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Abstract—We present here a transaction management protocol most frequently. Our goal is to provide causal consistency
using snapshot isolation in partially replicated multi-version  of data under partial replication. Causal consistency igies/
databases. We consider here replicated databases congigtiof more useful semantics than eventual consistency and can

multiple disjoint data partitions. A partition is not requi red to b ted und h licati d d
be replicated at all database sites, and a site may contain pécas € supported under asynchronous replication and even unaer

for any number of partitions. Transactions can execute at ag network partit_ions. _
site, and read or write data from any subset of the partitions The In our earlier work [4], we have presented a transaction

updates in this model are performed using asynchronous upda  model, calledCausally-coordinated Snapshot Isolation (GSI)
propagation. The protocol ensures that the snapshot obseed by \yhich provides snapshot isolation (SI) [6] based traneasti

a transaction contains data versions that are causally coigent. with causal consistency of data for asynchronously refita
In developing this protocol, we address the issues that arenique Yy y y

in supporting transactions with causal consistency togetr with ~ databases. This model builds upon the approach presented

the snapshot isolation model in partially replicated datatases. in [3], but eliminates false causal dependencies. The CSI

Such a model is attractive in geo-scale systems because o it model does not enforce a total ordering of transactionssacro

support for partial replication, use of causal consistencymodel sites, since implementing it requires a global sequencehme

which does not require a global sequencer, and asynchronous _ . . . .

propagation of updates. anism, which can_become a s_calablllty bottleneck and |s_not

practical under wide-area settings. The CSI model provides

|. INTRODUCTION total ordering of transactions only within a site, and asros

Providing transaction support is an important requiremesites it provides causal ordering of transactions. We define
of a database system, since transaction semantics are oftencausal ordering<) between two transactions as follows.
needed in many applications for atomically executing a s@ransactioril; casually precedes transactiéh (7; < T;), or
guence of operations. In large-scale systems, the databasié other wordsT; is causally dependent dfy, if T; andT;
typically replicated across multiple sites/hosts, whichynbe are not concurrent and if; reads any of the updates made by
distributed geographically. Database replication posesld- by T; or creates a newer version for any of the items modified
mental trade-offs between data consistency, scalabdityl by T;. Also, this relationship is transitive, i.e. if; < 7; and
availability. Synchronous replication, in which the upsabfa 7 < T}, thenT; < Tj. The causal ordering defines a partial
transaction are propagated synchronously to other sitieseoe ordering over transactions.
committing the transaction, provides strong consistenaty b The CSI model guarantees that a transaction observes a
incurs high latencies for transactions. Moreover, this may consistent snapshethich has the properties atomicityand
be practical under wide-area settings [1], [2]. In asynobrgs causalityas defined below.
replication, the transaction is first committed locally ahdn « Atomicity If the transaction sees an update made by a
its updates are asynchronously propagated at a later time. transactioril; then all other updates df; are also visible
Asynchronously replicated systems provide lower latencie  in its snapshot.
in transaction execution, high availability, but providalyo » Causality The database state observed by the transaction
eventual consistency [1] or causal consistency [3], [4], [5 is consistent with causal ordering of transactions, i.e. if
Furthermore, in this model because the data read by trans- the transaction sees effects of transacfipnthen effects
actions may not be current, a validation phase is typically of all the transactions causally precedifi§y are also
required during transaction commit. visible in its snapshot.

In this paper, we address the problem of providing transadoreover, the CSI model ensures that when two or more
tion support for partially replicated databases which usaa concurrent transactions update a common data item, only one
chronous replication. Partial replication is useful foalsbility of them is allowed to commit. The snapshot observed by a
since the data items need not be replicated at all sites arsd ttransaction may not always reflect the latest versions of the
the updates need to be propagated only to the sites replicaticcessed items, but it is guaranteed to be consistent.
the updated data items. There can also be other reasons farhe CSI model assumes database is fully replicated, i.e.
partial replication such as replicating data only at thessih data items are replicated at all sites. In this paper, weeptes
the geographic regions where data is likely to be accessettansaction model, referred to as fartitioned-CSI (P-CSlI)



which extends the CSI model for partially replicated dasgbacan become critical factors for data replication in largaks
systems. We consider a replication model in which databasgstems and geographically replicated databases. This has
is partitioned in multiple disjoint partitions and eachfifion motivated use of other models such as snapshot isolation
is replicated at one or more sites, and a site may contain g3}) [6] and causal consistency. The snapshot isolationainod
number of partitions. A transaction may be executed at aisya multi-version scheme in which a transaction reads only
site and may access items in any of the partitions. The P-GRImmitted version of data. Thus read-only transactiongnev
model provides for a partitioned database all the guarantedort. An update transaction is committed only if no concur-
provided by the CSI model, as described above, These guant committed transaction has modified any of the itemssin it
antees are preserved even when a transaction accesses itetits-set. This requires execution of a validation phasthat
belonging to multiple partitions stored at different sites commit time. The validation phase is required to be executed
In this paper, we present a protocol which preserves threa sequential order by concurrent transactions.
causal guarantees noted above and requires communicatingeplication using snapshot isolation (SI) has been studied
updates only to the sites storing the updated data items&dely in the past [19], [14], [20], [10], [21], [22], [23],
Towards this goal, we address a number of issues that arese fi6]. Sl-based database replication using lazy replicatip-
to partial replication with asynchronous update propagati proach is investigated in [22], however that approach uked t
The first set of issues are related to ensuring that a traosaciprimary-backup model. Compared to primary-backup model,
observes &onsistent snapshoinder the asynchronous updat¢he symmetric execution model is more flexible but requires
propagation model. The second set of issues that we addresse coordination among replicas to avoid update conflicts.
is related to executing a transaction that involves acogssiMany of the systems for Sl-based database replication [14],
partitions stored at different site. When executing such [49], [20], [24] based on this model use eager replication
transaction, we must ensure that the snapshots used forwith atomic broadcast to ensure that the replicas observe a
cessing different partitions together form a globally dstent total ordering of transactions. The notion bitopy snhapshot
snapshot with respect to tlomicityandcausalityproperties isolationin replicated database systems is introduced in [14],
described above. The P-CSI model ensures these propertigghich means that the schedule of transaction execution at
We elaborate the above issues and describe the P-CSI mati¢rent replicas under the read-one-write-all (ROWA)dab
and its transaction management protocol. We also discess #ine equivalent to an execution of the transactions usingthe
correctness of the protocol in ensuring the propertieschotmodel in a system with only one copy.
above. We implemented a prototype system for evaluating theRecently, many data management systems for cloud data-
P-CSI model. Our evaluations demonstrate the scalabifity centers distributed across wide-area have been propoged [1
the P-CSI model and its performance benefits over the f{dl], [25], [5], [3]. Dynamo [1] uses asynchronous repliceti
replication model. with eventual consistency and do not provide transactions.
The rest of the paper is organized as follows. In the neRNUTS [2] also does not provide transactions, but provides a
section we discuss the related work. In Section IIl, we giv&ronger consistency level than eventually consisterafed
a brief overview of the CSI model. Section IV highlightsas eventual timeline consistencyegastore [25] provides
the problems arising in supporting transactions with chudeansactions over a group of entities using synchronous rep
consistency in partial replication. In SectionV, we ddseri cation. COPS [5] provides causal consistency, but does not
the P-CSI model. Evaluations of the proposed models aptbvide transaction functionality, except for snapshasedsl
mechanisms are presented in Section VI. Conclusions aead-only transactions. PSI [3] provides transaction tione
presented in the last section. ality with asynchronous replication and causal consistenc
The CSI model, which builds upon the PSI model, provides
a more efficient protocol for ensuring causal consistency by
The problem of transaction management in replicatediminating false causal dependencies.
database systems has been studied widely in the pastl InitidAnother approach for achieving higher scalability is to use
work on this topic focused on supporting transactions withartial replication instead of replicating the entire deise
1-copy serializability[7]. Transaction execution models inon all sites [26], [27], [28], [29], [30], [31]. The approach
replicated systems broadly fall into two categories: sytnime presented in [26] guarantees serializability. It uses epid
execution model where transactions can be executed at aoynmunication that ensures causal ordering of messag&s usi
site containing a replica, or asymmetric model where ttike vector clock scheme of [32], where each site knows how
transaction is executed only on some designated sites.clrrent is a remote site's view of the events at all other
cluster-based environments, approaches for data replicatsites. Other approaches [27], [30], [33], [34] are basedhen t
management have mainly centered around the use of the stitabase state machine model [8], utilizing atomic mudtica
machine model [8], [9] using atomic broadcast protocolprotocols. The notion afenuine partial replicationntroduced
Examples of such approaches include [10], [11], [12], [13in [34] requires that the messages related to a transaction
[14], [15], [16], [17]. should only be exchanged between sites storing the items
The issues with scalability in data replication with strongccessed by the transaction. These approaches suppgy-1-co
consistency requirements are discussed in [18]. Suchsgssaerializability. In contrast, the approach presented it [i3

II. RELATED WORK



based on the snapshot isolation model, providing the gteganwhen all the preceding transactions from sitwith sequence
of 1-copy-Sl. This model is applied to WAN environmentsiumber up ton-1 are applied. All the updates of a transaction
in [35] but relies on a single site for conflict detection irare applied to the local database as an atomic operationhwhi
the validation phase. The system presented in [33] uses #igo includes updating a local vector clock.
notion of generalized snapshot isolation (GSI) [20], whare Each site maintains a vector clock [37], [38], which we
transaction can observe a consistent but old snapshot of tlemote by, indicating the updates of the transactions from
database. other sites that it has applied to the local database. Thus, a
In contrast to the above approaches, the P-CSI modite : maintains a vector clock’, whereV[j] indicates that
presented here provides a weaker but useful model of snapdite ¢ has applied the updates of all transactions from sgite
isolation, based on causal consistency. Because it does mpto this timestamp, moreover, sitdhas also applied all the
require any total ordering of transactions during validiatiit other updates that causally precede these transactiotise In
provides greater concurrency towards scalability. TheSP-Cvector clock,V]i] is set to the sequence number of the latest
model presented here avoids sending update messages tdrimesaction committed at site
sites that do not contain any of the accessed and modifiedSnapshot-based accegstransaction: executing at sité is
partitions and thus it eliminates some of the issues raisedassigned, when it begins executiorstart snapshot timestamp
regard to the use of causal consistency [36] model in reglita S;, which is set equal to the current vector clotkvalue
systems. of site i. When ¢t performs a read operation for item,
we determine the latest version of that is visible to the
1. OVERVIEW OF THE CS| MODEL transaction according to its start snapshot timestampe Not
We present here a brief overview of the Causallyjthat, because there is no total ordering, the versions cabeno
coordinated SI model. The details of this model are presentsompared based on the timestamps assigned to the versions.
in [4]. This model forms the basis for the development of thiestead the versions are ordered based on the order in which

P-CSiI protocol. they are applied. Thus, for a data item, the most recently
applied version indicates the latest version of that iteecdR
A. System Model that the causal consistency property described above ensur

The system consists of multiple database sites and each #i@t a data item version is applied only when all the preagdin
is identified by a uniqueiteld. Each site has a local databaseersions are applied. For each data itemmwe maintain a
that supports multi-version data management and traoesacti version log which indicates the order of the versions. When
Data items are replicated at all the sites. For each datg itenperforms a read operation an we check for every version
there is a designatezbnflict resolver sitavhich is responsible < j,n>, starting from the version that is applied most recently,
for checking for update conflicts for that item. Transacsionf the version is visible in the transaction’s snapshot ar, he.
can execute at any site. Read-only transactions can betexlecif S;[j] > n. We then select the latest version that is visible
locally without needing any coordination with remote sitesn ¢'s snapshot. When performs a write operation, writes are
Update transactions need to coordinate with conflict resolhkept in a local buffer until the commit time.
sites for update conflict checking for the items in their @it  Commit protocalIf ¢ has modified one or more items, then

sets. it performs update conflicts checking using a two-phase com-
mit (2PC) protocol with the conflict resolver sites respofesi
B. CSI Model for those items. In the prepare message to each tsgends

As noted earlier, the total ordering on transactions is n&t and the list of items it has modified for which that site is
enforced by the CSI model. This eliminates the need ofthe conflict resolver. Each site checks, if the latest veisio
global sequencer. Instead, a transaction is assigned a itonofithose items are visible itis snapshot and that none of the
sequence numbeteqg from a monotonically increasing localitems is locked by any other transaction in its conflict detec
sequence counter maintained by its execution site. Thes, #tep. If this check fails, then the resolver sends a ‘no’ vote
commit timestamp for a transaction is a paisiteld,se¢. Otherwise, it locks the corresponding items and sends a 'yes
Similarly, a data item version is identified by a paisiteld, vote. If ¢ receives ‘yes’ votes from all conflict resolversis
seq>. The local sequence number is assigned only when thssigned a monotonically increasing local sequence number
transaction is guaranteed to commit, i.e. only when theee dy ¢'s local site. First commits locally, applying the updates
no update conflicts. Thus, there are no gaps in the sequetwénhe local database. The local site’s vector clock is adedn
numbers of the committed transactions. A transaction firgppropriately. It now sends a commit message, containiag th
commits locally and then its updates are propagated to otlsequence number, to all the conflict resolvers. Otherwise, i
sites asynchronously. A remote site, upon receiving a rematase of any 'no’ votef is aborted and an abort message is
transaction’s updates, applies the updates providedttiaisi sent to all the conflict resolvers. Upon receiving a commit
also applied updates of all the causally preceding traimsact or abort message, a conflict resolver releases the locks, and
The updates of the transactions from a particular site drecase of commit it records the new version number as a
always applied in the order of their sequence numbers, i.e2duple: siteld, seq>). After performing these operations,
transaction with sequence numhefrom site: is applied only the local site asynchronously propagatesupdates to all the



other sites. If all the items tha@thas modified have local site updates only to the sites containing the items modified by
as the conflict resolver thets validation can be performedthe transaction raises issues with respect to supportingata
entirely locally. consistency.
Update propagationFor ensuring causal consisten®g Ensuring causality guarantees requires that for applying a
updates are applied at remote sites only after the updateggiveen transaction’s updates to a partition replica at g altets
all the causally preceding transactions have been apgid. causally preceding events, including the transitive ddpan
update propagation, we define th#fective causal snapshot cies, must be captured in the views of the local partitions of
which indicates, for each site, the latest event from thtat sithat site. We illustrate this problem using the example aden
which is ‘seen’ by the transaction based on the items it readown in Figure 1. In this example, partitidhl containing
or modified. In contrast to the PSI model [3] the approadtem z is replicated at sites 1 and 3. Partitidi2 containing
taken in the CSI model avoids false causal dependenciesitam z is replicated at sites 1, 2, and 3. PartitiBA containing
other words, we capture causal dependencies with respecyts replicated at sites 2 and 4. Transactibih executed at
a transaction rather than a site. The effective causal boapssite 1 updates item and creates version(100). This update
for a transaction, executed at a sité is defined as a vector is asynchronously propagated to site 3, shown by a dashed
timestamp denoted bg,;, and is determined as follows,;[i] arrow in the figure. Transactiofi2 executed at site 2 reads
is set equal ton-1 wheren is t's sequence number. Thisz(100) from partition P1 at site 1 and updateg to create
indicates thatt can be applied only when the transactionersion y(200). Later transactiori’3 is executed at site 2,
immediately precedingt at site i is applied. The other which readsy(200) and modifiesz to create versiorz(300).
elements of&,, i.e. those corresponding to the remote sitedlote that versionz(300) causally depends om(100). The
are determined as follows: update of7'3 is propagated asynchronously to sites 1 and 3.
Suppose the update &1 for z(300) arrives at site 3 before the
Vg #i: Ej] = max{seq| Vx s.t.(x € readset(t)va € update of transactioff1 for z(100). In case of full replication
prevwrites(t)) A (version(z) =< j,seq >)} using the CSI model, all transactions’ updates are sentlto al
Here, prevwrites(t) is the set of latest versions visible aSltes anq the update af3 in the above scenario would only
' tbe applied after the updates of transactibh and 72 are

that site for the items in the write-set ofIf this information . : . o -
. ; ) : applied. However, with partial replication shown in Figure
about the write-set is not included, then it may happen th :

. ) - : e updates off'2 would never be sent to site 3. Therefore,
for a particular data itemr modified by¢, a remote site may

store the version created bwvithout having all the precedin we need update synchronization mechanism that selectively
. =0 Dyvithol 9 P N9 \yaits for the updates of transacti@i but not7'2. Applying
versions ofz. We call it themissing versiorproblem. This

can violate the basic multi-version semantics of snapshthe update:(300) before applying the update of 100) wil

. . . : %'sult in causally inconsistent state of partitioR$ and P2
based access in cases such as time-travel queries, whith rea y P

- ; Hiite 3.
from a specific older snapshot. It also complicates the @grsi

ordering logic described above. It should also be notedtkieat A straightforward solution for supporting causal consiste

effective causal snapshegctor for a transaction is determinecIeqUires either (1) maintaining the entire causal deperidsn
. ) raph for every item version [5], or (2) communicating ever
at the end of the transaction execution, and therefore tﬂ P y [5] (2) 9 y

. . . . update to all the sites in the system so that each site is
information about the read/write sets is needed only after t S : Y5 : .

X . o cognizant of all causal dependencies for a data item version
transaction execution has finished.

Th dat i tocol | ¢ The first solution is not feasible since the causal dependenc
¢ © tl.Jp a eh!clJropaga |0nt. pr(;hogo use;s DﬁﬁVa ue ot graph can potentially become very large. The second salutio
ransactions while propagating their upaates. Jpon retgv ., isies the advantage of partial replication, since ituiegs
updates, the remote site compares its vector clock with

X : . communicating the updates to all sites [36]. The proposed P-
vector to ensure that an update is applied at that site ongnw S| model presents a more efficient protocol which ensures
it has seen all the causally preceding updates. On appliing L

S -2 causal consistency and requires propagating the traos&cti
updates, the vector clock of the site is advanced appr@w]atupdates only to the sites storing the items modified by the

transaction.
IV. I SSUES IN SUPPORTING CAUSAL CONSISTENCY UNDER . . . .
Next we illustrate the issues that arise when executing a
PARTIAL REPLICATION . n
transaction that needs to access some partitions stored at a
We now discuss the issues in extending the CSI modeimote site. Suppose, in the example shown in Figure 1, at
to provide causal consistency under partial replicational site 4 transactiof’4 is executed which reads items y, and
partial replication scheme, data items are not replicated ;a This transaction readg(199) from the local partitionP3
all sites. Ideally, one of the advantage of partial repiarat and reads:(100) and z(300) from site 1 since site 4 does
scheme is that the updates of a transaction need to be prapat-contain partitions”?1 and P2. In Figure 2, we show the
gated only to the sites that store the data items accesséntbydausal relationships between the versions of itemg, z. We
transaction. This reduces the communication cost comgaredlso show the snapshot observed By, which is causally
the full replication scheme as the updates are not requirbd t inconsistent because it contains300) but not the causally
propagated to all sites. However, propagating a trangastiopreceding versiory(200).



Site 1 Site 2 Site 3 Site4  time

P1

X(99) ‘ P2 z(299)‘ P% z(299)‘ P3‘ y(199)‘ P]\ x(99)‘ P2 | 2(299) ‘ P# y(199)‘

T1: w{x(100) }

p1|x@oo) | T L TR o

T2: r { x(100) } w { y(200) }

P3| y(200) |----ee N . '

T3: r{y(200) } w { z(300) }

P2| 2(300)

a7 B N

T4: r{x(100) y(199) z(300)}

Fig. 1. Issues in supporting causality under partial regibn

929 1 100 ) ) )
X o ® Site 1 Site 2 Site 3 time
Pl‘ X(99) ‘ PZ‘ y(49) ‘ Pl‘ X(99) ‘ PZ‘ y(49) ‘
1199 200
y @
*\\ T1: w{x(100) y(50) }
' 300 Pl‘ X(100) ‘ PZ‘ y(50) ‘ ‘
| T '
Snapshot observed by T4 Pl
T2:r {x(100) y(49)}

Fig. 2. Causally inconsistent snapshot due to remote reads

Fig. 3. Issues in obtaining atomically consistent snapshot

Another issue that arises when reading data from remote

partitions under asynchronous propagation is related & th zs i the case of CSl, for each data item, there is a desig-
atomicity property of consistent snapshots. We illusttaie natedconflict resolver sitavhich is responsible for checking

with an e>_<amp'e_ shov_vn n F'gl_”e 3. Here partltldhl_ __for update conflicts for that item. Transactions can exeatite
containing itemz is repllcated at sites 1 and 2, and partltlo%lny site. A transaction may access items in multiple partiti

P2 contglnmg:y IS repI:jcated a;cjsnes 1 and 3. Transactibh £ oo ially replicated databases, the P-CSI model essalre
executed at site 1 updatesandy, creating versions:(100) e guarantees provided by CSI. These properties are ehsure

and y(50). The updates of this transaction are propagat%gen when a transaction accesses items from multiple sites.
asynchronously to sites 2 and 3. Suppose that site 3 executes

transaction72 which reads itemxz andy. 72 is executed B. Vector Clocks and Partition Dependency View
before site 3 applies the update Bi for versiony(50). T2

readsy(49) from its local partition and reads(100) from i dates o all sites. O lution to thid
site 1. This reflects an atomically inconsistent snapshot _%ffpropagamg updates to all sites. Lur soiution to tni I:afm_
is based on maintaining vector clocks on per-partitionddni

partitionsP1 and P2 with respect to items andy. In the next . . . o
section, we present the P-CSI model to address such issue@fhfonowmg dISCU-S.SIOI’], we ref_er to the partitions stoatd
ensuring causal consistency. site as t_héopal partitionsof that site. In the P-CSI r_’n_odel, each
site maintains a vector clock for each local partition, nefd
V. PARTITIONED-CSI MODEL to as thepartition view (). Thepartition view V), for a local
partitionp maintained by sitg indicates the sequence numbers
A. System Model of transactions from all sites that have updated any of trast
We consider partial replication of database that consitsia partition p and have been applied to the local partition at
a finite set of data items partitioned into multiple disjoitatta site j. Thus, the valud/,[k] indicates that sitg has applied
partitions. The system consists of multiple sites, and aiteh all the transactions pertaining to partitignfrom site & up
contains one or more partitions. Each partition is repéidat to this much timestamp as well as all the causally preceding
across one or more sites. Each site supports multi-versitan diransactions. Th&p, value at a particular time identifies the
management and Sl-based transactions. state of the partitiomp visible at site; at that time. A site also

Our goal in designing the P-CSI model is to avoid the need



maintains a sequence counter for each of its local parsifiorrach partition that it modified, from the local site. This se-
which is used to assign sequence numbers to local transactiquence number is used to assign a timestamp to the transactio
modifying items in that partition. A transaction executiaga for that partition. A timestamp is defined as a paisiteld,
site obtains, during its commit phase, a local sequence rumbeg>, where seq is a local sequence number assigned to
for each partition it is modifying. the transaction by the site identified Byte/d. The commit
Events of interest in the system are the update evetithestamp vectd€;) of transactiont is a set of timestamps
performed by a transaction. A transaction may update meltissigned to the transaction corresponding to the pawition
partitions thus resulting in distinct update events inatght modified by the transaction. Thus, the commit timestamp
partitions. We define aatomic event sats the set of all update vector C; of transactiont modifying n partitions is a set of
events of a given transaction. In any consistent snapstirei timestampgC},CZ,---,Cf,---,C*}. For an item modified by
all or none of the events of an atomic event set are presertransactiory in partition ¢, the version number of the item is
A site also maintains for each local partitipna partition identified by commit timestamg}.
dependency viewY,) which is a set of vector clocks. It rep- A transaction’s updates are applied to the local database
resents a consistent global snapshot, capturing both eitymiand then asynchronously propagated to other sites whicé sto
and causality properties. For causality, it identifies facke any of the partitions modified by the transaction. The infor-
of the other partitions the events that have occurred in thagation transmitted to sites in the update propagation ngessa
partition and that causally precede the partitigs state as includes a set of vector clocks, callt@nsaction dependency
identified by its current partition view. In other word®,, view (7D), containing a vector clock corresponding to each
indicates the state of other partitions on which the state pértition. The transaction dependency view for a traneacti
partitionp is causally dependent. For atomicity, it captures theidentifies all the transactions that causally precedat the
atomic event sets of all the transactions applied to pantitiremote site, the updates of transacticare applied only when
p. The partition dependency view, consists of a vector all the events identified iff D; have been applied. We describe
clock for each other partition. Formallf, is a set of vector the details of the update propagation later.
clocks{D}, Dz, --,D4,---, Dy}, in which an elemenD{ is We describe below in details the various steps in the
a vector clock corresponding to partitign Each element of transaction execution protocol.
the vector clockD{ identifies the transactions performed ordbtaining start snapshot timén the case when all partitions
partition ¢ that causally precede the transactions performéal be accessed by the transaction are local, the start sstapsh
on partitionp identified byV,. Note that partitiony may or time S; for transactiort is obtained using the partition view
may not be stored at site Also, note that vector clocky is values for those partitions. The pseudocode for obtainiag s
the same a®’,. A site maintains partition dependency viewsnapshot time is shown in Algorithm 1. Later in Algorithm 7
for each local partition. We describe below how the panitiowe generalize this for a transaction accessing partitioos f
dependency views are maintained and how they are usedéemote sites.
ensure causal consistency.

Algorithm 1 Obtaining start snapshot time
C. Transaction Execution Protocol function GETSNAPSHOT

We now give a brief overview of the transaction execution P < partitions accessed by the transaction
model of P-CSI and then discuss the various issues involved [ begin atomic action
in it. For simplicity of the discussion, we first describe the  for eachp € P do
execution of a transaction at a site which stores all the SV,
partitions accessed by the transaction. Later, we discoss h end atomic action ]
a transaction that requires accessing partitions at resite
is executed. A transactiangoes through a series of execution
phases. _In t_he first phase it obtainsstart snapshot time Algorithm 2 Performing read operations
(S:), which is a set of vector clocks corresponding to the
partitions to be accessed by the transaction. An elei§Rrit
S indicates the start snapshot time for partitiariThe trans-
action then performs read operations using the start snapsh
time. P-CSI protocol ensures that the snapshot observed by a
transaction is causally consistent.

When the transaction reaches its commit point it needs to
coordinate with the conflict resolver sites of the items & itPerforming read operationsiVhen a transaction reads a data
write-set, as in the CSI protocol, to check for update coitem x from a partitionp, we determine the latest version
flicts. Read-only transactions can be executed locallyawith for = that must be visible to the transaction based on the
needing any coordination with remote sites. After suce#gsstransaction’s start snapshot tin®® for that partition. The
validation, the transaction executes its commit phasehén tprocedure to read a data item version from partitiprac-
commit phase, the transaction obtains a sequence numbercianding to transaction’s snapsh$f is the same as in the CSI

function READ(item x)
p <« partition containing iteme
[* performed in reverse temporal order of versions */
for each version v € version logof = do
if SP[v.siteld) > v.seqno then return v.data




model. Algorithm 2 gives the pseudocode for performing redt{gorithm 4 Computing transaction dependency view for
operations. In case of write operations, the writes arecheff ransactiont

locally until the commit time.

Algorithm 3 Update conflict checking performed by a trans-

action at sitej
function CHECKCONFLICTS(writeset)
sites < conflict resolver sites for items writeset
for each s € sites do
itemList < {x|x € writeset A resolver(x) = s}
send prepare messagesdo (itemList, S)

if all votes are ‘yesthen
perform Commitfunction as shown in Algorithm 5
to eachs € sites
send commit messageitém List, C;)
else
send abort message to each sites
abort transaction

/* Functions executed by the conflict resolver site */

[* upon receiving prepare message for transactiéh
function RECVPREPARHitem List, St)
for each x € itemList do
p < partition containing iteme
v + latest version of itemx
if SP[v.siteld) > v.seqno A w is unlockedthen
lock z
else
return response with ‘no’ vote

if all € itemList are locked then send response with/-Dt

‘yes’ vote

[* upon receiving commit message for transactiofi
function RECVCOMMIT (item List, Ct)
for each x € itemList do
p < partition containing iteme
record version timestam@’ in version log
release lock on:

[* upon receiving abort message for transactiom
function RECVABORT(item List)
release locks on alt € itemList

function COMPUTETRANSACTIONDEPENDENCY
P « set of partitions on which performed any
read/write operation.
& + set of effective causal snapshot vectors
corresponding to partitions i
for each p € P do
TD} «+ &F
[ begin atomic action
for eachp € P do
for each D] € D, do
if 7D, does not contain element fgrthen
TD{ « Di
else
TD{ « superD4, TDY)

end atomic action ]

function superRV1, V2,---,Vk) returns V
Vi, V[i] = mazx(V1[i], V2[i],-- -, VE[i])

causally precede. Algorithm 4 shows the pseudocode for
computing7 D,. Transactiont computes its effective causal
snapshot vectof;, which is a set containing vector clocks
for each partition accessed byElement€? in this set is the
effective causal snapshot corresponding to partificaind is
computed as discussed in Section lll, considering the items
read/written byt from partition p. £ captures the causal
dependencies for transactionsolely based on items read or
written by¢. To capture transitive dependencies, we include in
the partition dependency viewectors of each partition
accessed by. If any two partitionspl and p2 accessed by

t each have in their dependency views an element for some
other partitiong, i.e. 3¢ s.t. Dgl € Dpi A DZQ € Dya, then

we take element-wise max value fraRf, andD}, using the
‘super’ function shown in Algorithm 4.

Commit phaseAlgorithm 5 shows the commit protocol for
transaction. A commit timestamp vect6y is assigned to the
transaction by obtaining a sequence number of each partitio
modified byt¢. The updates made by transactions are written
to the local database and transaction dependency view set
TD, is computed. The partition viewy and dependency
views D of all updated partitions are advanced usififp; and

C:, as shown in the function ‘AdvanceVectorClocks'. If the

Update conflict checkingWhen the transactions reaches itsommitted transaction involves modifying items in mulkipl
commit point, it performs update conflict checking if it hagpartitions, then the above procedure ensures that theiparti
modified any items. The procedure to check for update codependency viewD for each modified partition is updated
flicts is same as described in Section IIl for the CSI modalsing theC; value to capture all events in the atomic set

Algorithm 3 shows the protocol for conflict checking.

of the transaction. The above procedure is done as a single

Determining transaction dependenciesfter successful val- atomic action to ensure that the transaction’s updates are

idation, transactiont computes its transaction depen-
dency view TD;,. TD, is a set of vector
{TD}, TD?,---, TDY,---, TD}}, in which an elemenf DY

identifies the transactions performed on partitipnwhich

made visible atomically. The updates, along wiftD; and

clocks C; values, are propagated to every site that stores any of the

partitions modified by. The update propagation can be started
asynchronously once tHED; andC; have been computed.



Algorithm 5 Commit Protocol for transaction at sije

Applying updates at remote site¥/hen a remote sité re-

* [..] denotes an atomic region */
function ComMMIT (writeset)
P « partitions pertaining tavriteset.
for eachp € P do
ctr, < local sequence counter for partitipn
Cr.seq < ctrp++
ApplyUpdatesqriteset, Ct)
/I compute dependencies as shown in Algorithm 4
TD; + ComputeTransactionDependency()
/I advance local vector clocks
AdvanceVectorClock§(D,, C;)
/* propagate updates */
propagate to every site that stores any partigon P
(T Dy, writeset, Cy)

function APPLYUPDATESwriteset, Cy)
P « partitions pertaining tavriteset.
for eachp € P do
for each item x in writeset pertaining top do

write the new version of to the local database.

record version timestam@’ in version log

/* Function to update vector clocks for partitions */
function ADVANCEVECTORCLOCKS(T Dy, Cy)
P « partitions pertaining tavriteset
[ begin atomic region
for eachp € P do
for each 7D} € TD; s.t.q # p do
D¢ « super(D{, D)
/* Advance D to capture the’s update events in
other partitions */
for eachC! € C; s.t.q # p do
Di[C{ .siteld] + Cf .seq
VP[CP.siteld) <+ CF.seq
end atomic region ]

Algorithm 6 Applying updates at a remote site

function RECVUPDATEPROPAGATION(T Dy, writeset, Cy)
[*check if the site is up to date with respectfaD, */
for each TD! € TD, do
if (p is local partition)A VP < TDY then
buffer the updates locally
synchronize phaseither pull the
required causally preceding updates or
wait till the vector clock advances enough.
for each C? € C; do
if (p is local partition)n VP[CY .siteld] < Cf.seq—1
then synchronize phase as shown above
/I apply updates to local partitions at site
ApplyLocalUpdatesgriteset, Ct)
/I advance vector clocks of site
AdvanceVectorClock§(D,, C;)

ceives update propagation foy it checks if it has applied,

to its local partitions, updates of all transactions thatszély
precedet and modified any of its local partitions. Thus, for
every partitionp specified in7 D, if p is stored at sitd;, then
site checks if its partition view, for that partition is advanced
up to7DY. Moreover, for each of the modified partitiopngor
which the remote site stores a replicapothe site checks P,

of the replica contains all the events preceding the seguenc
number value present i@. If this check fails the site defers
the updates locally and enters a synchronization phasehwhic
includes either pulling the required updates or delaying th
application of updates until the vector clocks of the local
partitions advance enough. If this check is successful, the
site applies the updates to the corresponding local pariti
Updates oft corresponding to any non-local partitions are
ignored. The partition views at site are advanced as shown
in procedure ‘AdvanceVectorClock’ in Algorithm 5.

D. Execution of Multi-site Transactions

It is possible that a site executes a transaction that aesess
some partitions not stored at that site. This requires read-
ing/writing items from remote site(s). One important requi
ment while performing a multi-site transaction is to ensure
that the transaction observes a consistent global snapshot

We describe how the start snapshot vector is determined.
The Algorithm 7 shows the modified ‘GetSnapshot’ function.
Note that at a given site the partition dependency view of any
partition reflects a consistent global snapshot. One cas thu
simply take theD vector set of any one of the local partitions
to be accessed by the transaction. However, it is possiate th
such a set may not contain a vector corresponding to some
partition to be accessed by the transaction. We presenwtzlo
procedure to obtain a snapshot for all partitions to be aetks
by the transaction.

We can form a consistent global snapshot by combining
the partition dependency views of all the local partitioHs.
two local partitions contain in theiD sets a vector for some
partition p, then we can take ‘super’ of these two vectors as
the snapshot fop. We follow this rule for each partition to be
accessed across all local partition dependency views to for
a global snapshot. Such a snapshot is consistent because the
causal and atomic set dependencies of all the local pauditio
are collectively captured in this snapshot.

It is still possible that this set may not have a snapshoovect
for some partition to be accessed by the transaction. Fdr eac
such partitiong, we then need to follow a procedure to obtain
a snapshot from some remote site containing that partition.
We read the partition view, of the remote site and consider
it as the snapshot far provided that its causal dependencies
as indicated by thé, set at the remote site have been seen
by the local site. The function ‘GetRemoteSnapshot’ penfor
this step.

After obtaining the start snapshot time, transactioper-
forms local reads as shown in Algorithm 2. For a remote
read, site; contacts the remote site which then performs a



Algonthm 7 Obta|n|ng SnapShOt for a multi-site transaction up to |engthn, we show that this property is preserved when

at Sitei. a new causally succeeding transactide executed at the site
function GETSNAPSHOT extending the length of a causal sequence tp 1.
L « local partitions accessed ly As shown in Algorithm 5, in the commit phase the trans-
R + non-local partitions accessed by action ¢ updates some partitions and updates tfivector
for eachp € £ do sets and partition views. The first step involves obtaining
StV commit timestamps for each partition to be modified. It then
for eachq € R do inserts new versions of the modified items in these parstion
for each p € partitions(i) do However, these versions are not visible to any transactimes
if D} € Dy then the partition views are yet not advanced. Next, the commit
S} + superD4, S7) protocol computes the transaction dependency iéw. The
for each ¢ € R such thatS? ¢ S, do procedurg §h0wn in Algorithm 4, gonstructs a vector cloak fo
S! + GetRemoteSnapshai) each partitionr on which transac'uom is causally_ dependent
if S is null then repeat above step using some othf capture all the cauially preceding events in partition
replica site for partitiory This is denoted by7D;. These causal dependencies arise

because of partitions accessed bywhich happen to be
dependent on events in Suppose that accesses partitions
{P1,P2,---, Pk}, then TD; has the following property,
wheref; is the effective causal snapshot of partitioif it is
accessed by.

/* Function executed at remote sijeto
obtain snapshot fot for partition ¢ */
function GETREMOTESNAPSHOT(S;, partition q)
for each r such thatD;‘ €D,NS] €S, do
if Sf <Dy then TD; = super(Dpy, Dpoy -+ Dppy E) Q)
return null

. .
returnV, The above expression means tHaD; includes all causal

dependencies of transactioron partitionr.
Next the transaction updates tfi2 vector sets of all the

) . modified partitions using thef D, vector. For each such
local read and returns the version. Before performing tae repatition ) and eachr in 7D, it setsD’ equal to7 D}, thus

operation, sitgl checks if it is advanced up to the transaction’gpdating the dependency view of a modified partitierio
snapshot for that partition. This check is needed only in the-|ude its dependency on events in Moreover, for each
case when the transaction did not need to contact the remgisyified partitionp, D¢ for each other modified partitio,
site when it constructed its start snapshot time. g # p, is modified using the’ vector so thatD, includes

If a transaction involves updating any remote partition, jh jts view the update event afon partitiong. This ensures
must make sure to obtain a snapshot vector for that paritionht the partition dependency view of each modified partitio
the start of the transaction, as described above. In the mmﬂbptures all events in the atomic set of transactiofhe steps
phase it contacts that site to obtain a sequence number §emodifyingD vectors are performed as a single atomic action
that partition. The rest of the commit protocol is performegh ensure that any other concurrent transaction would away
as shown in Algorithm 5. The updates to local partitiongpserves a consistent snapshot. The modifiedector sets
are applied first and remote updates are sent to the remgiRyre the consistency property mentioned above.
site using the update propagation mechanism describedaboV pyopagation of transactiofis updates to remote sites in-
Even though there is a delay in applying updates to the remeigdes7D,, C, and the write-set. Before applying updates of
partition, the atomicity guarantee in obtaining a snapsBot yransactiort, each remote site ensures that for each partition
still guaranteed because tiievector set of the local partitions ;. stored at the remote site, it has applied all the causally
wou.I(_:i force the use of the updated view of the remoi§eceding events implied by D;. When the updates dfare
partition. applied, the procedure followed for updatifigvector set and
partition views of the partitions located at the remote site
the same as that described above for the execution site. Thus
We now discuss the correctness of the P-CSI protocol. Thfe modifiedD vector sets at the remote sites also ensure the

property central to the correctness of the protocol is thggnsistency property mentioned above.
the partition dependency vie® of any partition at a site

reflects a consistent global snapshot across all partitibine VI. EVALUATIONS

partition dependency view is updated whenever a transactio We present below the results of our evaluation of the P-

is executed modifying that partition. Initiallyp sets for all CSI model. For these evaluations, we implemented a pragotyp

partitions are empty, and therefore this property holdsatty. system implementing the P-CSI protocol. In our prototype,
We show that this property holds by using induction on thee implemented an in-memory key-value store to serve as the

length of causal sequence of transactions executed at.a ddeal database for a site. Each site also maintains a ‘commit

Assuming that this property holds for transaction sequendeg’ in secondary storage. During the commitment of an

E. Discussion of Protocol Correctness



update transaction, the updates are written to the ‘COMMIt coyparaTIVE EVALUATION OF PARTIAL AND FULL REPLICATION

log’. Committed update transactions are propagated by the
execution site at periodic intervals, set to 1 second. Rurin

TABLE |

T . Max. Transaction| Visibility
the update synchronization phase at the remote site (refer Throughput | Latency | Latency
Algorithm 6), if the updates cannot be applied, then the site , (msec) (msec)
buffers the updates locally and delays their applicatidti tire Partial Rep. 14937 653 4608

P y Y PP Full Rep. 6494 87.8 8714

corresponding vector clock values have been advanced Bnoug

A. Experiment Setup

We performed the evaluations on a cluster of 30 nod@the advantages of the P-CSI model is that updates need to
using the resources provided by Minnesota Supercomputidg propagated only to the sites storing the modified pamstio
Institute. Each node in the cluster had 8 CPU cores with 2li8contrast, full replication requires propagating updateall
GHz Intel X5560 "Nehalem EP” processors, and 22 GB maBites, resulting in lower throughput. With partial reptica,
memory. Each node in the cluster served as a single datab#&sethroughput achieved is more than factor of two compared
site in our experiments. to full replication. The number of update propagation mgssa

Replication configurationWe performed experiments for Per transaction depends on the number of modified partitions
different numbers of sites. The number of partitions was skt our experiments, the number of update propagation mes-
equal to the number of sites. Thus, for 10 sites, the syst&®des per transaction in case of partial replication wasdou
database consisted of 10 partitions, whereas for 20 sites th be close to 2, whereas this number in case of full repbecati
database was scaled accordingly to contain 20 partitioash E was close to 19.
partition was replicated on three sites. Each partitiortaioed ~ Another important measure is thasibility latency of an
100,000 items of 100 bytes each. For a partition, we desighat/pdate, which is the time since an update is committed till
one of its replica sites as the conflict resolver for itemshiat t the time it is applied at all the replicas storing the updated
partition. item. This depends on three factors: network latency, delay

We synthesized a transaction workload consisting of twB propagating updates at the execution site because of the
types of transactiondocal transactions which accessed onljazy propagation model, and delays in applying updateseat th
local partitions, andnon-local transactions which accessedemote site due to causal dependencies. In our experiments
some remote partitions from a randomly selected site. In tHe update propagation interval was set to 1 second. \ityibil
transaction workload, each transaction read from 2 pamsti latency indicates the inconsistency window i.e. the time fo
and modified 1 partition. In case of local transactions. thihich the data copies at different replicas are inconsistéth
partitions to read/modify were randomly selected from th@spect to a given update. We show in Table | the average value
local partitions. For each accessed partition, the traizsac Of visibility latency for partial and full replication motte
read/modified 5 randomly selected items. In subsection VI-f case of full replication, due to the higher cost of update
we varied the number of modified partitions to evaluate igfopagation the visibility latency is higher, indicatingat
impact, as described later. replicas are out-of sync for a longer time compared to the

In these evaluations, we were interested in evaluating tRartial replication.
following aspects: (1) advantages of partial replicatia u .
ing P-CSI over full replication, (2) scalability of the P-CSC' Scalability
model, and (3) impact of locality in transaction execution. We evaluated the P-CSI model for various system sizes, i.e.
The primary performance measures used were: (1) transactivimber of sites, to demonstrate its scalability under tladesc
throughput measured as committed transactions per secai#f, model. For each system size, we measured the maximum
(2) transaction latency, measured in milliseconds, an¢¢3) transaction throughput and the average transaction katenc
of update propagation, measured as number of propagatfégures 4 and 5 show the maximum throughput and average
messages sent per transaction. latency of transactions, respectively. The transactioouth-
put increases almost linearly with the increase in system, si
with only marginal increase in latencies.

We first present the comparative evaluation of partial repli ,
cation using the P-CSI model and full replication. This evaP: Impact of Non-local Transactions
uation was performed using 20 sites, with all transactionsTo evaluate the impact of locality in transaction execu-
accessing local partitions. For full replication schemuw t tion, we induced non-local transactions, i.e. transastiith
database contained only one partition, consisting of 2ionill remote partition access. We varied the percentage of the
items, replicated on all sites. Note that this configuratiomon-local transactions to observe the impact on transactio
corresponds to the basic CSI model. Table | shows the redalencies. Figure 6 shows the results of this evaluation. We
of this evaluation. The ‘max throughput’ column in the tablshow in this figure the average latencies for all transastion
gives the maximum transaction throughput that we coults well as average latencies for non-local transactions. We
achieve for that system configuration. As noted earlier, omdserve only a slight increase in the overall latencies due t

B. Advantages over Full Replication
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TABLE Il

IMPACT OF TRANSACTION SIZE There are several aspects of this model which make it atteact

for large scale environments while providing a useful censi
tency model. These aspects include snapshot isolation with

No. of Read | No. of Write | Transaction| Avg. Prop. ) -
Partitions Partitions Latency | Messages causal consistency that eliminates need for a global seguen
;2>, ; gg-g é-gg asynchronous update propagation, and support for partial
i 3 897 131 replication requiring messages to be communicated only wit

the sites containing the partitions accessed by a traosacti
We have implemented a data replication management system
using the P-CSI model. We evaluated this system on a cluster
non-local transactions, however, these latencies candieehi to demonstrate the scalability and the performance benefits
in wide-area environments. of partial replication using P-CSI over the full replicatio

. . scheme.
E. Impact of Transaction Size
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