
ar
X

iv
:1

50
6.

07
95

7v
1

 [c
s.

D
C

]
26

 J
un

 2
01

5

Auditable Restoration of Distributed Programs

Reza Hajisheykhi
Computer Science and

Engineering Department
Michigan State University
East Lansing, MI, USA

Email: hajishey@cse.msu.edu

Mohammad Roohitavaf
Computer Science and

Engineering Department
Michigan State University
East Lansing, MI, USA

Email: roohitav@cse.msu.edu

Sandeep Kulkarni
Computer Science and

Engineering Department
Michigan State University
East Lansing, MI, USA

Email: sandeep@cse.msu.edu

Abstract—We focus on a protocol for auditable restoration
of distributed systems. The need for such protocol arises due
to conflicting requirements (e.g., access to the system should be
restricted but emergency access should be provided). One can
design such systems with a tamper detection approach (basedon
the intuition of break the glass door). However, in a distributed
system, such tampering, which are denoted as auditable events,
is visible only for a single node. This is unacceptable sincethe
actions they take in these situations can be different than those in
the normal mode. Moreover, eventually, the auditable eventneeds
to be cleared so that system resumes the normal operation.

With this motivation, in this paper, we present a protocol for
auditable restoration, where any process can potentially identify
an auditable event. Whenever a new auditable event occurs, the
system must reach anauditable state where every process is aware
of the auditable event. Only after the system reaches an auditable
state, it can begin the operation of restoration. Although any
process can observe an auditable event, we require that only
authorized processes can begin the task of restoration. Moreover,
these processes can begin the restoration only when the system
is in an auditable state. Our protocol is self-stabilizing and has
bounded state space. It can effectively handle the case where
faults or auditable events occur during the restoration protocol.
Moreover, it can be used to provide auditable restoration toother
distributed protocol.

Keywords—Self-stabilization, reactive systems, adversary, formal
methods

I. I NTRODUCTION

A. A Brief History and the Need for Auditable Restoration

Fault-tolerance focuses on the problem of what happens if
the program is perturbed by undesired perturbations. In other
words, it focuses on what happens if the program is perturbed
beyond its legitimate states (a.k.a.invariant). There have
been substantial ad-hocoperationalapproaches –designed for
specific types of faults– for providing fault-tolerance. For
example, the idea of recovery blocks [14] introduced the notion
of acceptance conditions that should be satisfied at certain
points in the computation. If these conditions are not satisfied,
the program is restored to previous state from where another
recovery block is executed. Checkpointing and recovery based
approaches provide mechanism to restore the program to a
previous checkpoint. Dijkstra [7] introduced an approach for
specifying(i.e., identifying what the program should provide
irrespective of how it is achieved) one-type of fault-tolerance,
namely stabilization [7]. A stabilizing program partitioned the
state space of the program into legitimate states (predicate S
in Figure 1(a)) and other states. It is required that (1) starting
from any state inS, the program always stays inS and (2)

starting from any state in¬S, the program recovers to a state
in S.

Although stabilization is desirable for many programs, it
is not suitable for some programs. For example, it may be
impossible to provide recovery from all possible states in¬S.
Also, it may be desirable to satisfy certain safety properties
during recovery. Arora and Gouda [3] introduced another
approach for formalizing a fault-tolerant system that ensures
convergencein the presence of transient faults (e.g., soft errors,
loss of coordination, bad initialization), sayf . That is, from
any state/configuration, the system recovers to its invariant S,
in a finite number of steps. Moreover, from its invariant, the
executions of the system satisfy its specifications and remain in
the invariant; i.e.,closure. They distinguish two types of fault-
tolerant systems:maskingand nonmasking. In the former the
effects of failure is completely invisible to the application. In
other words, the invariant is equal to the fault-span (S = FS
in Figure 1(b)). In the latter, the fault-affected system may
violate the invariant but the continued execution of the system
yields a state where the invariant is satisfied (See Figure 1(b)).

The approach by Arora and Gouda intuitively requires that
after faults stop occurring, the program provides theoriginal
functionality. However, in some cases, restoring the program
to original legitimate states so that it satisfies the subsequent
specification may be impossible. Such a concept has been
considered in [13] where authors introduce the notion of
graceful degradation. In graceful degradation (cf. Figure 1(c)),
a system satisfies its original specification when no faults have
occurred. After occurrence of faults (and when faults stop
occurring), it may not restore itself to the original legitimate
states (S in Figure 1(c)) but rather to a larger set of states (S′

in Figure 1(c)) from where it satisfies a weaker specification.
In other words, in this case, the system may not satisfy the
original specification even after faults have stopped.

In some instances, especially where the perturbations are
security related, it is not sufficient to restore the program to
its original (or somewhat degraded) behavior. The notion of
multi-phase recovery was introduced for such programs [5].
Specifically, in these programs, it is necessary that recovery
is accomplished in a sequence of phases, each ensuring that
the program satisfies certain properties. One of the properties
of interest isstrict 2-phase recovery, where the program first
recovers to statesQ that are strictly disjoint from legitimate
states. Subsequently, it recovers to legitimate states (See Figure
1(d)).

The goal of auditable restoration is motivated by combining
the principles of the strict 2-phase recovery and the principles
of fault-tolerance. Intuitively, the goal of auditable restoration

http://arxiv.org/abs/1506.07957v1

is to classify system perturbations into faults and auditable
events, provide fault-tolerance (similar to that in Figure1(b))
to the faults and ensure that strict 2-phase recovery is provided
for auditable events. Unfortunately, this cannot be achieved
for arbitrary auditable events since in [5], it has been shown
that adding strict 2-phase recovery to even a centralized
program is NP-complete. Our focus is on auditable events
that are (immediately) detectable. Faults may or may not be
detectable. Unfortunately, adding strict 2-phase recovery to a
program even in centralized systems has been shown to be
NP-complete.

B. Goals of Auditable Restoration

In our work, we consider the case that the system is
perturbed by possible faults and possible tampering that wecall
asauditable events. Given that both of these are perturbations
of the system, we distinguish between them based on how
and why they occur. By faults, we mean events that are
random in nature. These include process failure, message
losses, transient faults, etc. By auditable events, we mean
events that are deliberate in nature for which a detection
mechanism has been created. Among other things, the need for
managing such events arises due to conflicting nature of system
requirements. For example, consider a requirement that states
that each process in a distributed system is physically secure.
This requirement may conflict with another requirement such
as each node must be provided emergency access (e.g., for
firefighters). As another example, consider the requirementthat
each system access must be authenticated. This may conflict
with the requirement for (potential) unauthorized access in a
crisis. Examples of this type are well-known in the domain
of power systems, medical record systems, etc., where the
problem is solved by techniques such as writing down the
password in a physically secure location that can be broken
into during crisis or by allowing unlimited access and using
logs as a deterrent for unauthorized access. Yet another ex-
ample includes services such as gmail that (can) require that
everytime a user logs in, he/she can authenticate via 2-factor
authentication such as user’s cell phone. To deal with situations
where the user may not have access to a cell phone, the user is
provided with a list of ‘one-time’ passwords and it is assumed
that these will always stay in the control of the users. However,
none of these solutions are fully satisfactory.

In this paper, we focus on a solution that is motivated by
the notion of 2-phase recovery. Specifically, we would like to
have the following properties:

• We consider the case where the auditable events
are immediately detectable. This is the case in all
scenarios discussed above. For example, the use of
‘one-time’ password for gmail or violation of physical
security of a process is detectable. Likewise, the
passwords stored in a physically secure location can
be different from those used by ordinary users making
them detectable.

• We require that if some process is affected by an
auditable event, then eventually all (respectively, rel-
evant)1 processes in the system are aware of this
auditable event. For example, if one process is phys-
ically tampered then it will not automatically cause
the tampering to be detected at other processes. This

1In this paper, for simplicity, we assume that all processes are relevant.

would allow the possibility that they only provide the
‘emergency’ services and protect the more sensitive
information. This detection must occur even in the
presence of faults (except those that permanently fail
all processes that were aware of auditable event)2.
We denote such states asauditable statesin that all
processes are aware of a new auditable event (S2 in
Figure 1(e)).

• After all processes are aware of the auditable event,
there exists at least one process that can begin the
task of restoring the system to a normal state, thereby
clearing the auditable event. This operation may be au-
tomated or could involve human-in-the-loop. However,
the system should ensure that this operation cannot be
initiated until all processes are aware of the auditable
event. This ensures that any time the normal operation
is restored, all processes are aware of the auditable
event.

• If the operation to restore the system to normal state
succeeds even if it is perturbed by faults such as
failure of processes. However, if an auditable event
occurs while the system is being restored to the normal
state, the auditable event has a higher priority, i.e., the
operation to restore to normal state would be canceled
until it is initiated at a later time.

Observe that such a solution is a variation of strict 2-
phase recovery. When an auditable event occurs, the system is
guaranteed to recover to a state where all processes are aware
of this event (S2 in Figure 1(e)). And, subsequently, the system
recovers to its normal legitimate states (S1 in Figure 1(e)). Our
solution has the following properties:

• Our solution is self-stabilizing. If it is perturbed to an
arbitrary state, it will recover to a state from where all
future auditable events will be handled correctly.

• Our solution can be implemented with a finite state
space. The total state does not increase with the length
of the computation. It is well-known that achieving fi-
nite state space for self-stabilizing programs is difficult
[18].

• Our solution ensures that if auditable events occur at
multiple processessimultaneously, it will be treated as
one event restoring the system to the auditable state.
However, if an auditable event occurs after the system
restoration to normal states has begun (or after system
restoration is complete), it will be treated as a new
auditable event.

• After the occurrence of an auditable event, the system
recovers to theauditable stateeven if it is perturbed
by failure of processes, failure of channels, as well as
certain transient faults.

• No process can initiate the restoration to normal
operation unless the system is in an auditable state.
In other words, in Figure 1(e), a process cannot begin
restoration to normal state unless the system was
recently inS2.

2If all processes that are (directly or indirectly) aware of the auditable events
fail then it is impossible to distinguish this from the scenario where these
processes fail before the auditable events.

2

• After the system restores to an auditable state and
some process initiates the restoration to normal op-
eration, it completes correctly even if it is perturbed
by faults such as failure of processes or channels.
However, if it is perturbed by an auditable event, the
system recovers to the auditable state again.

Organization of the paper. The rest of the paper is
organized as follows: In Section II, we present the preliminary
concepts of stabilization and fault-tolerance and introduce
the notion of auditable restoration in Section III. SectionIV
explains auditable restoration protocol while the variables are
unbounded. We bound these variables in Section V and discuss
the necessary changes in our protocol. Section VI provides
related work, and, finally, we conclude in Section VII.

II. PRELIMINARIES

In this section, we first recall the formal definitions of pro-
grams, faults, auditable events, and self stabilization adapted
from [3], [7], [11]. We then formally define our proposed
auditable restoration mechanism.

Definition 1 (Program):A programp is specified in terms
of a set of variablesV , each of which is associated with a
domain of possible values, and a finite set of actions of the
form

〈name〉 :: 〈guard〉 −→ 〈statement〉

whereguard is a Boolean expression over program vari-
ables,statement updates the program variables.

For such a program, sayp, we define the notion of state,
state space and transitions next.

Definition 2 ((Program) State and State Space):A state
of the program is obtained by assigning each program variable
a value from its domain. The state space (denoted bySp) of
such program is the set of all possible states.

Definition 3 (Enabled):We say that an actiong −→ st is
enabled in states iff g evaluates to true ins.

Definition 4 (Transitions corresponding to an action):
The transitions corresponding to an actionac of the form g
−→ st (denoted byδac) is a subset ofSp×Sp and is obtained
as{(s0, s1)|g is true ins0 ands1 is obtained executingst in
states0}.

Definition 5 (Transitions corresponding to a program):
The transitions of programp (denoted byδp) consisting of
actionsac1, ac2, · · · acm is

δp =
⋃m

i=1
aci∪ {(s0, s0)|ac1, ac2 · · · acm are not enabled

in s0}.

Remark 1:Observe that based on the above definition,
for any states, there exists at least one transition inδp that
originates froms. This transition may be of the form(s, s).

For subsequent discussion, let the state space of program
p be denoted bySp and let its transitions be denoted byδp.

Definition 6 (Computation):We say that a sequence
〈s0, s1, s2, ...〉 is a computationiff

• ∀j ≥ 0 :: (sj , sj+1) ∈ δp

Definition 7 (Closure):A state predicateS is closed in p
iff ∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈ δp) ⇒ (s1 ∈ S).

Definition 8 (Invariant): A state predicateS is an invari-
ant of p iff S is closed inp.

Remark 2:Normally, the definition of invariant (legitimate
states) also includes a requirement that computations ofp
that start from an invariant state are correct with respect
to its specification. The theory of auditable restoration is
independent of the behaviors of the program inside legitimate
states. Instead, it only focuses on the behavior ofp outside its
legitimate states. We have defined the invariant in terms of the
closure property alone since it is the only relevant property in
the definitions/theorems/examples in this paper.

Definition 9 (Convergence):Let S and T be state predi-
cates ofp. We say thatT convergesto S in p iff

• S ⊆ T ,

• S is closed inp,

• T is closed inp, and

• For any computationσ (=〈s0, s1, s2, ...〉) of p if s0 ∈
T then there existsl such thatsl ∈ S.

Definition 10 (Stabilization):We say that programp is
stabilizing for invariantS iff Sp converges toS in p.

Definition 11 (Faults): Faultsfor programp = 〈Sp, δp〉 is
a subset ofSp×Sp; i.e., the faults can perturb the program to
any arbitrary state.

Definition 12 (Auditable Events): Auditable eventsfor
programp = 〈Sp, δp〉 is a subset ofSp × Sp.

Remark 3:Both faults and auditable events are a subset
of Sp × Sp. i.e., they both are a set of transitions. However,
as discussed earlier, the goal of faults is to model events
that are random in nature for which recovery to legitimate
states is desired. By contrast, auditable events are deliberate.
Additionally, there is a mechanism to detect auditable events
and, consequently, we want an auditable restoration technique
when auditable events occur.

Definition 13 (F-Span):Let S be the invariant of program
p. We say that a state predicateT is a f-spanof p from S iff
the following conditions are satisfied: (1)S ⊆ T , and (2)T is
closed inf ∪ δp.

III. D EFINING AUDITABLE RESTORATION

In this section, we formally define the notion of auditable
restoration. The intuition behind this is as follows: LetS1
denote the legitimate states of the program. LetT be a fault-
span corresponding to the set of faultsf . Auditable events
perturb the program outsideT . If this happens, we want to
ensure that the system reaches a state inS2. Subsequently, we
want to restore the system to a state inS1.

Definition 14 (Auditable Restoration):Let ae and f be
auditable events and set of faults, respectively, for program
p. We say that programp is anauditable restorationprogram
with auditable eventsae and faultsf for invariant S1 and
auditable state predicateS2 iff there existsT

• T converges toS1 in p,

• T is closed inδp ∪ f ,

• For any sequenceσ (=〈s0, s1, s2, ...〉), w s.t.

3

(a) Stabilization (b) Masking, nonmasking stabilization (c) Graceful degradation

(d) Strict 2-phase recovery (e) Auditable restoration

Fig. 1. Different types of stabilizations.

s0 ∈ T ∧
(s0, s1) ∈ ae ∧
s1 6∈ T∧
(sm, sm+1) ∈ δp ∪ δf ∪ ae ∧
m ≥ w ⇒ (sm, sm+1) ∈ δp

⇒ ∃m,n : ((n > m ≥ w) ∧ (sm ∈ S2) ∧ (sn ∈ S1))

IV. A UDITABLE RESTORATION FORDISTRIBUTED
PROGRAMS

In this section we explain our proposed auditable restora-
tion protocol for distributed programs.

As mentioned earlier, the auditable restoration protocol
consists of several processes. Each process is potentially
capable of detecting an auditable event. However, only a subset
of processes is capable of initiating the restoration operation.
This captures the intuition thatclearing of the auditable event
is restricted toauthorizedprocesses only and can possibly
involve human-in-the-loop. For simplicity, we assume that
there is a unique process assigned this responsibility and the
failure of this process is handled with approaches such as
leader election [15].

The auditable restoration protocol is required to provide the
following functionalities: (1) in any arbitrary state where no
auditable event exists, the system reaches a state from where
subsequent restoration operation completes correctly, (2) in
any arbitrary state where some process detects the auditable
event, eventually all processes are aware of this event, (3)some
process in the system can detect that all processes have been
aware of the auditable event, and (4) the process that knows

all processes are aware of the auditable event starts a new
restoration operation.

The auditable restoration protocol works as follows: It
utilizes a stabilizing silent tree rooted at the leader process,
i.e., it reaches a fixpoint state after building the tree even
though individual processes are not aware of reaching the
fixpoint. Several tree construction algorithms (e.g., [1])can be
utilized for this approach. The auditable restoration protocol
is superimposed on top of a protocol for tree reconstruction,
i.e., it only reads the variables of the tree protocol but does
not modify them. The only variables of interest from the tree
protocol areP.j (denoting the parent ofj in the tree) andl.j
(identifying theid of the process thatj believes to be the leader
in the tree). Additionally, we assume that whenever the tree
action is executed, it notifies the auditable restoration protocol
so it can take the corresponding action. Since the tree protocol
is silent, this indicates that some tree reconstruction is being
done due to faults.

In addition, the program maintains the variableotsn.j
and ctsn.j. Intuitively, they keep track of the number of
auditable events thatj has been aware of and the number of
auditable events after which the system has been restored by
the leader process. Additionally, each process maintainsst.j
that identifies its state,sn.j that is a sequence number and
res.j that is{0..1}. In summary, each processj maintains the
following variables:

• P.j, which identifies the parent of processj;

• l.j, which denotes theid of the process thatj believes
to be the leader;

• st.j, which indicates the state of processj. This

4

variable can have four different values:restore, stable,
⊥ (readbottom), or⊤ (readtop). These values indicate
thatj is in the middle of restoration after an auditable
event has occurred,j has completed its task associated
with restoration,j is in the middle of reaching to the
auditable state, orj has completed its task associated
with reaching to the auditable state, respectively.

• sn.j, which denotes a sequence number;

• otsn.j, as describe above;

• ctsn.j, as described above, and

• res.j, which has the domain{0..1}.

Observe that in the above program, the domain ofsn.j,
otsn.j, and ctsn.j is currently unbounded. This is done for
simplicity of the presentation. We can bound the domain
of these variables without affecting the correctness of the
program. This issue is discussed in Section V.

The program consists of 11 actions. The first action,AR1,
is responsible for detecting the auditable event. As mentioned
above, each process has some mechanism that detects the
auditable events. If an auditable event is detected, the process
j incrementsotsn.j and propagates it through the system.

Actions AR2–AR5 are for notifying all processes in the
system about the auditable events detected. Specifically, action
AR2 propagates the changes ofotsn value. We assume that
this action is a high priority action and executes concurrently
with every other action. Hence, for simplicity, we do not show
its addition to the rest of the actions. When the leader process
is notified of the auditable event, in actionAR3, it changes
its state to⊥ and propagates⊥ towards its children. Also,
in actionAR3, the leader sets itsres variable to 1 by using
min(res.j + 1, 1) function. (Instead of settingres value to
1 directly, we utilize this function because it would simplify
the bounding ofotsn, ctsn and sn variables in the next
section.) ActionAR4 propagates⊥ towards the leaves. In
action AR5, when a leaf receives⊥, it changes its state to
⊤ and propagates it towards the leader. Consider that, action
AR5 detects whether all processes have participated in the
current⊥ wave. This detection is made possible by letting
each process maintain the variableres that is true only if its
neighbors have propagated that wave. In particular, if process
j has completed a⊥ wave with res false, then the parent of
j completes that wave with theres false. It follows that when
the leader completes the wave with theres true, all processes
have participated in that wave. This action also increments
the ctsn value. However, if the leader fails when its state is
⊥ and some process with state⊤ becomes the new leader,
this assumption will be violated. ActionAR3 guarantees that,
even if the leader fails, the state of all processes will eventually
become⊤ and the leader process will be aware of that.

Action AR6 broadcasts the changes of thectsn value so
that the other processes can also restore to their legitimate
states. We assume that, similar to actionAR2, actionAR6 is
also a high priority action and executes concurrently with the
other actions.

When the leader ensures that all processes are aware of the
auditable events, a human input can ask the leader to initiate
a restoration wave to recover the system to its legitimate state.
Therefore, in actionAR7, the leader initiates a distributed
restoration wave, marks its state asrestore, and propagates
the restoration wave to its children.

AR1 :: {j detects an auditable event}
−→ otsn.j := otsn.j + 1

AR2 :: otsn.j < otsn.k
−→ otsn.j := otsn.k, if P.j = j then res.j := 0

AR3 :: P.j = j ∧ st.j 6= ⊥ ∧ otsn.j > ctsn.j
−→ st.j, sn.j, res.j := ⊥, sn.j + 1,min(res.j + 1, 1)

AR4 :: st.(P.j) = ⊥ ∧ sn.j 6= sn.(P.j) ∧ l.j = l.(P.j)
−→ st.j, sn.j, res.j :=

⊥, sn.(P.j),min(res.j + 1, 1)

AR5 :: (∀k : P.k = j : otsn.k = otsn.j ∧ st.k = ⊤)
∧(∀k : k ∈ Nbr.j : sn.j = sn.k ∧ l.j = l.k) ∧ st.j = ⊥
−→ st.j := ⊤,

res.j := min(res.k) where k ∈ Nbr.j ∪ {j}
if (P.j = j ∧ res.j 6= 1) then

st.j, sn.j, res.j :=
⊥, sn.j + 1,min(res.j + 1, 1)

else if (P.j = j ∧ res.j = 1) then
ctsn.j := otsn.j

AR6 :: ctsn.j < ctsn.k −→ ctsn.j = ctsn.k

AR7 :: P.j = j ∧ st.j = ⊤ ∧ ctsn.j = otsn.j ∧
{authorized to restore}

−→ st.j, sn.j := restore, sn.j + 1

AR8 :: st.(P.j) = restore ∧ sn.j 6= sn.(P.j) ∧
l.j = l.k ∧ otsn.j = ctsn.j

−→ st.j, sn.j, res.j :=
restore, sn.(P.j),min(res.j + 1, 1)

AR9 :: (∀k : P.k = j : sn.j = sn.k ∧ st.k = stable) ∧
(∀k : k ∈ Nbr.j : sn.j = sn.k ∧ l.j = l.k) ∧

st.j = restore
−→ st.j := stable,

res.j := min(res.k) : k ∈ Nbr.j ∪ {j}
if (P.j = j ∧ res.j 6= 1) then

st.j, sn.j, res.j :=
restore, sn.j + 1,min(res.j + 1, 1)

else if (P.j = j ∧ res.j = 1) then
{restore is complete}

AR10 :: ¬lc.j −→ st.j, sn.j := st.(P.j), sn.(P.j)

AR11 :: 〈 any tree correction action that affects processj 〉
−→ res.j := 0

Fig. 2. The auditable restoration protocol.

When a processj receives a restoration wave from its
parent, in actionAR8, j marks its state asrestore and
propagates the wave to its children. When a leaf processj
receives a restoration wave,j restores its state, marks its state
asstable, and responds to its parent. In actionAR9, when the
leader receives the response from its children, the restoration
wave is complete. ActionAR9, like actionAR5, detects if
all processes participated in the current restoration waveby
utilizing the variableres. To represent actionAR10, first, we
definelc.j as follows:

lc.j =

5

((st.(P.j) = restore∧ st.j = restore) ⇒ sn.j := sn.(P.j)∧
st.(P.j) = stable ⇒ (st.j = stable∧sn.j = sn.(P.j)) ∧

(st.(P.j) = ⊥∧ st.j = ⊥) ⇒ sn.j = sn.(P.j) ∧
st.(P.j) = ⊤ ⇒ (st.j = ⊤ ∧ sn.j = sn.(P.j)))

Action AR10 guarantees the self-stabilization of the pro-
tocol by ensuring that no matter what the initials state is,
the program can recover to legitimate states from where
future restoration operations work correctly. Finally, ifany
tree construction algorithm is called to reconfigure the tree
and affects processj, actionAR11 resets theres variable of
processj.

A. Fault Types

We assume that the processes are in the presence of (a)
fail-stop faults and (b) transient faults. If a process fail-stops,
it cannot communicate with the other processes and a tree
correction algorithm needs to reconfigure the tree. Transient
faults can perturb all variables (e.g.,sn, st, etc.) except
otsn and ctsn values. The corruption of theotsn and ctsn
values is tolerated in Section V, where we bound these values.
Moreover, we assume that all the faults stop occurring after
some time. We usef to denote these faults in the rest of this
paper.

B. Proof of Correctness for Auditable Restoration Protocol

To show the correctness of our protocol, we define the
predicatesT and AS, restoration state predicateS2, and
invariant S1 in the following and use them for subsequent
discussions.

S1 : ∀j, k : ((st.j = stable ∨ st.j = restore) ∧ lc.j ∧
(P.j forms the tree)∧ (otsn.j = ctsn.k) ∧

l.j = {leader of the parent tree})

T : ∀j, k : otsn.j = ctsn.k∧ (st.j = restore∨ st.j = stable)

AS : max(otsn.j) ≥ max(ctsn.j)

S2 : ∀j, k : ((st.j = ⊤ ∨ st.j = ⊥) ∧
(P.j = j ∧ st.j = ⊤ ⇒ otsn.k ≥ otsn.j))

In S1 the state of all processes is eitherstable or restore
and all otsn and ctsn values are equal. If some faults occur
but no auditable events, the system goes toT where allotsn
and ctsn values are still equal. In this case, the state of the
processes cannot be perturbed to⊥ or ⊤. If auditable events
occur, the system goes toAS where theotsn andctsn values
are changed and themax(otsn) is always greater than and
equal tomax(ctsn). When all the states are changed to⊥
or ⊤, all processes are aware of the auditable events and the
system is inS2. Also, the constraintotsn.k ≥ otsn.j in the
definition ofS2 means that when the state of the leader is⊤,
the rest of the processes are aware of the auditable events that
has caused the leader to change itsotsn.

Theorem 1:Upon starting at an arbitrary state inT , in the
absence of faults and auditable events, the system is guaranteed
to converge to a state inS1.

Proof: Since there is no auditable event in the system,
actionAR1 cannot execute and theotsn and ctsn values do
not change. As a result, the system remains inT and executing
actionsAR8, AR9, andAR10 converges the system toS1.

Let f be the faults identified in Section IV-A. Then, we
have:

Theorem 2:T is closed in actions(AR2–AR11) ∪ f .

Proof: We assume that faults cannot perturb theotsn
and ctsn values. Additionally, actionAR1 does not execute
to change theotsn value. This guarantees that actionsAR2–
AR6 cannot execute to change theotsn or ctsn values. Hence,
when a system is inT , in the absence of auditable events, it
remains inT . Moreover, faults cannot perturb the system to a
state outside ofT , thereby closure ofT .

Corollary 1: Upon starting at an arbitrary state inT , in
the presence of faults but in the absence of auditable events,
the system is guaranteed to converge to a state inS1.

Lemma 1:Starting from a state inT where theotsn value
of all processes equalx, if at least one auditable event occurs,
the system reaches a state where∀j : otsn.j ≥ x+ 1.

Proof: This lemma implies that, if there is an auditable
event in the system and at least one process detects it and
increments itsotsn value, eventually all processes will be
aware of that auditable event.

When the system is inT , all the otsn values are equal to
x. After detecting an auditable event, a process increments its
otsn value by executing actionAR1 to x + 1. Consequently,
using actionAR2, every process gets notified of the auditable
event and increments itsotsn value. If some other process
detects more auditable events in the system, it increments its
otsn value and notifies the other processes of those auditable
events. Hence, theotsn value of all processes is at leastx+1.

Theorem 3:Starting from any state inAS − T where
max(otsn.j) > max(ctsn.j) and the auditable events stop
occurring, the system is guaranteed to reach a state inS2.

Proof: When there is a process whoseotsn value is
greater than all thectsn values in the system, the state of
the system is one of the following:

• there is at least one process that is not aware of all
the auditable events occurred in the system, and

• all processes are aware of all auditable events occurred
but their states are different.

The first case illustrates that allotsn values are not equal.
Consequently, actionAR2 executes and makes allotsn values
equal. When the leader gets notified of the auditable events,
it initializes a ⊥ wave by executing actionAR3. This wave
propagates towards the leaves by executing actionAR4. When
a leaf receives the⊥ wave, it change its state to⊤ by executing
action AR5 and propagates the⊤ wave towards the leader.
Note that, actionAR2 executes concurrently with the other
actions. Thus, allotsn values will eventually become equal.
The second case shows that allotsn values are equal but
the state of the leader is not changed to⊤ yet. Therefore,
when all otsn values are equal and the auditable events stop
occurring, the leader executes actionAR5 and changes its
state to⊤, thereby reachingS2. Consider that, if a process
fails and causes some changes in the configuration of the
tree, theres variable of its neighbors would be reset to false
and the leader will eventually get notified of this failure by
executing actionAR5. Thus, the leader initializes a new⊥ by
executing actionAR5. Moreover, if the leader fails when its
state is⊥ and another process, sayj, whose state is⊤ becomes
the new leader, the guard of actionAR2 becomes true since
otsn.j > ctsn.j. In this case, the new leader initializes a new

6

⊥ wave to ensures that when the state of the leader is⊤, the
state of all the other processes in the system is also⊤.

Theorem 4:Starting from a state inT and the occurrence
of at least one auditable event, the system is guaranteed to
reachS2 even if auditable events do not stop occurring.

Proof: occurring, at least, one auditable event, some
process, sayj, detects it and increments itsotsn by executing
actionAR1. Following Lemma 1, all processes will eventually
get notified of the auditable event. Hence, allotsn values will
be equal and, following Theorem 3, the system will reach a
state where the state of all processes is⊤ or⊥. Also if the state
of the leader is⊤, we can ensure that all processes have been
notified of the auditable event, thereby reaching a state inS2.
Consider that, even if the auditable events continue occurring,
the state of processes does not change and the system remains
in S2.

Theorem 5:Starting from a state inT and in the presence
of faults and auditable events, the system is guaranteed to
converge toS1 provided that faults and auditable events stop
occurring.

Proof: Following Theorem 4, if faults and auditable events
occur, the system reaches a state inS2 where allotsn values
are equal and the leader process is aware that all processes have
been notified of the auditable events. In this situation, thectsn
value of the leader is equal to itsotsn value (by executing the
statementctsn.j := otsn.j in actionAR5). Consequently, the
leader can start a restoration wave by executing actionAR7.
Moreover, the other processes can concurrently execute action
AR6, increase theirctsn value, and propagate the restoration
wave by executing actionAR8. When all ctsn values are
equal, the system is inT and following Theorems 1 and 2,
the system converges toS1.

Observation 1:The system is guaranteed to recover to
S2 in the presence of faults and auditable events. As long
as auditable events continue occurring, the system remains
in S2 showing that all processes are aware of the auditable
events. When the auditable events stop occurring, the system
converges toS1, where the system continues its normal
execution.

V. BOUNDING AUDITABLE RESTORATIONVARIABLES

In this section, we show how theotsn, ctsn, andsn values
can be bounded while preserving stabilization property.

A. Boundingotsn

In the protocol in Figure 2,otsn values continue to increase
in an unbounded fashion as the number of auditable events
increase. In that protocol, ifotsn values are bounded and
eventually they are restored to0, this may cause the system to
lose some auditable events. Furthermore, ifotsn.j is reset to
0 but it has a neighbork whereotsn.k is non-zero, it would
causeotsn.j to increase again.

Before we present our approach, we observe that if the
auditable events are too frequent, restoring the system to
legitimate states may never occur. This is due to the fact that if
the leader process attempts to restore the system to legitimate
states then that action would becanceledby new auditable
events. Hence, restoring the system to legitimate states can
occur only after auditable events stop. However, if auditable

events occur too frequently for some duration, we want to
ensure that theotsn values still remain bounded.

Our approach is as follows: We change the domain ofotsn
to be N2 + 1, whereN is the number of processes in the
system. Furthermore, we change actionAR1 such that process
j ignores the detectable events if its neighbors are not awareof
the recent auditable events that it had detected. Essentially, in
this case,j is consolidatingthe auditable events. Furthermore,
we change actionAR2 by which processj detects that process
k has detected a new auditable event. In particular, processj
concludes that processk has identified a new auditable event
if otsn.k is in the range[otsn.j ⊕ 1 · · · otsn.j ⊕ N], where
⊕ is moduloN2 + 1 addition. Moreover, beforej acts on
this new auditable event, it checks that its other neighbors
have caught up withj, i.e., theirotsn value is in the range
[otsn.j · · · otsn.j ⊕N]. Finally, we add another action where
otsn.j andotsn.k are far apart, i.e.,otsn.j is not in the range
[otsn.k⊖N · · · otsn.k⊕N]. Thus, the revised and new actions
areBAR1, BAR2, andBAR12 in Figure 3.

We have utilized these specific actions so that we can
benefit from previous work on asynchronous unison [6] to
bound theotsn values. Although the protocol in [6] is designed
for clock synchronization, we can utilize it to bound theotsn
values. In particular, the above actions are same (except for
the detection of new auditable events) as that of [6]. Hence,
based on the results from [6], we can observe that if some
process continues to detect auditable events forever, eventually,
the system would converge to a state where theotsn values
of any two neighboring processes differ by at most1.

Theorem 6:Starting from an arbitrary state, even if the
auditable events occur at any frequency, the program in Figure
3 converges to states where for any two neighborsj and k:
otsn.j = otsn.k⊖1, otsn.j = otsn.k, or otsn.j = otsn.k⊕1.

Proof: Proof follows from [6].

Theorem 7:Starting from an arbitrary state, if the au-
ditable events stop occurring, the program in Figure 3 con-
verges to states where for any two neighborsj andk: otsn.j =
otsn.k.

Proof: As we mentioned in Theorem 6, the system is
guaranteed to converge to a state where for any two neighbors
j and k either otsn.j = otsn.k ⊖ 1, otsn.j = otsn.k, or
otsn.j = otsn.k ⊕ 1. Now, otsn values of any two processes
(even if they are not neighbors) differ by at mostN − 1. In
other words, there existsa andb such that for some processes
j andk, otsn.j = a andotsn.k = b, whereb is in the range
[a · · · a⊕ N] and theotsn values of remaining processes are
in the range[a · · · b].

Hence, processes are not far apart each other and the action
BAR12 cannot execute. In addition, actionBAR1 cannot
execute since the auditable events have stopped occurring.
Hence, by executing actionBAR2, each process increases
its otsn such that theotsn values will be equal tob for all
processes.

Corollary 2: Under the assumption that a process does not
detect new auditable event until it is restored to legitimate
states, we can guarantee thatotsn values will differ by no
more than 1.

7

BAR1 :: {j detects an auditable event}
∀k : otsn.k ∈ [otsn.j · · · otsn.j ⊕N]
−→ otsn.j := otsn.j ⊕ 1

BAR2 :: ∀k : otsn.k ∈ [otsn.j · · · otsn.j ⊕N] ∧
∃k : otsn.k ∈ [otsn.j ⊕ 1 · · · otsn.j ⊕N]

−→ otsn.j := otsn.j ⊕ 1

BAR3 :: P.j = j ∧ st.j 6= ⊥ ∧ otsn.j 6= ctsn.j
−→ st.j, sn.j, res.j := ⊥, sn.j + 1,min(res.j + 1, 1)

BAR4 :: st.(P.j) = ⊥ ∧ sn.j 6= sn.(P.j) ∧ l.j = l.(P.j)
−→ st.j, sn.j, res.j := ⊥, sn.(P.j), res.(P.j)

BAR5 :: AR5

BAR6 :: ctsn.j 6= ctsn.(P.j) −→ ctsn.j := ctsn.(P.j)

BAR7 :: AR7

BAR8 :: st.(P.j) = restore ∧ sn.j 6= sn.(P.j) ∧
l.j = l.k ∧ otsn.j = ctsn.j

−→ st.j, sn.j, res.j := restore, sn.(P.j), res.(P.j)

BAR9–BAR10 :: AR9–AR10

BAR11 :: 〈 any tree correction action that affects processj 〉
−→ res.j := −1

BAR12 :: (otsn.j 6∈ [otsn.k ⊖N · · · otsn.k ⊕N]) ∧
(otsn.j > otsn.k) −→ otsn.j := 0

Fig. 3. Bounded auditable restoration protocol.

B. Boundingctsn

The above approach bounds theotsn value. However, the
same approach cannot be used to boundctsn value. This is
due to the fact that the value to whichctsn converges may
not be related to the value thatotsn converges to. This is
unacceptable and, hence, we use the following approach to
boundctsn.

First, in actionAR6, the guardctsn.j > ctsn.k needs
to be replaced byctsn.j 6= ctsn.(P.j). Thus, the new action
BAR6 is shown in Figure 3.

Second, we require to replace the notion ofgreater thanby
not equalin all the actions of Figure 2 since we are bounding
the otsn and ctsn values. Hence, we change actionAR3 to
BAR3 in the program in Figure 3.

With these changes, starting from an arbitrary state, after
the auditable events stop, the system will eventually reach
to states where allotsn values are equal (cf. Theorem 7).
Subsequently, ifotsn and ctsn values of the leader process
are different, it will execute actionAR7 to restore the system
to an auditable state. Then, the leader process will reset its
ctsn value to be equal tootsn value. Finally, these values
will be copied by other processes using actionBAR6. Hence,
eventually allctsn values will be equal.

Theorem 8:Starting from an arbitrary state, if the au-
ditable events stop occurring, the program in Figure 3 reaches
to states where for any two neighborsj and k: otsn.j =
otsn.k = ctsn.j = ctsn.k.

Proof: According to Theorem 7, allotsn values will
eventually be equal. Moreover, when the leader ensures that
all processes are aware of the auditable events, it executes
action AR5 and updates itsctsn value by its otsn value.
Consequently, when the rest of processes detect this change,
they execute actionBAR7 and update theirctsn values.
Hence, eventually allctsn values will be equal.

Finally, we observe that even with these changes if a single
auditable event occurs in a legitimate state (where allotsn and
ctsn values are equal) then the system would reach a state in
the auditable state, i.e., Theorem 4 still holds true with this
change.

C. Boundingsn

Our goal in boundingsn is to only maintainsn mod 2 with
some additional changes. To identify these changes, first, we
make some observations about howsn values might change
during the computation in the presence of faults such as
process failure but in the absence of transient faults.

Now, consider the case where we begin with a legitimate
state of the auditable restoration protocol where allsn values
are equal tox. At this time if the leader process executes
actionsAR3 or AR7 thensn value of the leader process will
be set tox + 1. Now, consider thesn values of processes
on any path from the leader process to a leaf process. It is
straightforward to observe that some initial processes on this
path will have thesn value equal tox+ 1 and the rest of the
processes on this path (possibly none) will have thesn value
equal tox. Even if some processes fail, this property would
be preserved in the part of the tree that is still connected to
the leader process. However, if some of the processes in the
subtree of the failed process (re)join the tree, this property
may be violated. In the program in Figure 2, wheresn values
are unbounded, these newly (re)joined processes can easily
identify such a situation. However, if processes only maintain
the least significant bit ofsn, this may not be possible. Hence,
this newly rejoined process should force the leader processto
redo its task for recovering the system to either auditable state
(i.e., S2) or to legitimate states (i.e.,S1). As described above
there can be at most two possible values ofsn in the tree that
is connected to the leader process. Hence, it suffices that the
newly rejoined process aborts those two computations. We can
achieve this by actionsBAR3, BAR4, BAR8, andBAR11
in the program in Figure 3.

In this program, consider the case where one auditable
event occurs and no other auditable event occurs until the
system is restored to the legitimate states. In this case, for
any two processesj and k, otsn.k will be either otsn.j or
otsn.j ⊕ 1. In other words, we redefine predicatesS2 and
AS in the following. The definitions ofS1 and T remain
unchanged.

AS′ : ∀j, k : otsn.k ∈ [max(ctsn.j) · · ·max(ctsn.j)⊕ 1]

S2′ : ∀j, k : ((st.j = ⊤ ∨ st.j = ⊥) ∧
(P.j = j ∧ st.j = ⊤ ⇒ otsn.k ∈ [otsn.j · · · otsn.j ⊕N])

Theorem 9:Starting from an arbitrary state inT , if exactly
one auditable event occurs, the system is guaranteed to reach
a state inS2 and then converge toS1 provided that faults stop
occurring. Moreover, the states reached in such computation
are a subset ofAS′.

8

Proof: If exactly one auditable event occurs, the system is
guaranteed to reachS2 and then it converges toS1 following
the explanations above.

We can easily extend the above theorem to allow uptoN
auditable events before the system is restored to its legitimate
state. The choice ofN indicates that each process detects the
auditable event at most once before the system is restored toits
legitimate states. In other words, a process ignores auditable
events after it has detected one and the system has not been
restored corresponding to that event. In this case, the constraint
AS′ above needs to be changed to:

AS′′ : ∀j, k : otsn.k ∈ [max(ctsn.j) · · ·max(ctsn.j)⊕N]

Theorem 10:Starting from an arbitrary state inT , if upto
N auditable events occur, the system is guaranteed to reach a
state inS2 and then converge toS1 provided that faults stop
occurring. Moreover, the states reached in such computation
are a subset ofAS′′.

Proof: Since each process detects at most one auditable
event before the restoration, executing actionsBAR1 and
BAR2, all otsn values will become equal and the system
reachesS2. Consequently, the leader initialize a restoration
wave and the system converges toS1.

Since the domain ofotsn is bounded, it is potentially
possible thatj starts from a state whereotsn.j equalsx and
there are enough auditable events so that the value ofotsn.j
rolls over back tox. In our algorithm, in this case, some
auditable events may be lost. We believe that this would be
acceptable for many applications since the number of auditable
events being so high is highly unlikely. Also, the domain of
otsn andctsn values can be increased to reduce this problem
further. This problem can also be resolved by ensuring that the
number of events detected by a process within a given time-
span is bounded by allowing the process to ignore frequent
auditable events.

We note that theoretically the above assumption is not
required. The basic idea for dealing with this is as follows:
Each process maintains a bitchanged.j that is set to true
wheneverotsn value changes. Hence, even ifotsn value rolls
over to the initial value,changed.j would still be true. It would
be used to execute actionBAR3 so that the system would be
restored toS2 and then toS1. In this case, however, another
computation would be required to resetchanged.j back to
false. The details of this protocol are outside the scope of this
paper.

Finally, we note that even if theotsn values roll over
or they are corrupted to an arbitrary value, the system will
still recover to states inS1. In particular, starting from an
arbitrary state, after faults and auditable events stop, the system
will reach a state whereotsn values are equal. In this case,
depending upon thectsn values, either the system will be
restored to the auditable states (by actionsBAR3-BAR6) or
to legitimate states (by actionBAR10). In the former case, the
system will be restored toS1 subsequently. Hence, we have
the following theorem.

Theorem 11:Auditable restoration program is stabilizing,
i.e., starting from an arbitrary state inT , after auditable events
and faults stop, the program converges toS1.

Proof: Following Theorem 10 and explanations above,
after auditable events and faults stop, the program converges
to S1.

VI. RELATED WORK

Stabilizing Systems. There are numerous approaches
for recovering a program to its set of legitimate states. Arora
and Gouda’s distributed reset technique introduced in [4] is
directly related to our work and ensures that after completing
the reset, every process in the system is in its legitimate states.
However, their work does not cover faults (e.g., process failure)
during the reset process. In [17], we extended the distributed
reset technique so that if the reset process is initialized and
some faults occur, the reset process works correctly. In [16],
Katz and Perry showed a method called global checking and
correction to periodically do a snapshot of the system and
reset the computation if a global inconsistency is detected. This
method applies to several asynchronous protocols to convert
them into their stabilizing equivalent, but is rather expensive
and insufficient both in time and space.

Moreover, in nonmasking fault-tolerance (e.g., [1], [2]),we
have the notion of fault-span too (similar toT in Definition
14) from where recovery to the invariant is provided. Also, in
nonmasking fault-tolerance, if the program goes toAS−T , it
may recover toT . By contrast, in auditable restoration, if the
program reaches a state inAS − T , it is required that it first
restores toS2 and then toS1. Hence, auditable restoration is
stronger than the notion of nonmasking fault-tolerance.

Auditable restoration can be considered as a special case of
nonmasking-failsafe multitolerance (e.g., [10]), where apro-
gram that is subject to two types of faultsFf andFn provides
(i) failsafe fault tolerance whenFf occurs, (ii) nonmasking
tolerance in the presence ofFn, and (iii) no guarantees if both
Ff andFn occur in the same computation.

Tamper Evident Systems. These systems [12], [20],
[23] use an architecture to protect the program from external
software/hardware attacks. An example of such architecture,
AEGIS [23], relies on a single processor chip and can be used
to satisfy both integrity and confidentiality properties ofan
application. AEGIS is designed to protect a program from
external software and physical attacks, but did not provide
any protection against side-channel or covert-channel attacks.
In AEGIS, there is a notion of recovery in the presence of a
security intruder where the system recovers to a ‘less useful’
state where it declares that the current operation cannot be
completed due to security attacks. However, the notion of
fault-tolerance is not considered. In the context of Figure2, in
AEGIS,AS − T equals¬S1, andS2 corresponds to the case
where tampering has been detected.

Byzantine-Tolerant Systems. The notion of Byzantine
faults [19] has been studied in a great deal in the context of
fault-tolerant systems. Byzantine faults capture the notion of a
malicious user being part of the system. Typically, Byzantine
fault is mitigated by having several replicas and assuming
that the number of malicious replicas is less than a threshold
(typically, less than1

3
rd of the total replicas). Compared with

Figure 2,T captures the states reached by Byzantine replicas.
However, no guarantees are provided outsideT .

Byzantine-Stabilizing Systems. The notion of Byzantine
faults and stabilization have been combined in [9], [21],
[22]. In these systems, as long as the number of Byzantine
faults is below a threshold, the system provides the desired
functionality. In the event the number of Byzantine processes
increases beyond the threshold temporarily, the system even-
tually recovers to legitimate state. Similar to systems that

9

tolerate Byzantine faults, these systems only tolerate a specific
malicious behavior performed by the adversary. It does not
address active attacks similar to that permitted by Dolev-Yao
attacker [8].

In all the aforementioned methods the goal is to restore
the system to the legitimate states. In our work, if some
auditable events occur, we do not recover the system to the
legitimate states. Instead, we recover the system to restoration
state where all processes are aware of the auditable events
occurred. Moreover, in [4], if a process requests a new reset
wave while the last reset wave is still in process, the new
reset will be ignored. Nevertheless, in our work, we cannot
ignore auditable events and all processes will eventually be
aware of these events and the system remains in the auditable
state as long as the auditable events continue occurring. Also
the aforementioned techniques cannot be used to boundotsn
value in our protocol.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm forauditable
restorationof distributed systems. This problem is motivated
in part by the need for dealing with conflicting requirements.
Examples of such requirements include cases where access
must be restricted but in some access entirely preventing
access is less desirable than some unauthorized access. This
also allows one to deal with systems where resistance to
tampering/unauthorized access is based on user norms or a
legal threat as opposed to a technical guarantee that tampering
cannot occur. In other words, such systems provide aIn-case-
of-emergency-break-glassmethod for access. By design, these
access methods are detectable and called auditable events in
our work.

While such an approach often suffices for centralized
systems, it is insufficient for distributed systems. In particular,
in a distributed system, only one process will be aware of such
auditable events. This is unacceptable in a distributed system.
Specifically, it is essential that all (relevant) processesdetect
this auditable event so that they can provide differential service
if desired. We denote such states asauditable states.

Auditable events also differ from the typicalIn-case-
of-emergency-break-glassevents. Specifically, the latter are
one-time events and cannot repeat themselves. By contrast,
auditable events provide the potential for multiple occurrences.
Also, they provide a mechanism forclearing these events.
However, the clearing must be performed after all processes
are aware of them and after initiated by an authorized process.

Our program guarantees that after auditable events occur
the program is guaranteed to reach an auditable state where all
processes are aware of the auditable event and the authorized
process is aware of this and can initiate the restoration (a.k.a.
clearing) operation. The recovery to auditable state is guaran-
teed even if it is perturbed by finite number of auditable events
or faults. It also guarantees that no process can begin the task
of restoration until recovery to auditable states is complete.
Moreover, after the authorized process begins the restoration
operation, it is guaranteed to complete even if it is perturbed
by a finite number of faults. However, it will be aborted if it
is perturbed by new auditable events.

Our program is stabilizing in that starting from an arbitrary
state, the program is guaranteed to reach a state from where
future auditable events will be handled correctly. It also utilizes

only finite states, i.e., the values of all variables involved in it
are bounded.

We are currently investigating the design and analysis of
auditable restoration of System-on-Chip (SoC) systems in the
context of the IEEE SystemC language. Our objective here is
to design systems that facilitate reasoning about what they
do and what they do not do in the presence of auditable
events. Second, we plan to study the application of auditable
restoration in game theory (and vice versa).

REFERENCES

[1] A. Arora. Efficient reconfiguration of trees: A case studyin methodical
design of nonmasking fault-tolerant programs. InFTRTFT, pages 110–
127, 1994.

[2] A. Arora, M. Gouda, and G. Varghese. Constraint satisfaction as a
basis for designing nonmasking fault-tolerant systems.Journal of High
Speed Networks, 5(3):293–306, 1996.

[3] A. Arora and M. G. Gouda. Closure and convergence: A foundation of
fault-tolerant computing.IEEE Transactions on Software Engineering,
19(11):1015–1027, 1993.

[4] A. Arora and M. G. Gouda. Distributed reset.IEEE Transactions on
Computers, 43(9):1026–1038, 1994.

[5] B. Bonakdarpour and S. S. Kulkarni. On the complexity of synthesizing
relaxed and graceful bounded-time 2-phase recovery. InFM, pages
660–675, 2009.

[6] J. M. Couvreur, N. Francez, and M. G. Gouda. Asynchronousunison.
In ICDCS, pages 486–493, 1992.

[7] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[8] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
trans. on Information Theory, 29:198–208, 1983.

[9] S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the
presence of byzantine faults. InPODC, page 256, 1995.

[10] A. Ebnenasir and S. S. Kulkarni. Feasibility of stepwise design of
multitolerant programs.ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(1):1–49, December 2011.

[11] M. Gouda. The theory of weak stabilization. InWSS, volume 2194 of
Lecture Notes in Computer Science, pages 114–123, 2001.

[12] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding
cryptography on tamper-proof hardware tokens. InTCC, pages 308–
326, 2010.

[13] M. Herlihy and J. Wing. Specifying graceful degradation. IEEE
Transactions on Parallel and Distributed Systems, 2(1):93–104, 1991.

[14] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell. A
program structure for error detection and recovery. InSymposium on
Operating Systems, pages 171–187, 1974.

[15] S. T. Huang. Leader election in uniform rings.ACM Transactions
on Programming Languages and Systems (TOPLAS), 15:563–573, July
1993.

[16] S. Katz and K. Perry. Self-stabilizing extensions for message passing
systems.Distributed Computing, 7:17–26, 1993.

[17] S. Kulkarni and A. Arora. Multitolerance in distributed reset.Chicago
Journal of Theoretical Computer Science, 1998(4), December 1998.

[18] L. Lamport and N. Lynch.Handbook of Theoretical Computer Science:
Chapter 18, Distributed Computing: Models and Methods. Elsevier
Science Publishers B. V., 1990.

[19] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

[20] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.
Mitchell, and M. Horowitz. Architectural support for copy and tamper
resistant software. InASPLOS, pages 168–177, 2000.

[21] M. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for
distributed clock synchronization systems. InSSS, pages 411–427,
2006.

[22] M. Nesterenko and A. Arora. Stabilization-preservingatomicity refine-
ment. JPDC, 62(5):766–791, 2002.

[23] G. E. Suh, D. E. Clarke, B. Gassend, M. V. Dijk, and S. Devadas.
Aegis: architecture for tamper-evident and tamper-resistant processing.
In ICS, pages 160–171, 2003.

10

This figure "2ph.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

This figure "deg.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

This figure "desc.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

This figure "dij.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

This figure "mask.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

This figure "reset.png" is available in "png"
 format from:

http://arxiv.org/ps/1506.07957v1

http://arxiv.org/ps/1506.07957v1

	I Introduction
	I-A A Brief History and the Need for Auditable Restoration
	I-B Goals of Auditable Restoration

	II Preliminaries
	III Defining Auditable Restoration
	IV Auditable Restoration for Distributed Programs
	IV-A Fault Types
	IV-B Proof of Correctness for Auditable Restoration Protocol

	V Bounding Auditable Restoration Variables
	V-A Bounding otsn
	V-B Bounding ctsn
	V-C Bounding sn

	VI Related Work
	VII Conclusion and Future Work
	References

