inconsistent state of partitionsP1 andP2
at site 3.

A straightforward solution for supporting causal consistency
requires either (1) maintaining the entire causal dependencies
graph for every item version [5], or (2) communicating every
update to all the sites in the system so that each site is
cognizant of all causal dependencies for a data item version.
The first solution is not feasible since the causal dependency
graph can potentially become very large. The second solution
nullifies the advantage of partial replication, since it requires
communicating the updates to all sites [36]. The proposed P-
CSI model presents a more efficient protocol which ensures
causal consistency and requires propagating the transaction’s
updates only to the sites storing the items modified by the
transaction.

Next we illustrate the issues that arise when executing a
transaction that needs to access some partitions stored at a
remote site. Suppose, in the example shown in Figure 1, at
site 4 transactionT 4 is executed which reads itemsx, y, and
z. This transaction readsy(199) from the local partitionP3
and readsx(100) and z(300) from site 1 since site 4 does
not contain partitionsP1 andP2. In Figure 2, we show the
causal relationships between the versions of itemsx, y, z. We
also show the snapshot observed byT 4, which is causally
inconsistent because it containsz(300) but not the causally
preceding versiony(200).
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Fig. 1. Issues in supporting causality under partial replication
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Fig. 2. Causally inconsistent snapshot due to remote reads

Another issue that arises when reading data from remote
partitions under asynchronous propagation is related to the
atomicity property of consistent snapshots. We illustratethis
with an example shown in Figure 3. Here partitionP1
containing itemx is replicated at sites 1 and 2, and partition
P2 containingy is replicated at sites 1 and 3. TransactionT 1
executed at site 1 updatesx and y, creating versionsx(100)
and y(50). The updates of this transaction are propagated
asynchronously to sites 2 and 3. Suppose that site 3 executes
transactionT 2 which reads itemx and y. T 2 is executed
before site 3 applies the update ofT 1 for versiony(50). T 2
readsy(49) from its local partition and readsx(100) from
site 1. This reflects an atomically inconsistent snapshot of
partitionsP1 andP2 with respect to itemsx andy. In the next
section, we present the P-CSI model to address such issues in
ensuring causal consistency.

V. PARTITIONED-CSI MODEL

A. System Model

We consider partial replication of database that consists of
a finite set of data items partitioned into multiple disjointdata
partitions. The system consists of multiple sites, and eachsite
contains one or more partitions. Each partition is replicated
across one or more sites. Each site supports multi-version data
management and SI-based transactions.

Site 2Site 1

y(49)

T1: w { x(100)  y(50) }

x(100) y(50)

P2

P1 P2

P1 P1x(99) x(99)

Site 3 time

P2

P1 x(100)

T2: r { x(100)  y(49) }

y(49)

Fig. 3. Issues in obtaining atomically consistent snapshot

As in the case of CSI, for each data item, there is a desig-
natedconflict resolver sitewhich is responsible for checking
for update conflicts for that item. Transactions can executeat
any site. A transaction may access items in multiple partitions.
For partially replicated databases, the P-CSI model ensures all
the guarantees provided by CSI. These properties are ensured
even when a transaction accesses items from multiple sites.

B. Vector Clocks and Partition Dependency View

Our goal in designing the P-CSI model is to avoid the need
of propagating updates to all sites. Our solution to this problem
is based on maintaining vector clocks on per-partition basis. In
the following discussion, we refer to the partitions storedat a
site as thelocal partitionsof that site. In the P-CSI model, each
site maintains a vector clock for each local partition, referred
to as thepartition view (Vp). Thepartition viewVp for a local
partitionp maintained by sitej indicates the sequence numbers
of transactions from all sites that have updated any of the items
in partition p and have been applied to the local partition at
site j. Thus, the valueVp[k] indicates that sitej has applied
all the transactions pertaining to partitionp from site k up
to this much timestamp as well as all the causally preceding
transactions. TheVPi

value at a particular time identifies the
state of the partitionp visible at sitej at that time. A site also



maintains a sequence counter for each of its local partitions,
which is used to assign sequence numbers to local transactions
modifying items in that partition. A transaction executingat a
site obtains, during its commit phase, a local sequence number
for each partition it is modifying.

Events of interest in the system are the update events
performed by a transaction. A transaction may update multiple
partitions thus resulting in distinct update events in different
partitions. We define anatomic event setas the set of all update
events of a given transaction. In any consistent snapshot either
all or none of the events of an atomic event set are present.

A site also maintains for each local partitionp a partition
dependency view (Dp) which is a set of vector clocks. It rep-
resents a consistent global snapshot, capturing both atomicity
and causality properties. For causality, it identifies for each
of the other partitions the events that have occurred in that
partition and that causally precede the partitionp’s state as
identified by its current partition view. In other words,Dp

indicates the state of other partitions on which the state of
partitionp is causally dependent. For atomicity, it captures the
atomic event sets of all the transactions applied to partition
p. The partition dependency viewDp consists of a vector
clock for each other partition. Formally,Dp is a set of vector
clocks{D1

p,D
2

p, · · · ,D
q
p, · · · ,D

n
p }, in which an elementDq

p is
a vector clock corresponding to partitionq. Each element of
the vector clockDq

p identifies the transactions performed on
partition q that causally precede the transactions performed
on partitionp identified byVp. Note that partitionq may or
may not be stored at sitej. Also, note that vector clockDp

p is
the same asVp. A site maintains partition dependency views
for each local partition. We describe below how the partition
dependency views are maintained and how they are used to
ensure causal consistency.

C. Transaction Execution Protocol

We now give a brief overview of the transaction execution
model of P-CSI and then discuss the various issues involved
in it. For simplicity of the discussion, we first describe the
execution of a transaction at a site which stores all the
partitions accessed by the transaction. Later, we discuss how
a transaction that requires accessing partitions at remotesites
is executed. A transactiont goes through a series of execution
phases. In the first phase it obtains astart snapshot time
(St), which is a set of vector clocks corresponding to the
partitions to be accessed by the transaction. An elementSpt in
St indicates the start snapshot time for partitionp. The trans-
action then performs read operations using the start snapshot
time. P-CSI protocol ensures that the snapshot observed by a
transaction is causally consistent.

When the transaction reaches its commit point it needs to
coordinate with the conflict resolver sites of the items in its
write-set, as in the CSI protocol, to check for update con-
flicts. Read-only transactions can be executed locally without
needing any coordination with remote sites. After successful
validation, the transaction executes its commit phase. In the
commit phase, the transaction obtains a sequence number for

each partition that it modified, from the local site. This se-
quence number is used to assign a timestamp to the transaction
for that partition. A timestamp is defined as a pair<siteId,
seq>, where seq is a local sequence number assigned to
the transaction by the site identified bysiteId. The commit
timestamp vector(Ct) of transactiont is a set of timestamps
assigned to the transaction corresponding to the partitions
modified by the transaction. Thus, the commit timestamp
vector Ct of transactiont modifying n partitions is a set of
timestamps{C1t , C

2

t , · · · , C
q
t , · · · , C

n
t }. For an item modified by

transactiont in partition q, the version number of the item is
identified by commit timestampCqt .

A transaction’s updates are applied to the local database
and then asynchronously propagated to other sites which store
any of the partitions modified by the transaction. The infor-
mation transmitted to sites in the update propagation message
includes a set of vector clocks, calledtransaction dependency
view (T D), containing a vector clock corresponding to each
partition. The transaction dependency view for a transaction
t identifies all the transactions that causally precedet. At the
remote site, the updates of transactiont are applied only when
all the events identified inT Dt have been applied. We describe
the details of the update propagation later.

We describe below in details the various steps in the
transaction execution protocol.
Obtaining start snapshot time:In the case when all partitions
to be accessed by the transaction are local, the start snapshot
time St for transactiont is obtained using the partition view
values for those partitions. The pseudocode for obtaining start
snapshot time is shown in Algorithm 1. Later in Algorithm 7
we generalize this for a transaction accessing partitions from
remote sites.

Algorithm 1 Obtaining start snapshot time
function GETSNAPSHOT

P ← partitions accessed by the transaction
[ begin atomic action
for each p ∈ P do
Spt ← Vp

end atomic action ]

Algorithm 2 Performing read operations
function READ(item x)

p← partition containing itemx
/* performed in reverse temporal order of versions */
for each version v ∈ version logof x do

if Spt [v.siteId] ≥ v.seqno then return v.data

Performing read operations:When a transaction reads a data
item x from a partitionp, we determine the latest version
for x that must be visible to the transaction based on the
transaction’s start snapshot timeSpt for that partition. The
procedure to read a data item version from partitionp ac-
cording to transaction’s snapshotSpt is the same as in the CSI



model. Algorithm 2 gives the pseudocode for performing read
operations. In case of write operations, the writes are buffered
locally until the commit time.

Algorithm 3 Update conflict checking performed by a trans-
action at sitej

function CHECKCONFLICTS(writeset)
sites← conflict resolver sites for items∈ writeset

for each s ∈ sites do
itemList ← {x|x ∈ writeset ∧ resolver(x) = s}
send prepare message tos : (itemList, S)

if all votes are ‘yes’then
performCommitfunction as shown in Algorithm 5
to eachs ∈ sites

send commit message: (itemList, Ct)
else

send abort message to eachs ∈ sites

abort transaction

/* Functions executed by the conflict resolver site */

/* upon receiving prepare message for transactiont */
function RECVPREPARE(itemList, St)

for each x ∈ itemList do
p← partition containing itemx
v ← latest version of itemx
if Spt [v.siteId] ≥ v.seqno ∧ x is unlockedthen

lock x

else
return response with ‘no’ vote

if all x ∈ itemList are locked then send response with
‘yes’ vote

/* upon receiving commit message for transactiont */
function RECVCOMMIT (itemList, Ct)

for each x ∈ itemList do
p← partition containing itemx
record version timestampCpt in version log
release lock onx

/* upon receiving abort message for transactiont */
function RECVABORT(itemList)

release locks on allx ∈ itemList

Update conflict checking:When the transactions reaches its
commit point, it performs update conflict checking if it has
modified any items. The procedure to check for update con-
flicts is same as described in Section III for the CSI model.
Algorithm 3 shows the protocol for conflict checking.
Determining transaction dependencies:After successful val-
idation, transaction t computes its transaction depen-
dency view T Dt. T Dt is a set of vector clocks
{T D1

t , T D
2

t , · · · , T D
q
t , · · · , T D

n
t }, in which an elementT Dq

t

identifies the transactions performed on partitionq which

Algorithm 4 Computing transaction dependency view for
transactiont

function COMPUTETRANSACTIONDEPENDENCY

P ← set of partitions on whicht performed any
read/write operation.
Et ← set of effective causal snapshot vectors
corresponding to partitions inP
for each p ∈ P do
T Dp

t ← E
p
t

[ begin atomic action
for each p ∈ P do

for eachDq
p ∈ Dp do

if T Dt does not contain element forq then
T Dq

t ← D
q
p

else
T Dq

t ← super(Dq
p, T Dq

t )

end atomic action ]

function SUPER(V 1, V 2,· · ·,V k) returns V

∀i, V [i] = max(V 1[i], V 2[i], · · · , V k[i])

causally precedet. Algorithm 4 shows the pseudocode for
computingT Dt. Transactiont computes its effective causal
snapshot vectorEt, which is a set containing vector clocks
for each partition accessed byt. ElementEpt in this set is the
effective causal snapshot corresponding to partitionp and is
computed as discussed in Section III, considering the items
read/written byt from partition p. Et captures the causal
dependencies for transactiont, solely based on items read or
written by t. To capture transitive dependencies, we include in
T Dt the partition dependency viewvectors of each partition
accessed byt. If any two partitionsp1 and p2 accessed by
t each have in their dependency views an element for some
other partitionq, i.e. ∃q s.t. Dq

p1 ∈ Dp1 ∧ D
q
p2 ∈ Dp2, then

we take element-wise max value fromDq
p1 andDq

p2 using the
‘super’ function shown in Algorithm 4.
Commit phase:Algorithm 5 shows the commit protocol for
transaction. A commit timestamp vectorCt is assigned to the
transaction by obtaining a sequence number of each partition
modified byt. The updates made by transactions are written
to the local database and transaction dependency view set
T Dt is computed. The partition viewsV and dependency
viewsD of all updated partitions are advanced usingT Dt and
Ct, as shown in the function ‘AdvanceVectorClocks’. If the
committed transaction involves modifying items in multiple
partitions, then the above procedure ensures that the partition
dependency viewD for each modified partition is updated
using theCt value to capture all events in the atomic set
of the transaction. The above procedure is done as a single
atomic action to ensure that the transaction’s updates are
made visible atomically. The updates, along withT Dt and
Ct values, are propagated to every site that stores any of the
partitions modified byt. The update propagation can be started
asynchronously once theT Dt andCt have been computed.



Algorithm 5 Commit Protocol for transaction at sitej

/* [..] denotes an atomic region */
function COMMIT (writeset)
P ← partitions pertaining towriteset.
for each p ∈ P do

ctrp ← local sequence counter for partitionp
Cpt .seq ← ctrp++

ApplyUpdates(writeset, Ct)
// compute dependencies as shown in Algorithm 4
T Dt ← ComputeTransactionDependency()
// advance local vector clocks
AdvanceVectorClocks(T Dt, Ct)
/* propagate updates */
propagate to every site that stores any partitionp ∈ P
(T Dt, writeset, Ct)

function APPLYUPDATES(writeset, Ct)
P ← partitions pertaining towriteset.
for each p ∈ P do

for each item x in writeset pertaining top do
write the new version ofx to the local database.
record version timestampCpt in version log

/* Function to update vector clocks for partitions */
function ADVANCEVECTORCLOCKS(T Dt, Ct)
P ← partitions pertaining towriteset
[ begin atomic region
for each p ∈ P do

for each T Dq
t ∈ T Dt s.t. q 6= p do

Dq
p ← super(T Dq

t , Dq
p)

/* AdvanceD to capture thet’s update events in
other partitions */
for each Cqt ∈ Ct s.t. q 6= p do
Dq

p[C
q
t .siteId]← C

q
t .seq

Vp[Cpt .siteId]← C
p
t .seq

end atomic region ]

Algorithm 6 Applying updates at a remote sitek
function RECVUPDATEPROPAGATION(T Dt, writeset, Ct)

/*check if the site is up to date with respect toT Dt */
for each T Dp

t ∈ T Dt do
if (p is local partition)∧ Vp < T Dp

t then
buffer the updates locally
synchronize phase: either pull the
required causally preceding updates or
wait till the vector clock advances enough.

for each Cpt ∈ Ct do
if (p is local partition)∧ Vp[Cpt .siteId] < C

p
t .seq−1

then synchronize phase as shown above

// apply updates to local partitions at sitek
ApplyLocalUpdates(writeset, Ct)
// advance vector clocks of sitek
AdvanceVectorClocks(T Dt, Ct)

Applying updates at remote sites:When a remote sitek re-
ceives update propagation fort, it checks if it has applied,
to its local partitions, updates of all transactions that causally
precedet and modified any of its local partitions. Thus, for
every partitionp specified inT Dt, if p is stored at sitek, then
site checks if its partition viewVp for that partition is advanced
up toT Dp

t . Moreover, for each of the modified partitionsp for
which the remote site stores a replica ofp, the site checks ifVp
of the replica contains all the events preceding the sequence
number value present inCpt . If this check fails the site defers
the updates locally and enters a synchronization phase which
includes either pulling the required updates or delaying the
application of updates until the vector clocks of the local
partitions advance enough. If this check is successful, the
site applies the updates to the corresponding local partitions.
Updates oft corresponding to any non-local partitions are
ignored. The partition views at sitek are advanced as shown
in procedure ‘AdvanceVectorClock’ in Algorithm 5.

D. Execution of Multi-site Transactions

It is possible that a site executes a transaction that accesses
some partitions not stored at that site. This requires read-
ing/writing items from remote site(s). One important require-
ment while performing a multi-site transaction is to ensure
that the transaction observes a consistent global snapshot.

We describe how the start snapshot vector is determined.
The Algorithm 7 shows the modified ‘GetSnapshot’ function.
Note that at a given site the partition dependency view of any
partition reflects a consistent global snapshot. One can thus
simply take theD vector set of any one of the local partitions
to be accessed by the transaction. However, it is possible that
such a set may not contain a vector corresponding to some
partition to be accessed by the transaction. We present below a
procedure to obtain a snapshot for all partitions to be accessed
by the transaction.

We can form a consistent global snapshot by combining
the partition dependency views of all the local partitions.If
two local partitions contain in theirD sets a vector for some
partition p, then we can take ‘super’ of these two vectors as
the snapshot forp. We follow this rule for each partition to be
accessed across all local partition dependency views to form
a global snapshot. Such a snapshot is consistent because the
causal and atomic set dependencies of all the local partitions
are collectively captured in this snapshot.

It is still possible that this set may not have a snapshot vector
for some partition to be accessed by the transaction. For each
such partitionq, we then need to follow a procedure to obtain
a snapshot from some remote site containing that partition.
We read the partition viewVq of the remote site and consider
it as the snapshot forq provided that its causal dependencies
as indicated by theDq set at the remote site have been seen
by the local site. The function ‘GetRemoteSnapshot’ performs
this step.

After obtaining the start snapshot time, transactiont per-
forms local reads as shown in Algorithm 2. For a remote
read, sitei contacts the remote sitej which then performs a



Algorithm 7 Obtaining snapshot for a multi-site transactiont

at sitei
function GETSNAPSHOT

L ← local partitions accessed byt
R← non-local partitions accessed byt
for each p ∈ L do
Spt ← Vp

for each q ∈ R do
for each p ∈ partitions(i) do

if Dq
p ∈ Dp then
Sqt ← super(Dq

p, Sqt )

for each q ∈ R such thatSqt 6∈ St do
Sqt ← GetRemoteSnapshot(St)
if Sqt is null then repeat above step using some other
replica site for partitionq

/* Function executed at remote sitej to
obtain snapshot fort for partition q */
function GETREMOTESNAPSHOT(St, partition q)

for each r such thatDr
q ∈ Dq ∧ S

r
t ∈ St do

if Srt < Dr
q then

return null
returnVq

local read and returns the version. Before performing the read
operation, sitej checks if it is advanced up to the transaction’s
snapshot for that partition. This check is needed only in the
case when the transaction did not need to contact the remote
site when it constructed its start snapshot time.

If a transaction involves updating any remote partition, it
must make sure to obtain a snapshot vector for that partitionat
the start of the transaction, as described above. In the commit
phase it contacts that site to obtain a sequence number for
that partition. The rest of the commit protocol is performed
as shown in Algorithm 5. The updates to local partitions
are applied first and remote updates are sent to the remote
site using the update propagation mechanism described above.
Even though there is a delay in applying updates to the remote
partition, the atomicity guarantee in obtaining a snapshotis
still guaranteed because theD vector set of the local partitions
would force the use of the updated view of the remote
partition.

E. Discussion of Protocol Correctness

We now discuss the correctness of the P-CSI protocol. The
property central to the correctness of the protocol is that
the partition dependency viewD of any partition at a site
reflects a consistent global snapshot across all partitions. The
partition dependency view is updated whenever a transaction
is executed modifying that partition. Initially,D sets for all
partitions are empty, and therefore this property holds trivially.

We show that this property holds by using induction on the
length of causal sequence of transactions executed at a site.
Assuming that this property holds for transaction sequences

up to lengthn, we show that this property is preserved when
a new causally succeeding transactiont is executed at the site
extending the length of a causal sequence ton+ 1.

As shown in Algorithm 5, in the commit phase the trans-
action t updates some partitions and updates theirD vector
sets and partition views. The first step involves obtaining
commit timestamps for each partition to be modified. It then
inserts new versions of the modified items in these partitions.
However, these versions are not visible to any transaction since
the partition views are yet not advanced. Next, the commit
protocol computes the transaction dependency viewT Dt. The
procedure shown in Algorithm 4, constructs a vector clock for
each partitionr on which transactiont is causally dependent
to capture all the causally preceding events in partitionr.
This is denoted byT Dr

t . These causal dependencies arise
because of partitions accessed byt which happen to be
dependent on events inr. Suppose thatt accesses partitions
{P1, P2, · · · , Pk}, then T Dr

t has the following property,
whereErt is the effective causal snapshot of partitionr if it is
accessed byt.

T Dr
t = super(Dr

P1
,Dr

P2
, · · · ,Dr

Pk, E
r
t ) (1)

The above expression means thatT Dr
t includes all causal

dependencies of transactiont on partitionr.
Next the transaction updates theD vector sets of all the

modified partitions using theT Dt vector. For each such
partitionp and eachr in T Dt, it setsDr

p equal toT Dr
t , thus

updating the dependency view of a modified partitionp to
include its dependency on events inr. Moreover, for each
modified partitionp, Dq

p for each other modified partitionq,
q 6= p, is modified using theCqt vector so thatDp includes
in its view the update event oft on partitionq. This ensures
that the partition dependency view of each modified partition
captures all events in the atomic set of transactiont. The steps
of modifyingD vectors are performed as a single atomic action
to ensure that any other concurrent transaction would always
observes a consistent snapshot. The modifiedD vector sets
ensure the consistency property mentioned above.

Propagation of transactiont’s updates to remote sites in-
cludesT Dt, Ct and the write-set. Before applying updates of
transactiont, each remote site ensures that for each partition
r stored at the remote site, it has applied all the causally
preceding events implied byT Dr

t . When the updates oft are
applied, the procedure followed for updatingD vector set and
partition views of the partitions located at the remote siteis
the same as that described above for the execution site. Thus
the modifiedD vector sets at the remote sites also ensure the
consistency property mentioned above.

VI. EVALUATIONS

We present below the results of our evaluation of the P-
CSI model. For these evaluations, we implemented a prototype
system implementing the P-CSI protocol. In our prototype,
we implemented an in-memory key-value store to serve as the
local database for a site. Each site also maintains a ‘commit-
log’ in secondary storage. During the commitment of an



update transaction, the updates are written to the ‘commit
log’. Committed update transactions are propagated by the
execution site at periodic intervals, set to 1 second. During
the update synchronization phase at the remote site (refer
Algorithm 6), if the updates cannot be applied, then the site
buffers the updates locally and delays their application until the
corresponding vector clock values have been advanced enough.

A. Experiment Setup

We performed the evaluations on a cluster of 30 nodes
using the resources provided by Minnesota Supercomputing
Institute. Each node in the cluster had 8 CPU cores with 2.8
GHz Intel X5560 ”Nehalem EP” processors, and 22 GB main
memory. Each node in the cluster served as a single database
site in our experiments.

Replication configuration:We performed experiments for
different numbers of sites. The number of partitions was set
equal to the number of sites. Thus, for 10 sites, the system
database consisted of 10 partitions, whereas for 20 sites the
database was scaled accordingly to contain 20 partitions. Each
partition was replicated on three sites. Each partition contained
100,000 items of 100 bytes each. For a partition, we designated
one of its replica sites as the conflict resolver for items in that
partition.

We synthesized a transaction workload consisting of two
types of transactions:local transactions which accessed only
local partitions, andnon-local transactions which accessed
some remote partitions from a randomly selected site. In the
transaction workload, each transaction read from 2 partitions
and modified 1 partition. In case of local transactions. the
partitions to read/modify were randomly selected from the
local partitions. For each accessed partition, the transaction
read/modified 5 randomly selected items. In subsection VI-E,
we varied the number of modified partitions to evaluate its
impact, as described later.

In these evaluations, we were interested in evaluating the
following aspects: (1) advantages of partial replication us-
ing P-CSI over full replication, (2) scalability of the P-CSI
model, and (3) impact of locality in transaction execution.
The primary performance measures used were: (1) transaction
throughput measured as committed transactions per second,
(2) transaction latency, measured in milliseconds, and (3)cost
of update propagation, measured as number of propagation
messages sent per transaction.

B. Advantages over Full Replication

We first present the comparative evaluation of partial repli-
cation using the P-CSI model and full replication. This eval-
uation was performed using 20 sites, with all transactions
accessing local partitions. For full replication scheme, the
database contained only one partition, consisting of 2 million
items, replicated on all sites. Note that this configuration
corresponds to the basic CSI model. Table I shows the result
of this evaluation. The ‘max throughput’ column in the table
gives the maximum transaction throughput that we could
achieve for that system configuration. As noted earlier, one

TABLE I
COMPARATIVE EVALUATION OF PARTIAL AND FULL REPLICATION

Max. Transaction Visibility
Throughput Latency Latency

(msec) (msec)
Partial Rep. 14937 65.3 4608
Full Rep. 6494 87.8 8714

of the advantages of the P-CSI model is that updates need to
be propagated only to the sites storing the modified partitions.
In contrast, full replication requires propagating updates to all
sites, resulting in lower throughput. With partial replication,
the throughput achieved is more than factor of two compared
to full replication. The number of update propagation messages
per transaction depends on the number of modified partitions.
In our experiments, the number of update propagation mes-
sages per transaction in case of partial replication was found
to be close to 2, whereas this number in case of full replication
was close to 19.

Another important measure is thevisibility latency of an
update, which is the time since an update is committed till
the time it is applied at all the replicas storing the updated
item. This depends on three factors: network latency, delays
in propagating updates at the execution site because of the
lazy propagation model, and delays in applying updates at the
remote site due to causal dependencies. In our experiments
the update propagation interval was set to 1 second. Visibility
latency indicates the inconsistency window i.e. the time for
which the data copies at different replicas are inconsistent with
respect to a given update. We show in Table I the average value
of visibility latency for partial and full replication models.
In case of full replication, due to the higher cost of update
propagation the visibility latency is higher, indicating that
replicas are out-of sync for a longer time compared to the
partial replication.

C. Scalability

We evaluated the P-CSI model for various system sizes, i.e.
number of sites, to demonstrate its scalability under the scale-
out model. For each system size, we measured the maximum
transaction throughput and the average transaction latency.
Figures 4 and 5 show the maximum throughput and average
latency of transactions, respectively. The transaction through-
put increases almost linearly with the increase in system size,
with only marginal increase in latencies.

D. Impact of Non-local Transactions

To evaluate the impact of locality in transaction execu-
tion, we induced non-local transactions, i.e. transactions with
remote partition access. We varied the percentage of the
non-local transactions to observe the impact on transaction
latencies. Figure 6 shows the results of this evaluation. We
show in this figure the average latencies for all transactions
as well as average latencies for non-local transactions. We
observe only a slight increase in the overall latencies due to
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TABLE II
IMPACT OF TRANSACTIONSIZE

No. of Read No. of Write Transaction Avg. Prop.
Partitions Partitions Latency Messages

2 1 65.3 1.98
3 2 82.8 3.23
4 3 89.7 4.31

non-local transactions, however, these latencies can be higher
in wide-area environments.

E. Impact of Transaction Size

As noted earlier, in partial replication, the cost of update
propagation, i.e. the number of update propagation messages
sent for a transaction, depends on the number of modified
partitionsm. Thus, ifn is the largest degree of replication for a
partition, then the number of update propagation messages for
a transaction modifyingm partitions is at mostm · (n− 1). In
Table II we show the number of update propagation messages
per transaction observed in our experiments for different values
of m. We also show in this table the average transaction
latencies. The average transaction latency increases withm

mainly due to the increase in the latencies imposed by the
2PC protocol, since a transaction would need to coordinate
with more number of sites with increase inm. This evaluation
was conducted using 20 sites and 40 partitions.

VII. C ONCLUSION

We have presented in this paper a model called Partitioned-
CSI (P-CSI) for transaction management in partially repli-
cated databases with asynchronous update propagation. In
this model, transactions can be executed at any site and can
access any subset of partitions. The P-CSI model provides a
weaker form of snapshot isolation, which is based on causal
consistency. The P-CSI model guarantees that a transaction
always observes a causally consistent snapshot. We have
elaborated in this paper the unique issues that are raised due
to partial replication in supporting causal consistency with the
snapshot isolation model. We address these issues in this paper
and present a transaction management protocol which ensures
causal consistency and requires sending update propagation
messages only to the sites storing the modified partitions.

There are several aspects of this model which make it attractive
for large scale environments while providing a useful consis-
tency model. These aspects include snapshot isolation with
causal consistency that eliminates need for a global sequencer,
asynchronous update propagation, and support for partial
replication requiring messages to be communicated only with
the sites containing the partitions accessed by a transaction.
We have implemented a data replication management system
using the P-CSI model. We evaluated this system on a cluster
to demonstrate the scalability and the performance benefits
of partial replication using P-CSI over the full replication
scheme.
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