arXiv:1506.07957v1 [cs.DC] 26 Jun 2015

Auditable Restoration of Distributed Programs

Reza Hajisheykhi Mohammad Roohitavaf Sandeep Kulkarni
Computer Science and Computer Science and Computer Science and
Engineering Department Engineering Department Engineering Department
Michigan State University Michigan State University Michigan State University
East Lansing, MI, USA East Lansing, MI, USA East Lansing, Ml, USA
Email: hajishey@cse.msu.edu Email: roohitav@cse.msu.edu Email: sandeep@cse.msu.edu

Abstract—We focus on a protocol for auditable restoration starting from any state imS, the program recovers to a state
of distributed systems. The need for such protocol arises d&u in S.
to conflicting requirements (e.g., access to the system sHdwbe L . .
restricted but emergency access should be provided). One ra Although stabilization is desirable for many programs, it
design such systems with a tamper detection approach (basedh is not suitable for some programs. For example, it may be
the intuition of break the glass door). However, in a distributed impossible to provide recovery from all possible states:ih
system, such tampering, which are denoted as auditable evsn Alsp, it may be desirable to satisfy certain safety progerti
is visible only for a single node. This is unacceptable sincte qyring recovery. Arora and Goudal [3] introduced another
"’;]Ct'ons th?y tage |r|\1/|these situations can Ee duf&greglt thanhose(njn approach for formalizing a fault-tolerant system that eesu
the normal mode. Moreover, eventually, the auditable evenbeeds . :
to be cleared so that system resumes the normal operation. ﬁ)osr;vg;gggg:gi;g%g;esbe; dc?nci)t];;gg?ilgr?)t lezjylst/s'l('?]égt. ,iSSOR(()erl;;'ors,

With this motivation, in this paper, we present a protocol fo any state/configuration, the system recovers to its inmasa
auditable restoration, where any process can potentiallydentify in a finite number of steps. Moreover, from its invariant, the
an auditable event. Whenever a new auditable event occursheé executions of the system satisfy its specifications and irema
system must reach areuditable state where every process is aware the invariant; i.e.closure They distinguish two types of fault-
of the auditable event. Only after the system reaches an audble tglerant systemsmaskingand nonmaskingIn the former the
state, it can bgg'” the Opergﬂ"& of reSt:)ra“O“' A't.hout%ht“yl effects of failure is completely invisible to the appliaati In
process can opbserve an auditable event, we require at only . : :
authorized processes can begin the task of restoration. Moreover, _othe_r words, the invariant is equal to the fault-span= IS

in Figure[I(B)). In the latter, the fault-affected systemyma

these processes can begin the restoration only when the syst k = . - :
is in an auditable state. Our protocol is self-stabilizing ad has Violate the invariant but the continued execution of thetesys

bounded state space. It can effectively handle the case wieer Yields a state where the invariant is satisfied (See Figi}.1(

faults or auditable events occur during the restoration prdocol. S .

Moreover, it can be used to provide auditable restoration toother The approach by Ar_ora and Gouda mtumv_ely requires that

distributed protocol. after faults stop occurring, the program provides tiginal
functionality However, in some cases, restoring the program

Keywords—Self-stabilization, reactive systems, adversary, formal to original legitimate states so that it satisfies the subsequent

methods specification may be impossible. Such a concept has been
considered in [[I3] where authors introduce the notion of
graceful degradationin graceful degradation (cf. Figure (c)),

|. INTRODUCTION a system satisfies its original specification when no faldtseh

. . . . occurred. After occurrence of faults (and when faults stop
A. A Brief History and the Need for Auditable Restoration occurring), it may not restore itself to the original legitite

Fault-tolerance focuses on the problem of what happens #tates & in Figure[I(c)) but rather to a larger set of stats$ (
the program is perturbed by undesired perturbations. Ieroth IN Figure[1(c)) from where it satisfies a weaker specification
words, it focuses on what happens if the program is perturbell other words, in this case, the system may not satisfy the
beyond its legitimate states (a.k.mvariant). There have original specification even after faults have stopped.

been substantial ad-haperationalapproaches —designed for |, some instances, especially where the perturbations are

specific types of faults— for providing fault-tolerance.rFo gecyrity related it is not sufficient to restore the program to
example, the idea of recovery blocks|[14] introduced théomot 15~ riginal (or somewhat degraded) behavior. The notion of
of -acceptance condm_ons that should _b_e satisfied at Certa'ﬁ\ulti-phase recovery was introduced for such programs [5].
points in the computation. If these conditions are not Bats Specifically, in these programs, it is necessary that ragove
the program is restored to previous state from where anotheg” 5ccomplished in a sequence of phases, each ensuring that
recovery block is executed. Checkpointing and recovergdas i, program satisfies certain properties. One of the priagert

appr_oachers] prkoviQe mgf(:hanism to r(ejstorg the prograrp] 10 & interest isstrict 2-phase recoverywhere the program first
previous checkpoint. Dijkstra [7] introduced an approash f ocovers to state that are strictly disjoint from legitimate

specifying(i.e., identifying what the program should provide giates. Subsequently, it recovers to legitimate stateskBgire
irrespective of how it is achieved) one-type of fault-talece,).

namely stabilization[[7]. A stabilizing program partitie the

state space of the program into legitimate states (preslitat The goal of auditable restoration is motivated by combining
in Figure[I(d)) and other states. It is required that (1)tisigr the principles of the strict 2-phase recovery and the ppiesi
from any state inS, the program always stays ifi and (2) of fault-tolerance. Intuitively, the goal of auditable t@stion

http://arxiv.org/abs/1506.07957v1

is to classify system perturbations into faults and autktab
events, provide fault-tolerance (similar to that in Fig{®))

to the faults and ensure that strict 2-phase recovery isighedv

for auditable events. Unfortunately, this cannot be aadev
for arbitrary auditable events since inl [5], it has been ghow
that adding strict 2-phase recovery to even a centralized
program is NP-complete. Our focus is on auditable events
that are (immediately) detectable. Faults may or may not be
detectable. Unfortunately, adding strict 2-phase regotera
program even in centralized systems has been shown to be ®
NP-complete.

would allow the possibility that they only provide the
‘emergency’ services and protect the more sensitive
information. This detection must occur even in the
presence of faults (except those that permanently fail
all processes that were aware of auditable eflent)
We denote such states asditable statesn that all
processes are aware of a new auditable evgtirh

Figure[I(d)).

After all processes are aware of the auditable event,
there exists at least one process that can begin the
task of restoring the system to a normal state, thereby
clearing the auditable event. This operation may be au-
tomated or could involve human-in-the-loop. However,
the system should ensure that this operation cannot be
initiated until all processes are aware of the auditable
event. This ensures that any time the normal operation
is restored, all processes are aware of the auditable
event.

B. Goals of Auditable Restoration

In our work, we consider the case that the system is
perturbed by possible faults and possible tampering thatale
asauditable eventsGiven that both of these are perturbations
of the system, we distinguish between them based on how
and why they occur. By faults, we mean events that are
random in nature. These include process failure, message
losses, transient faults, etc. By auditable events, we mean
events that are deliberate in nature for which a detection
mechanism has been created. Among other things, the need for
managing such events arises due to conflicting nature aérsyst
requirements. For example, consider a requirement thegssta
that each process in a distributed system is physicallyreecu
This requirement may conflict with another requirement such

as each node must be provided emergency access (€.9., for opgerye that such a solution is a variation of strict 2-
firefighters). As another example, consider the requirehent 556 recovery. When an auditable event occurs, the system i
each system access must be authenticated. This may confligh, anteed to recover to a state where all processes are awar

with the requirement for (potential) unauthorized access i of this event 62 in Figure I(g)). And, subsequently, the system

crisis. Examples of this type are well-known in the domain ; = :
. recovers to its normal legitimate state#l (in Figure I(g)). Our
of power systems, medical record systems, etc., where th?olution has the foIIowir?g properties: (n Fig)

problem is solved by techniques such as writing down the
password in a physically secure location that can be broken
into during crisis or by allowing unlimited access and using
logs as a deterrent for unauthorized access. Yet another ex-
ample includes services such as gmail that (can) requite tha
everytime a user logs in, he/she can authenticate via Bffact e
authentication such as user’s cell phone. To deal with this

where the user may not have access to a cell phone, the user is of the computation. It is well-known that achieving fi-
provided with a list of ‘one-time’ passwords and it is assdme nite state space for self-stabilizing programs is difficult
that these will always stay in the control of the users. Havev [18].

none of these solutions are fully satisfactory.

If the operation to restore the system to normal state
succeeds even if it is perturbed by faults such as
failure of processes. However, if an auditable event
occurs while the system is being restored to the normal
state, the auditable event has a higher priority, i.e., the
operation to restore to normal state would be canceled
until it is initiated at a later time.

Our solution is self-stabilizing. If it is perturbed to an
arbitrary state, it will recover to a state from where all
future auditable events will be handled correctly.

Our solution can be implemented with a finite state
space. The total state does not increase with the length

e Our solution ensures that if auditable events occur at
multiple processesimultaneouslyit will be treated as
one event restoring the system to the auditable state.
However, if an auditable event occurs after the system
restoration to normal states has begun (or after system
restoration is complete), it will be treated as a new
auditable event.

In this paper, we focus on a solution that is motivated by
the notion of 2-phase recovery. Specifically, we would like t
have the following properties:

e We consider the case where the auditable events
are immediately detectable. This is the case in all
scenarios discussed above. For example, the use of

‘one-time’ password for gmail or violation of physical e After the occurrence of an auditable event, the system

security of a process is detectable. Likewise, the
passwords stored in a physically secure location can
be different from those used by ordinary users making
them detectable.

We require that if some process is affected by an
auditable event, then eventually all (respectively, rel-
evantl] processes in the system are aware of this
auditable event. For example, if one process is phys-
ically tampered then it will not automatically cause

recovers to theuditable stateeven if it is perturbed
by failure of processes, failure of channels, as well as
certain transient faults.

No process can initiate the restoration to normal
operation unless the system is in an auditable state.
In other words, in Figurg I(g), a process cannot begin
restoration to normal state unless the system was
recently inS2.

the tampering to be detected at other processes. Th'szlf all processes that are (directly or indirectly) awaretwf aiuditable events

1in this paper, for simplicity, we assume that all processesralevant.

fail then it is impossible to distinguish this from the sceoawhere these
processes fail before the auditable events.

e After the system restores to an auditable state and Definition 8 (Invariant): A state predicateS is aninvari-
some process initiates the restoration to normal opant of p iff S is closed inp.

eration, it completes correctly even if it is perturbed N . : .
by faults suchpas failure ofyprocesses orpchannels. Remark 2:Normally, the definition of invariant (legitimate

However, if it is perturbed by an auditable event, theStates) also includes a requirement that computationg of
system recovers to the auditable state again. that start from an invariant state are correct with respect
to its specification. The theory of auditable restoration is
Organization of the paper. The rest of the paper is independent of the behaviors of the program inside legtema
organized as follows: In Sectidd Il, we present the prelamjn states. Instead, it only focuses on the behavigs ofitside its
concepts of stabilization and fault-tolerance and intaedu legitimate states. We have defined the invariant in termbef t
the notion of auditable restoration in Section Ill. Sectidf closure property alone since it is the only relevant propert
explains auditable restoration protocol while the vagstare the definitions/theorems/examples in this paper.
unbounded. We bound these variables in Se€fion V and discuss
the necessary changes in our protocol. Sedfioh VI provideé t
related work, and, finally, we conclude in Sectlon]VII. a

Definition 9 (Convergence)Let S and 1" be state predi-
es ofp. We say thafl’ convergego S in p iff

e SCT,

e Sis closed inp,

Il. PRELIMINARIES

In this section, we first recall the formal definitions of pro-))
grams, faults, auditable events, and self stabilizaticapsat e Tis closed inp, and
from [3], [7], [11]. We then formally define our proposed

auditable restoration mechanism. e For any computation (=(so, 51,52, ..)) Of p if 5o €

T then there exist$ such thats; € S.
Definition 1 (Program):A programp is specified in terms

of a set of variabled/, each of which is associated with a

domain of possible values, and a finite set of actions of th

form Definition 11 (Faults): Faultdor programp = (S,,d,) is

a subset of5,, x S,; i.e., the faults can perturb the program to

any arbitrary state.

Definition 12 (Auditable Events): Auditable eventfor
programp = (S, d,,) is a subset of5, x S,,.

Definition 10 (Stabilization):We say that progranmp is
gtabilizingfor invariant$S iff .S, converges taS in p.

(name) :: {(guard) — (statement)

where guard is a Boolean expression over program vari-
ables,statement updates the program variables.

For such a program, sgy, we define the notion of state, :
state space ang trgnsition?next_ Remark 3:Both faults and auditable events are a subset

o of S, x S,. i.e., they both are a set of transitions. However,
Definition 2 ((Program) State and State Spacé): state as discussed earlier, the goal of faults is to model events
of the program is obtained by assigning each program variablthat are random in nature for which recovery to legitimate
a value from its domain. The state space (denotedbYyof states is desired. By contrast, auditable events are dalée
such program is the set of all possible states. Additionally, there is a mechanism to detect auditable ts/en

Definition 3 (Enabled):We say that an actiog —s st is and, consequently, we want an auditable restoration tgakeni
enabled in stats iff g evaluates to true im. when auditable events occur.

Definition 4 (Transitions corresponding to an action): Definition 13 (F-Span)Let S be the invariant of program
The transitions corresponding to an actien of the formg ~ P- e say that a state predicateis af-spanof p from S iff
— st (denoted bys,,) is a subset of,, x S, and is obtained the following conditions are satisfied: (§)C 7', and (2)1" is
as{(so, s1)|g is true ins, ands; is obtained executingt in ~ ¢10S€d Inf U d,.
statesg }.

Definition 5 (Transitions corresponding to a program): 1. DEFINING AUDITABLE RESTORATION

The transitions of program (denoted byd,) consisting of In this section, we formally define the notion of auditable
actionsacy, ac, - - - acy, 1S restoration. The intuition behind this is as follows: L&1
o ‘ o denote the legitimate states of the program. Lelbe a fault-
in Si’i_ Uiz aciU {(s0, so)|acs, acy -~ acy, are not enabled span corresponding to the set of faults Auditable events
' perturb the program outsidé€. If this happens, we want to
Remark 1:Observe that based on the above definitionensure that the system reaches a stat€2inSubsequently, we
for any states, there exists at least one transitiondp that ~ want to restore the system to a stateSih

originates froms. This transition may be of the forrs, s). Definition 14 (Auditable Restoration):-et ac and f be

For subsequent discussion, let the state space of prograauditable events and set of faults, respectively, for mogr
p be denoted bys,, and let its transitions be denoted By. p. We say that program is anauditable restoratiorprogram
with auditable eventsie and faults f for invariant S1 and

Definition 6 (Computation)We say that a sequence auditable state predicat? iff there existsT

(s0, 81, 82, ...) is acomputationiff

o V>0 (s, 85) €0, e T converges ta51 in p,
_ Definition 7 (Closure):A state predicates is closedin p e Tisclosedinj, U f,
iff Vso, 51 € Sp 2 (s0 € SA(s0,81) € 0p) = (s1€09). e For any sequence (=(so, s1,52,...)), w S.t.

(a) Stabilization (b) Masking, nonmasking stabilization (c) Graceful degradation

S, S,
Sp: state space
FS/T: Fault-Span _ Program action,
s/a/ — fault, auditable event
51/52: =P recoveryaction
s" weaker invariant
f: fault actions —\f(r :::I::::nut
P: program actions

recovery is not
ae: auditable event 'X’ possible

AS Auditable-Span

(d) Strict 2-phase recovery (e) Auditable restoration

Fig. 1. Different types of stabilizations.

all processes are aware of the auditable event starts a new
so €T A restoration operation.
(s0,81) € ae A
S1 Q/ TA
(Sm, Sm41) € 0p Udy Uae A
m > w = (Sm, Sm+1) € Ip

The auditable restoration protocol works as follows: It
utilizes a stabilizing silent tree rooted at the leader pssc
i.e., it reaches a fixpoint state after building the tree even
though individual processes are not aware of reaching the
= 3dIm,n:((n>m>w)A (sym € S2) A (s, € S1)) fixpoint. Several tree construction algorithms (eld., Edh be
utilized for this approach. The auditable restoration q@cot
is superimposed on top of a protocol for tree reconstruction

IV. AUDITABLE R';::,SRTOOGRF:'\ATB'AOSN FORDISTRIBUTED i.e., it only reads the variables of the tree protocol butsdoe

not modify them. The only variables of interest from the tree

In this section we explain our proposed auditable restoraprotocol areP.;j (denoting the parent of in the tree) and.;j
tion protocol for distributed programs. (identifying theid of the process thatbelieves to be the leader

]])] in the tree). Additionally, we assume that whenever the tree

As mentioned earlier, the auditable restoration protocokction is executed, it notifies the auditable restoratiaiquol
consists of several processes. Each process is potentially it can take the corresponding action. Since the tree gubto
capable of detecting an auditable event. However, only aefub s sjlent, this indicates that some tree reconstructioneisig
of processes is capable of initiating the restoration dmra done due to faults.

This captures the intuition thatearing of the auditable event » o) ,
is restricted toauthorizedprocesses only and can possibly ~ In addition, the program maintains the variahlesn.;
involve human-in-the-loop. For simplicity, we assume thatand ctsn.j. Intuitively, they keep track of the number of
there is a unique process assigned this responsibi"ty lamd taud|tab|e events th@t has been aware of and the number of

failure of this process is handled with approaches such aduditable events after which the system has been restored by
leader election [15]. the leader process. Additionally, each process maintsins

that identifies its statesn.j that is a sequence number and
The auditable restoration protocol is required to provige t res.j that is{0..1}. In summary, each procegsnaintains the
following functionalities: (1) in any arbitrary state wigeno following variables:
auditable event exists, the system reaches a state fromewher

subsequent restoration operation completes correctlyjn(2 e P.j, which identifies the parent of procegs
any arbitrary state where some process detects the awditabl 1., which denotes thed of the process tha believes
event, eventually all processes are aware of this evendp{8p t(')j ,be the leader:

process in the system can detect that all processes have been
aware of the auditable event, and (4) the process that knows e st.j, which indicates the state of procegs This

4

variable can have four different valuesstore stable ~ AR1 :: {j detects an auditable eveit

1 (readbotton), or T (readtop). These values indicate — otsn.j = otsn.j +1

that; is in the middle of restoration after an auditable .

event has occurred,has completed its task associated AR2 :: otsn.j < otsn.k) o)

with restoration,j is in the middle of reaching to the — otsn.j = otsn.k, if P.j=jthenres.j:=0

auditable state, of has completed its task associated . _ . .

with reaching to the auditable state, respectively. ~AR3: Pj=jAstj# LA otsnj>ctsnj

) — st.j,sn.j,res.j = L,sn.j+ 1, min(res.j +1,1)
e sn.j, which denotes a sequence number;
ARA4 :: st.(Pj) = L Asn.j #sn.(Pj)Nlj=1(Pj)
— st.j, sn.j,res.j 1=

e ctsn.j, as described above, and 1, sn.(P.j),min(res.j +1,1)

e res.j, which has the domaif0..1}.

e otsn.j, as describe above;

AR5 :: (Vk: Pk =j:otsnk =otsnjAstk=T)

Observe that in the above program, the domainsefj, AVE: ke Nbrj:snj=snkANlj=1lk)Astj=1
otsn.j, andctsn.j is currently unbounded. This is done for — sty =TT,
simplicity of the presentation. We can bound the domain res.j := min(res.k) where k € Nbr.jU{j}
of these variables without affecting the correctness of the if (P.j=jAres.j#1)then
program. This issue is discussed in Secfidn V. st.j,sn.j,res.j =

L,sn.j+ 1, min(res.j+1,1)
else if (P.j = j Ares.j = 1) then
ctsn.j = otsn.j

The program consists of 11 actions. The first actid®1,
is responsible for detecting the auditable event. As mastio
above, each process has some mechanism that detects the
auditable events. If an auditable event is detected, theegso
j incrementsotsn.j and propagates it through the system.

Actions AR2-AR5 are for notifying all processes in the AR7 :: P.j=j A st.j=T Actsn.j =otsn.j A
system about the auditable events detected. Specificatigna {authorized to restore
AR?2 propagates the changes @fsn value. We assume that — st.j, sn.j := restore, sn.j + 1
this action is a high priority action and executes concutyen
with every other action. Hence, for simplicity, we do notwsho ARS :: st.(P.j) = restore A sn.j # sn.(P.j) A

ARG :: ctsn.j < ctsn.k — ctsn.j = ctsn.k

its addition to the rest of the actions. When the leader m®ce l.j=1kANotsn.j = ctsn.j
is notified of the auditable event, in actiohR3, it changes — st.j, sn.j,res.j :=
its state to L and propagated towards its children. Also, restore, sn.(P.j), min(res.j + 1,1)

in action AR3, the leader sets itges variable to 1 by using
min(res.j + 1,1) function. (Instead of settinges value to AR9 :: (Vk: P.k=j:sn.j = sn.k Astk=stable) A

1 directly, we utilize this function because it would sinfipli (Vk:k € Nbrj:snj=snkANlj=1Lk)A
the bounding ofotsn, ctsn and sn variables in the next st.j = restore
section.) Action AR4 propagatesl towards the leaves. In — st.j := stable,

action AR5, when a leaf received, it changes its state to res.j :=min(res.k) : k € Nbr.jU{j}

T and propagates it towards the leader. Consider that, action if (P.j=jAres.j#1)then

AR5 detects whether all processes have participated in the st.j, sn.j,res.j :=

current L wave. This detection is made possible by letting restore, sn.j + 1,min(res.j +1,1)
each process maintain the variables that is true only if its else if (P.j = j Ares.j =1) then

neighbors have propagated that wave. In particular, if ggsc {restore is complete

j has completed d. wave withres false, then the parent of

J completes that wave with thees false. It follows that when AR10 :: —ic.j — st.j, sn.j := st.(P.j), sn.(P.j)

the leader completes the wave with thes true, all processes

have participated in that wave. This action also incrementaR11 :: (any tree correction action that affects process
the ctsn value. However, if the leader fails when its state is —res.j =0

1 and some process with state becomes the new leader,
this assumption will be violated. Actiod R3 guarantees that,
even if the leader fails, the state of all processes will avalty
becomeT and the leader process will be aware of that.

Action ARG broadcasts the changes of thian value so When a procesg receives a restoration wave from its
that the other processes can also restore to their leggimaparent, in actionARS, j marks its state agestore and
states. We assume that, similar to actibR2, action ARG is propagates the wave to its children. When a leaf progess
also a high priority action and executes concurrently whi& t receives a restoration wavgyestores its state, marks its state
other actions. asstable and responds to its parent. In actidik9, when the

hen the lead hat all ¢ eader receives the response from its children, the rdgiara
When the leader ensures that all processes are aware of thig e s complete. ActiordR9, like action AR5, detects if

auditable events, a human input can ask the leader to &itialy|| processes participated in the current restoration wave
a restoration wave to recover the system (o its legitimat®st ;ijizing the variableres. To represent actiodl R10, first, we
Therefore, in actionAR7, the leader initiates a distributed definelc.j as follows:

restoration wave, marks its state eestore and propagates
the restoration wave to its children. lc.j =

Fig. 2. The auditable restoration protocol.

Theorem 2:T is closed in action§ AR2-AR11) U f.

) Proof: We assume that faults cannot
N T o : perturb ten
(sz((gj)) — # /:\>Sl(tsjt]_i>T$A i% — iggg;g) and ctsn values. Additionally, actiorAR1 does not execute
to change thetsn value. This guarantees that actioA$22—
Action AR10 guarantees the self-stabilization of the pro- AR6 cannot execute to change thian or ctsn values. Hence,
tocol by ensuring that no matter what the initials state iswhen a system is i, in the absence of auditable events, it
the program can recover to legitimate states from whergemains inT. Moreover, faults cannot perturb the system to a
future restoration operations work correctly. Finally,afly state outside of’, thereby closure of". |
tree construction algorithm is called to reconfigure thes tre
and affects procesg action AR11 resets theres variable of
process;.

((st.(P.j) = restore A st.j = restore) = sn.j := sn.(P.j)

AN
st.(P.j) = stable = (st.j = stable Asn.j = sn.(P.j)) A
1) A
)

Corollary 1: Upon starting at an arbitrary state i, in
the presence of faults but in the absence of auditable gvents
the system is guaranteed to converge to a statglin

A. Fault Types Lemma 1:Starting from a state iffi' where theotsn value

) of all processes equal, if at least one auditable event occurs,
We assume that the processes are in the presence of @@k system reaches a state wheje otsn.j > z + 1.
fail-stop faults and (b) transient faults. If a process-&dps, -

it cannot communicate with the other processes and a tree Proof: This lemma implies that, if there is an auditable
correction algorithm needs to reconfigure the tree. Tramsie €vent in the system and at least one process detects it and
faults can perturb all variables (e.gsp, st, etc.) except increments itsotsn value, eventually all processes will be
otsn and ctsn values. The corruption of thetsn andctsn ~ aware of that auditable event.

values is tolerated in Sectigd V, where we bound these values
Moreover, we assume that all the faults stop occurring after,
some time. We usé¢ to denote these faults in the rest of this *,
paper.

When the system is iff’, all the otsn values are equal to
After detecting an auditable event, a process increménts i
otsn value by executing actiod R1 to « + 1. Consequently,
using actionAR2, every process gets notified of the auditable
event and increments itstsn value. If some other process
B. Proof of Correctness for Auditable Restoration Protocol detects more auditable events in the system, it increméts i
gtsn value and notifies the other processes of those auditable

predicatesT and AS, restoration state predicat€2, and events. Hence, thetsn value of all processes is at Ieas%l..

invariant S1 in the following and use them for subsequent

discussions. Theorem 3:Starting from any state inAS — T' where
U . . . max(otsn.j) > maz(ctsn.j) and the auditable events stop

S1:9j5k : ((st.] (_stt‘?glrfn\g ‘iaé t_regeASt(()ggn/\le:'jcg\sn k) A occurring, the system is guaranteed to reach a stagin

1.7 = {leader of the parent trég Proof: When there is a process whoseésn value is
e . . . greater than all thetsn values in the system, the state of
T :Vj,k:otsn.j = ctsn.k A (st.j = restoreV st.j = stable) the system is one of the following:

To show the correctness of our protocol, we define th

AS : tsn.j) > tsn.j . .
maz(otsn.j) = max(ctsn.j) e there is at least one process that is not aware of all
S2:Vj,k:((stj=TVstj=1)A the auditable events occurred in the system, and

Pj=jAstj=T = otsn.k > otsn.j .
(Pj =3 Astj otsn.k 2 otsn.j)) e all processes are aware of all auditable events occurred

In S1 the state of all processes is eithrtble or restore but their states are different.
and all otsn andctsn values are equal. If some faults occur]]
but no auditable eventS, the System goeg’twhere allotsn The first case illustrates that altsn values are not equal.

and ctsn values are still equal. In this case, the state of th€consequently, actiod R2 executes and makes allsn values
processes cannot be perturbedltoor T. If auditable events €qual. When the leader gets notified of the auditable events,
occur, the system goes S where theotsn andctsn values it initializes a L wave by executing actioml 3. This wave

are changed and thewax(otsn) is always greater than and Propagates towards the leaves by executing actifid. When
equal tomaz(ctsn). When all the states are changed to @ leafreceives the wave, it change its state 0 by executing

or T, all processes are aware of the auditable events and tif€tion AR5 and propagates theé wave towards the leader.
system is inS2. Also, the constrainbtsn.k > otsn.j in the Note that, actionAR2 executes concurrently with the other
definition of S2 means that when the state of the ieadefjs actions. Thus, albisn values will eventually become equal.

the rest of the processes are aware of the auditable everts tf he second case shows that allsn values are equal but
has caused the leader to changevttsn. the state of the leader is not changedToyet. Therefore,

))) when allotsn values are equal and the auditable events stop
Theorem 1:Upon starting at an arbitrary state inthe occurring, the leader executes actighR5 and changes its
absence of faults and auditable events, the system is geathn state to T, thereby reachings2. Consider that, if a process
to converge to a state ifil. fails and causes some changes in the configuration of the

Proof: Since there is no auditable event in the systemtree' theres variable of its neighbors would be reset to false

action AR1 cannot execute and thesn and ctsn values do nd the leader will eventually get notified of this failure by
not change. As a result, the system remaing and executing executing actiom R5. Thus, the leader initializes a new by

actionsARS, ARY9, and AR10 converges the system 1. m executing actionAR5. Moreover, if the leader fails when its
' ' ' state isl. and another process, sgywhose state i3 becomes

Let f be the faults identified in Sectidn TVIA. Then, we the new leader, the guard of actiohR?2 becomes true since
have: otsn.j > ctsn.j. In this case, the new leader initializes a new

1 wave to ensures that when the state of the leadér,ithe events occur too frequently for some duration, we want to
state of all the other processes in the system is @dlso B ensure that thetsn values still remain bounded.

Theorem 4:Starting from a state ifi" and the occurrence Our approach is as follows: We change the domaintsf

of at least one auditable event, the system is guaranteed {g po N2 1 1, where N is the number of processes in the
reachS2 even if auditable events do not stop occurring. system. Furthermore, we change actibR1 such that process

Proof: occurring, at least, one auditable event, some/ ignores the detectable events if its neighbors are not agfare
process, say, detects it and increments itésn by executing ~ the recent auditable events that it had detected. Esdgniral
action AR1. Following LemmdlL, all processes will eventually this casey is cqnsolldatmgth_e audnablg events. Furthermore,
get notified of the auditable event. Hence, @hn values will ~ We change actionl R2 by which procesg detects that process
be equal and, following Theorel 3, the system will reach & has detected a new auditable event. In particular, progess
state where the state of all processes isr L. Also if the state concludes that procesgshas identified a new auditable event
of the leader isT, we can ensure that all processes have beeff ofsn.k is in the rangelotsn.j @ 1. - -otsn.j & NJ, where
notified of the auditable event, thereby reaching a statg2in ~ ©_is modulo N* + 1 addition. Moreover, beforg acts on
Consider that, even if the auditable events continue omyrr this new auditable event, it checks that its other neighbors

the state of processes does not change and the system remdig¥e caught up witly, i.e., theirotsn value is in the range
in 2. m |otsn.j---otsn.j & NJ. Finally, we add another action where

otsn.j andotsn.k are far apart, i.egtsn.j is not in the range

Theorem 5:Starting from a state ifi" and in the presence [otsn.koN - - - otsn.k® N]. Thus, the revised and new actions
of faults and auditable events, the system is guaranteed e BAR1, BAR2, and BARI12 in Figure[3.
converge toS1 provided that faults and auditable events stop
occurring. We have utilized these specific actions so that we can
benefit from previous work on asynchronous unisgh [6] to
bound thentsn values. Although the protocol inl[6] is designed
for clock synchronization, we can utilize it to bound thign
values. In particular, the above actions are same (except fo
the detection of new auditable events) as that_ of [6]. Hence,
based on the results froh[6], we can observe that if some
process continues to detect auditable events foreveriuealgn
the system would converge to a state where diwn values
of any two neighboring processes differ by at most

Proof: Following Theorenil4, if faults and auditable events
occur, the system reaches a state&sihwhere allotsn values
are equal and the leader process is aware that all procemaes h
been notified of the auditable events. In this situation cthe
value of the leader is equal to itgsn value (by executing the
statementtsn.j := otsn.j in action AR5). Consequently, the
leader can start a restoration wave by executing adtion
Moreover, the other processes can concurrently executmact
ARG, increase theirtsn value, and propagate the restoration
wave by executing actiodR8. When all ctsn values are
equal, the system is iff" and following Theoremgl1 and 2,
the system converges 91.

Theorem 6:Starting from an arbitrary state, even if the
auditable events occur at any frequency, the program inr€igu
converges to states where for any two neighboend &:

Observation 1:The system is guaranteed to recover tootsn.j = otsn.kS1, otsn.j = otsn.k, Orotsn.j = otsn.k®1.

S2 in the presence of faults and auditable events. As long

as auditable events continue occurring, the system remains Proof: Proof follows from [6].]

in S2 showing that all processes are aware of the auditable)))

events. When the auditable events stop occurring, therayste Theorem 7:Starting from an arbitrary state, if the au-
converges toS1, where the system continues its normalditable events stop occurring, the program in Figure 3 con-

execution. verges to states where for any two neighbpasdk: otsn.j =
otsn.k.
V. BOUNDING AUDITABLE RESTORATIONVARIABLES Proof: As we mentioned in Theorefd 6, the system is
In this section, we show how thesn, ctsn, andsn values guarantee_d to converge to a state where for any two neighbors
can be bounded while preserving stabilization property. J and k either otsn.j = otsn.k & 1, otsn.j = otsn.k, or

otsn.j = otsn.k @ 1. Now, otsn values of any two processes
) (even if they are not neighbors) differ by at mast— 1. In
A. Boundingotsn other words, there existsandb such that for some processes

In the protocol in FigurEl2tsn values continue to increase J andk, otsn.j = a andotsn.k = b, whereb is in the range
in an unbounded fashion as the number of auditable eventé:-@® N] and theotsn values of remaining processes are
increase. In that protocol, ibtsn values are bounded and N the rangefa- --b].
eventually they are restored @p this may cause the system to
lose some auditable events. Furthermorejtiin.; is reset to
0 but it has a neighbok whereotsn.k is non-zero, it would
causeotsn.j to increase again.

Hence, processes are not far apart each other and the action
BAR12 cannot execute. In addition, actioBAR1 cannot
execute since the auditable events have stopped occurring.
Hence, by executing actioBAR2, each process increases

Before we present our approach, we observe that if thés otsn such that theotsn values will be equal ta for all
auditable events are too frequent, restoring the system tprocesses.]
legitimate states may never occur. This is due to the fac¢ttha
the leader process attempts to restore the system to letgtim Corollary 2: Under the assumption that a process does not
states then that action would lwanceledby new auditable detect new auditable event until it is restored to legitenat
events. Hence, restoring the system to legitimate states catates, we can guarantee thatn values will differ by no
occur only after auditable events stop. However, if auditab more than 1.

BARI1 :: {j detects an auditable eveht
VE : otsn.k € [otsn.j---otsn.j @ N|
—> otsn.j :=otsn.j & 1

BAR2 :: VEk : otsn.k € [otsn.j---otsn.j @ N| A
3k : otsn.k € [otsn.j & 1---otsn.j & N]
— otsn.j :=otsn.j B 1

BAR3:: Pj=jAstj# LA otsn.j # ctsn.j
— st.j,sn.g,res.j = L, sn.j+ 1, min(res.j + 1,1)

BARA4 :: st.(P.j) = L Asn.j # sn.(Pj)ANl.j=1(Pj)
— st.j,sn.j,res.j = L, sn.(P.j),res.(P.j)

BARS5 :: AR5

BARSG : ctsn.j # ctsn.(P.j) — ctsn.j := ctsn.(P.j)

BART :: AR7

BARS : st.(P.j) = restore A sn.j # sn.(P.j) A
l.j=1kAotsn.j = ctsn.j
— st.j, sn.j,res.j := restore, sn.(P.j),res.(P.j)

BAR9-BAR10:: AR9-AR10

BARI11 :: (any tree correction action that affects proces$
—res.j = —1

BAR12 :: (otsn.j & [otsn.k © N ---otsn.k @ N]|) A
(otsn.j > otsn.k) — otsn.j :==0

Fig. 3. Bounded auditable restoration protocol.
B. Boundingctsn

The above approach bounds thign value. However, the
same approach cannot be used to boutsah value. This is

Proof: According to Theoreni]7, albtsn values will
eventually be equal. Moreover, when the leader ensures that
all processes are aware of the auditable events, it executes
action AR5 and updates itstsn value by itsotsn value.
Consequently, when the rest of processes detect this change
they execute actionBAR7 and update theirctsn values.
Hence, eventually altzsn values will be equal. [|

Finally, we observe that even with these changes if a single
auditable event occurs in a legitimate state (wheretalh and
ctsn values are equal) then the system would reach a state in
the auditable state, i.e., Theorémn 4 still holds true witis th
change.

C. Boundingsn

Our goal in boundingn is to only maintainsn mod 2 with
some additional changes. To identify these changes, fiest, w
make some observations about hew values might change
during the computation in the presence of faults such as
process failure but in the absence of transient faults.

Now, consider the case where we begin with a legitimate
state of the auditable restoration protocol wheresallvalues
are equal tox. At this time if the leader process executes
actionsAR3 or ART7 thensn value of the leader process will
be set tox + 1. Now, consider thesn values of processes
on any path from the leader process to a leaf process. It is
straightforward to observe that some initial processeshim t
path will have thesn value equal tar + 1 and the rest of the
processes on this path (possibly none) will have ¢hevalue
equal tox. Even if some processes fail, this property would
be preserved in the part of the tree that is still connected to
the leader process. However, if some of the processes in the
subtree of the failed process (re)join the tree, this priyper
may be violated. In the program in Figdre 2, wherevalues
are unbounded, these newly (re)joined processes can easily
identify such a situation. However, if processes only maamt
the least significant bit ofn, this may not be possible. Hence,

due to the fact that the value to whielsn converges may
not be related to the value thatsn converges to. This is
unacceptable and, hence, we use the following approach
boundctsn.

this newly rejoined process should force the leader protess

redo its task for recovering the system to either auditatalee s
.e., S2) or to legitimate states (i.eS1). As described above

there can be at most two possible valuesfin the tree that

is connected to the leader process. Hence, it suffices tkat th

newly rejoined process aborts those two computations. \We ca

achieve this by action®8 AR3, BAR4, BARS, and BAR11

in the program in Figurg]3.

First, in action ARG, the guardctsn.j > ctsn.k needs
to be replaced bytsn.j # ctsn.(P.j). Thus, the new action
BARG6 is shown in Figurél3.

Second, we require to replace the notiorgafater thanby
not equalin all the actions of FigurE]2 since we are bounding In this program, consider the case where one auditable
the otsn and ctsn values. Hence, we change actigii3 to event occurs and no other auditable event occurs until the

system is restored to the legitimate states. In this cage, fo

BAR3 in the program in Figurgl3. : _
With these changes, starting from an arbitrary state, afteaps);g’g ﬁ).rolzeﬁﬁ‘gravr\],gr]a’soafvg'krev(\;'élﬁgg Sll’tggiz:g%g.]agé

the auditable events stop, the system will eventually reac S in the following. The definitions ofS1 and T remain
to states where albtsn values are equal (cf. Theore 7). unchanged '

Subsequently, ifbtsn and ctsn values of the leader process
are different, it will execute actiod R7 to restore the system AS’:Vj k : otsn.k € [max(ctsn.j) - - - maz(ctsn.j) @ 1]

to an auditable state. Then, the leader process will reset it

ctsn value to be equal totsn value. Finally, these values S2':Vj. k: ((st.j=TVstj=_1)A

will be copied by other processes using actiéd R6. Hence, (Pj=jAstj=T= otsn.k € [otsn.j---otsn.j ® N])

eventually allctsn values will be equal. Theorem 9:Starting from an arbitrary state if, if exactly

Theorem 8:Starting from an arbitrary state, if the au- one auditable event occurs, the system is guaranteed tb reac
ditable events stop occurring, the program in Fiddre 3 resch a state inS2 and then converge t61 provided that faults stop
to states where for any two neighbojsand k: otsn.j = occurring. Moreover, the states reached in such compautatio
otsn.k = ctsn.j = ctsn.k. are a subset oflS".

Proof: If exactly one auditable event occurs, the system is VI. RELATED WORK
guaranteed to reacti2 and then it converges 81 following

the explanations above. Stabilizing Systems. There are numerous approaches

for recovering a program to its set of legitimate states.raro

We can easily extend the above theorem to allow upto and Gouda’s distributed reset technique introducedin $4] i
auditable events before the system is restored to itsegié directly related to our work and ensures that after compdgeti
state. The choice oV indicates that each process detects thethe reset, every process in the system is in its legitimatiest
auditable event at most once before the system is restoitsd to However, their work does not cover faults (e.g., procedsri)
legitimate states. In other words, a process ignores dldita during the reset process. In_J17], we extended the distibut
events after it has detected one and the system has not begszet technique so that if the reset process is initializedi a
restored corresponding to that event. In this case, ther@ns some faults occur, the reset process works correctly. Tf [16
AS’ above needs to be changed to: Katz and Perry showed a method called global checking and

ARV N . correction to periodically do a snapshot of the system and
AS" :¥j ki otsn.k € [max(ctsn.j) - -maz(ctsn.j) & N] reset the computation if a global inconsistency is detedthib

Theorem 10:Starting from an arbitrary state ifi, if upto = method applies to several asynchronous protocols to cbnver
N auditable events occur, the system is guaranteed to reachttlem into their stabilizing equivalent, but is rather exgea
state inS2 and then converge t§1 provided that faults stop and insufficient both in time and space.

occurring. Moreover, the states reached in such computatio . .
are a su%set oflS" . P Moreover, in nonmasking fault-tolerance (e.gl, [L], [2¥e

have the notion of fault-span too (similar in Definition
Proof: Since each process detects at most one auditabffd) from where recovery to the invariant is provided. Also, i
event before the restoration, executing actidddR1 and nonmasking fault-tolerance, if the program goesit® — 7', it
BAR2, all otsn values will become equal and the systemmayrecover toT. By contrast, in auditable restoration, if the
reachesS2. Consequently, the leader initialize a restorationprogram reaches a state S — T, it is required that it first
wave and the system convergesso. B restores taS2 and then taS1. Hence, auditable restoration is

Since the domain obtsn is bounded, it is potentially stronger than the notion of nonmasking fault-tolerance.

possible thatj starts from a state whergsn.; equalsz and Auditable restoration can be considered as a special case of
there are enough auditable events so that the valugsefj nonmasking-failsafe multitolerance (e.d., [10]), wherera-

rolls over back toz. In our algorithm, in this case, some gram that is subject to two types of faulls and F,, provides
auditable events may be lost. We believe that this would bej) failsafe fault tolerance whet; occurs, (i) nonmasking
acceptable for many applications since the number of abiéita tolerance in the presence 5%, and (iii) no guarantees if both

events being so high is highly unlikely. Also, the domain ofFf and F,, occur in the same computation.
otsn andctsn values can be increased to reduce this problem

further. This problem can also be resolved by ensuring tratt __ Tamper Evident Systems. These systems [12]/ [20],
number of events detected by a process within a given timeg23] use an architecture to protect the program from externa
span is bounded by allowing the process to ignore frequerfioftware/hardware attacks. An example of such architectur
auditable events. AEGIS [23], relies on a single processor chip and can be used
. L to satisfy both integrity and confidentiality properties anf

We note that theoretically the above assumption is noggjication. AEGIS is designed to protect a program from
required. The basic idea for dealing with this is as follows:gyternal software and physical attacks, but did not provide
Each process maintains a hibanged.j that is set to true gny nrotection against side-channel or covert-channatit
wheneverntsn value changes. Hence, evervifsn value rolls 1, "AEGS, there is a notion of recovery in the presence of a
over to the initial valueghanged.j would still be true. It would security intruder where the system recovers to a ‘less lisefu
be used to execute actidhAR3 so that the system would be giate where it declares that the current operation cannot be
restored t052 and then taS1. In this case, however, another completed due to security attacks. However, the notion of
computation would be required to resefanged.j back 10 fayt-tolerance is not considered. In the context of Fig@iren
false. The details of this protocol are outside the scopdief t AEGIS, AS — T equals—S1, andS2 corresponds to the case
paper. where tampering has been detected.

Finally, we note that even if thetsn values roll over
or they are corrupted to an arbitrary value, the system willfau
still recover to states in51. In particular, starting from an fau
arbitrary state, after faults and auditable events stapsylstem
will reach a state wheretsn values are equal. In this case
depending upon thetsn values, either the system will be
restored to the auditable states (by actiéghd R3-BARG6) or
to legitimate states (by actiodB AR10). In the former case, the
system will be restored t&'1 subsequently. Hence, we have
the following theorem.

Byzantine-Tolerant Systems. The notion of Byzantine

Its [19] has been studied in a great deal in the context of

[t-tolerant systems. Byzantine faults capture theamotif a
malicious user being part of the system. Typically, Byzaati

' fault is mitigated by having several replicas and assuming

that the number of malicious replicas is less than a threshol

(typically, less than%rd of the total replicas). Compared with

Figure[2,T captures the states reached by Byzantine replicas.

However, no guarantees are provided outside

Byzantine-Stabilizing Systems. The notion of Byzantine
faults and stabilization have been combined fin [9].][21],
[22]. In these systems, as long as the number of Byzantine
faults is below a threshold, the system provides the desired

Proof: Following Theoren{_10 and explanations above,functionality. In the event the number of Byzantine proesss
after auditable events and faults stop, the program copgergincreases beyond the threshold temporarily, the system-eve
to S1. B tually recovers to legitimate state. Similar to systemst tha

Theorem 11:Auditable restoration program is stabilizing,
i.e., starting from an arbitrary state in after auditable events
and faults stop, the program convergessta

tolerate Byzantine faults, these systems only toleratesaip

only finite states, i.e., the values of all variables involwe it

malicious behavior performed by the adversary. It does noare bounded.

address active attacks similar to that permitted by Dolage-Y
attacker[[8].

We are currently investigating the design and analysis of
auditable restoration of System-on-Chip (SoC) system&én t

In all the aforementioned methods the goal is to restorgontext of the IEEE SystemC language. Our objective here is
the system to the legitimate states. In our work, if somelo design systems that facilitate reasoning about what they
auditable events occur, we do not recover the system to th@ and what they do not do in the presence of auditable

legitimate states. Instead, we recover the system to eg&ior

events. Second, we plan to study the application of auditabl

state where all processes are aware of the auditable everfgstoration in game theory (and vice versa).

occurred. Moreover, inJ4], if a process requests a new reset
wave while the last reset wave is still in process, the new
reset will be ignored. Nevertheless, in our work, we cannot (1
ignore auditable events and all processes will eventuadly b
aware of these events and the system remains in the auditablg,
state as long as the auditable events continue occurrirsg. Al
the aforementioned techniques cannot be used to botsd
value in our protocol. 3]

VII.

In this paper, we presented an algorithm fauditable
restorationof distributed systems. This problem is motivated [5]
in part by the need for dealing with conflicting requirements
Examples of such requirements include cases where acce S
must be restricted but in some access entirely preventinj]
access is less desirable than some unauthorized access. T iz]
also allows one to deal with systems where resistance t
tampering/unauthorized access is based on user norms or @]
legal threat as opposed to a technical guarantee that targper
cannot occur. In other words, such systems provitie-ease- 9]
of-emergency-break-glassethod for access. By design, these
access methods are detectable and called auditable ewents[io]
our work.

CONCLUSION AND FUTURE WORK 4

While such an approach often suffices for centralizediy)
systems, it is insufficient for distributed systems. In joaittr,
in a distributed system, only one process will be aware ofisuc[12]
auditable events. This is unacceptable in a distributeteBys
Specifically, it is essential that all (relevant) procesdetect
this auditable event so that they can provide differengalise
if desired. We denote such statesaaslitable states

[13]

[14]

Auditable events also differ from the typicdh-case-
of-emergency-break-glassvents. Specifically, the latter are
one-time events and cannot repeat themselves. By contra$t’]
auditable events provide the potential for multiple ocenoes.
Also, they provide a mechanism falearing these events. [16]
However, the clearing must be performed after all processes
are aware of them and after initiated by an authorized psoces|17]

Our program guarantees that after auditable events occgs]
the program is guaranteed to reach an auditable state wihere
processes are aware of the auditable event and the authorize
process is aware of this and can initiate the restoratidna(a. [19]
clearing) operation. The recovery to auditable state isaua

teed even if it is perturbed by finite number of auditable ¢éven

or faults. It also guarantees that no process can begin ske tal20]
of restoration until recovery to auditable states is coiteple
Moreover, after the authorized process begins the regiarat

operation, it is guaranteed to complete even if it is peedrb [21]
by a finite number of faults. However, it will be aborted if it
is perturbed by new auditable events. [22]

Our program is stabilizing in that starting from an arbiyrar 23]
state, the program is guaranteed to reach a state from where
future auditable events will be handled correctly. It al§baes

10

REFERENCES

A. Arora. Efficient reconfiguration of trees: A case studymethodical
design of nonmasking fault-tolerant programs.FIRRTFT, pages 110—
127, 1994.

A. Arora, M. Gouda, and G. Varghese. Constraint satitfacas a
basis for designing nonmasking fault-tolerant systedosirnal of High
Speed Networks(3):293-306, 1996.

A. Arora and M. G. Gouda. Closure and convergence: A fatiot of
fault-tolerant computinglEEE Transactions on Software Engineering
19(11):1015-1027, 1993.

A. Arora and M. G. Gouda. Distributed resedEEE Transactions on
Computers 43(9):1026-1038, 1994.

B. Bonakdarpour and S. S. Kulkarni. On the complexity yrfithesizing
relaxed and graceful bounded-time 2-phase recovery.FNh pages
660-675, 2009.

J. M. Couvreur, N. Francez, and M. G. Gouda. Asynchronanison.
In ICDCS pages 486—493, 1992.

E. W. Dijkstra. Self-stabilizing systems in spite of glibuted control.
Communications of the ACM.7(11):643-644, 1974.

D. Dolev and A. C. Yao. On the security of public key prasts IEEE
trans. on Information Theory29:198-208, 1983.

S. Dolev and J. L. Welch. Self-stabilizing clock synchization in the
presence of byzantine faults. PODC, page 256, 1995.

A. Ebnenasir and S. S. Kulkarni. Feasibility of stepsvidesign of
multitolerant programs.ACM Transactions on Software Engineering
and Methodology (TOSEMP1(1):1-49, December 2011.

M. Gouda. The theory of weak stabilization. WiS$ volume 2194 of
Lecture Notes in Computer Sciengmges 114-123, 2001.

V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadi@unding
cryptography on tamper-proof hardware tokens. TIDC, pages 308—
326, 2010.

M. Herlihy and J. Wing. Specifying graceful degradatio IEEE
Transactions on Parallel and Distributed Syster#§l):93-104, 1991.

J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B.rRell. A
program structure for error detection and recovery.Symposium on
Operating Systemgpages 171-187, 1974.

S. T. Huang. Leader election in uniform ringsACM Transactions
on Programming Languages and Systems (TOPLAS)63-573, July
1993.

S. Katz and K. Perry. Self-stabilizing extensions foessage passing
systems.Distributed Computing7:17-26, 1993.

S. Kulkarni and A. Arora. Multitolerance in distributaeset. Chicago
Journal of Theoretical Computer Scienck998(4), December 1998.

L. Lamport and N. LynchHandbook of Theoretical Computer Science:
Chapter 18, Distributed Computing: Models and MethodElsevier
Science Publishers B. V., 1990.

L. Lamport, R. Shostak, and M. Pease. The byzantinergénproblem.

ACM Transactions on Programming Languages and Systé(85382—

401, 1982.

D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Bonehl. C.

Mitchell, and M. Horowitz. Architectural support for copyé tamper
resistant software. IASPLOS pages 168-177, 2000.

M. Malekpour. A byzantine-fault tolerant self-stabihg protocol for

distributed clock synchronization systems. $8S pages 411-427,
2006.

M. Nesterenko and A. Arora. Stabilization-preservismicity refine-
ment. JPDC, 62(5):766—791, 2002.

G. E. Suh, D. E. Clarke, B. Gassend, M. V. Dik, and S. Riasm
Aegis: architecture for tamper-evident and tamper-rastsprocessing.
In ICS pages 160-171, 2003.

This figure "2ph.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

This figure "deg.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

This figure "desc.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

This figure "dij.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

This figure "mask.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

This figure "reset.png" is available in "png" format from:

http://arxiv.org/ps/1506.07957v]

http://arxiv.org/ps/1506.07957v1

	I Introduction
	I-A A Brief History and the Need for Auditable Restoration
	I-B Goals of Auditable Restoration

	II Preliminaries
	III Defining Auditable Restoration
	IV Auditable Restoration for Distributed Programs
	IV-A Fault Types
	IV-B Proof of Correctness for Auditable Restoration Protocol

	V Bounding Auditable Restoration Variables
	V-A Bounding otsn
	V-B Bounding ctsn
	V-C Bounding sn

	VI Related Work
	VII Conclusion and Future Work
	References

