
A Component-Based Middleware for a Reliable
Distributed and Reconfigurable Spacecraft Onboard

Computer
Ting Peng, Kilian Höflinger, Benjamin

Weps, Olaf Maibaum
Simulation and Software Technology

German Aerospace Center (DLR)
Braunschweig, Germany

{Ting.Peng, Kilian.Hoeflinger,
Benjamin.Weps, Olaf.Maibaum}@dlr.de

Kurt Schwenk
German Space Operations Center (GSOC)

German Aerospace Center (DLR)
Oberpfaffenhofen, Germany

Kurt.Schwenk@dlr.de

Daniel Lüdtke, Andreas Gerndt
Simulation and Software Technology

German Aerospace Center (DLR)
Braunschweig, Germany

{Daniel.Luedtke, Andreas.Gerndt}@dlr.de

Abstract—Emerging applications for space missions require
increasing processing performance from the onboard computers.
DLR's project “Onboard Computer - Next Generation” (OBC-
NG) develops a distributed, reconfigurable computer architecture
to provide increased performance while maintaining the high
reliability of classical spacecraft computer architectures. Growing
system complexity requires an advanced onboard middleware,
handling distributed (real-time) applications and error mitigation
by reconfiguration. The OBC-NG middleware follows the
Component-Based Software Engineering (CBSE) approach. Using
composite components, applications and management tasks can
easily be distributed and relocated on the processing nodes of the
network. Additionally, reuse of components for future missions is
facilitated. This paper presents the flexible middleware
architecture, the composite component framework, the
middleware services and the model-driven Application
Programming Interface (API) design of OBC-NG. Tests are
conducted to validate the middleware concept and to investigate
the reconfiguration efficiency as well as the reliability of the
system. A relevant use case shows the advantages of CBSE for the
development of distributed reconfigurable onboard software.

Keywords—middleware; reliability; distributed system;
component-based software engineering; reconfiguration; spacecraft

I. INTRODUCTION
Onboard systems for space missions are growing in

complexity. In order to decrease the complexity of application
development and to support the future reutilization of existing
programs, the onboard system software needs to facilitate
reusable and modular development. Another fundamental
requirement for onboard system software is its real-time
capability, due to the fact that some applications are time-
critical and require meeting specific execution deadlines.

After launching into space, it becomes difficult or even
impossible to repair the spacecraft when parts of it fail.
Therefore, the reliability of the spacecraft is vital for the entire
lifetime [1]. Spare components, invoked by redundancy
configurations are usually used to increase reliability.

The onboard computers for the space environment need to
be radiation robust, since they are exposed to energetic particles
which may lead to Single Event Upsets (SEU) [2], etc. Usually,
radiation-hardened computers are mainly used for space

missions, high-altitude aircrafts, etc. These radiation-hardened
products are far more expensive and also less powerful than
hardware for the industry market. The emerging utilization of
Commercial Off-The-Shelf (COTS) hardware offers cost
reduction for space mission development. On the one hand,
COTS components provide higher processing performance,
compared to radiation-hardened computers. On the other hand,
they face the problem of damage and malfunctions due to space
radiation.

The project “Onboard Computer - Next Generation” (OBC-
NG) takes advantage of multi-core COTS processors, which
offer high computing performance compared to standard
spacecraft processors. OBC-NG’s architecture is based on a
distributed networked reconfigurable system. It uses a new
redundancy approach to gain high reliability [3] and supports a
multi-core version of the Real-time Onboard Dependable
Operating System (RODOS) to satisfy hard real-time
requirements for time-critical applications [4]. Linux is an
additional selectable operating system to enable the use of
third-party libraries for complex applications, if needed. OBC-
NG aims to offer high performance, reliability and redundancy
for applications in the space environment.

Complex onboard software in the space domain usually
consists of an operating system (OS), a hardware abstraction
layer, a middleware and applications for the attitude and orbit
control subsystem, propulsion subsystem, power subsystem,
communication subsystem, scientific payloads subsystem, etc.
The middleware has the role of a data handling service, a task
management service, a monitoring service, a reconfiguration
service, peripheral control and communication service.

The OBC-NG middleware (see Fig. 1) is a distributed
networked framework, which acts as the provider for task-
oriented Application Programming Interfaces (APIs), and
modular distributed components for model-driven software
development. To support transitions among different phases of
a space mission and recovery from failures or errors, the task
management service, the monitoring service, and the
reconfiguration service are present in the OBC-NG middleware.

The final publication appeared: T. Peng et al., "A Component-Based Middleware for a Reliable Distributed and Reconfigurable
Spacecraft Onboard Computer," 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS), Budapest, Hungary, 2016, pp.
337-342. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7794363&isnumber=7794313

Fig. 1. OBC-NG system and middleware architecture

Classic redundancy concepts usually have a one-to-one
mapping among components and their redundant counterparts.
In contrast, OBC-NG does not assign specific nodes as
redundant counterparts. Tasks can be moved to all compatible
and available nodes. The currently used nodes consist of a CPU
and an FPGA. It is also planned to support task morphing from
software to hardware and vice versa [5].

In the context of OBC-NG, reconfiguration means that the
deployment of tasks and services can be restructured according
to different predetermined configurations. The reconfiguration
targets the software and the hardware [3] as well as the network
routing. OBC-NG considers two main reconfiguration types:
planned reconfiguration and reconfiguration due to a failure [3]:

• Planned reconfiguration: different mission phases, such
as the descent and landing phase of a spacecraft and the
following scientific ground operation phase on a
celestial body, require different configurations. In each
phase, different tasks with different sensors, actuators,
and scientific instruments are conducted [3].

• Reconfiguration due to a failure: when a failure occurs
on a node, a reconfiguration is triggered to isolate the
faulty node. Then the tasks on this node need to be
migrated onto other properly functioning nodes.

To facilitate the development of this kind of distributed
framework, the Component-Based Software Engineering
(CBSE) is selected. The CBSE is a software development
approach that is based on software reuse. The CBSE process
can be classified as component development and system
development with software components [6]. In component
design, concerns (which are interests or focuses of information
that can affect the development of the software) are separated
and functionalities are decoupled to fit into the component
model. The system development mainly involves development
of components, system requirements studies, and the selection
of available components to meet the system requirements. The
system requirements include requirements of standardization,
independency, composability, deploy ability, and
documentation. The selected components may need to be
adapted to fit the requirements. After the selection and
adaptation of components are fixed, components are assembled
and tested on the system platform [7]. Ishita Verma [6]
proposes the W model for CBSE development. In the W model,
domain-engineering techniques are considered for the
component development.

During onboard software development, model-based
techniques together with domain expert knowledge can be

integrated into component design and implementation.
Diagrams or Domain-Specific Languages (DSLs), besides
normal programming languages, are used for modeling [8],
code generation, software verification, and design validation
[9]. Meanwhile, the middleware that adopts CBSE can facilitate
planning, mapping, and optimization of tasks and
configurations in a model-based way.

This paper demonstrates that the concept of CBSE is
especially helpful for the development of distributed and
reconfigurable onboard software. It also shows how to
implement the composite component framework for the
middleware and applications. By using of the composite
component framework, the modules of OBC-NG middleware
and applications are easy to implement, adjust, and reuse.

The reminder of the paper is structured as follows. Section
II presents related work. Section III describes the architecture of
OBC-NG’s middleware. Section IV details the composite
component framework, which is adopted by the OBC-NG
middleware, including the metamodel, modular distribution,
and model-based development, test and verification. Section VI
evaluates the middleware and gives a usage scenario. Section
VII concludes the paper and presents an outlook for future
work.

II. RELATED WORK

In several embedded system domains, including not only
space applications but also robot technology, similar
middleware architectures are utilized.

In aerospace domain, the demands of task management,
health monitoring, fault tolerance and parallel processing lead
to the evolution of middleware. These demands are separated
from and atop operating systems. The Adaptive Dependable
Distributed Aerospace Middleware (ADDAM) has been
developed for the flight system management over multiple
computers [10]. ADDAM is designed, being portable and
reusable. It adopts event-based data receiving. Dependable
Multiprocessor (DM) leveraged high-performance COTS
processors to increase the performance of the onboard
computers [11]. Its middleware, called Dependable
Multiprocessor Middleware (DMM) handles tasks, failure
detection and recovery. DMM also provides a platform-
independent API. DMM’s APIs support heartbeating and
checkpointing for applications.

In robotics, middlewares usually abstract lower layer details
and offer easy-to-use interfaces or a modular framework for
high-level applications and implementations. A distributed
component middleware called RT-Middleware (Robotics
Technology Middleware) has been developed to improve the
reusability by offering a modular software structure and to ease
the complexity of integration [12]. Real-time ability is a
requisite for robots to react to the actual environment within
certain deadlines. RT-Middleware introduces a new composite
component called RT-Component for independent low-level
and real-time composition [13]. Player 2.0 is a robot
programming framework which simplifies the driver API and
hides most parts of the communication, thus eases maintenance
[14]. Christian Schlegel et al. [15] define explicitly stated
properties within components for model-driven designs for
robotic software systems. As can be seen from [16], many
robotic middlewares aim at not only improving the reusability

and flexibility but also at decoupling robotic software design
and implementation through modular structure platforms and
component-based development approaches, such as Orocos,
Orca, OpenRTMaist (that is the implementation of RT-
Middleware), MARIE, SmartSoft, etc.

In the distributed system domain, the distributed computing
middleware CORBA has been widely used to address the
challenges of heterogeneity, network-centric operation and
dynamic operating conditions [17], [18], [19], [20]. Its
interfaces are used at mission control centers for spacecraft
operations [21], [22]. However, CORBA’s target market resides
in the commercial area and it is not suitable for real-time, fault-
tolerant and reconfigurable onboard systems in which low-
memory-footprint programs are required [23].

In addition, the concept and methodology of CBSE has been
applied in both robotics and the development of onboard
systems for spacecraft. In the space domain, CBSE has been
integrated into the development of onboard software e.g. [24],
[25], [26]. The project ASSERT [25] is a good example of the
combination of CBSE methodology and onboard software.
Marco Panunzio et al. [25] summarized the requirement and
feasibility analysis from European Space Agency (ESA)
projects and how to take advantage of CBSE for onboard
software reuse. Marek Prochazka et al. [27] followed the CBSE
methodology to establish a component-oriented framework for
onboard software with dynamic reconfiguration of applications.
They aim at improving reusability of software for different
space missions and easing complexity of development and
integration. SOFA HI [27] offers a metamodel for application
component design. The component-based concept is also used
in unmanned aircraft systems (UAS) to deal with increasing
complexity of subsystems, distributed communication and
management services [28]. Marco Panunzio et al. [26], [29]
designed a domain-specific metamodel called Space
Component Model (SCM) for component models for ESA
research and development projects.

III. OVERVIEW OF THE MIDDLEWARE ARCHITECTURE

The OBC-NG middleware is designed as a layered
architecture. It consists of a network layer, the Tasking
framework and a management layer to offer communication
services, application task services and management as well as
monitoring services (see Fig. 1). The OBC-NG middleware
uses message-triggered and event-triggered mechanisms for
task execution and management. The middleware supports the
real-time operating system RODOS and Linux for the
consideration of two aspects, i.e., some applications require the
hard real-time abilities of RODOS [3] and some applications
rely on third-party Linux libraries. The features including
management, monitoring, reconfiguration and model-based
development are implemented in the OBC-NG middleware.

A. Network Layer
The network layer is responsible for the communication

among nodes in the distributed onboard system. It is visualized
in Fig. 2, incorporating network protocol, network connector,
underlying protocol, event handler and timer service [30]. The
network protocol is the core component of the network layer,
which transmits and receives messages of different transmission
types in the network. The network connector is an abstraction to
the transport layer to transmit and receive messages through the

underlying transport protocol. The event handler handles the
received data and is triggered by the network protocol. The
timer service is used to invoke the timer functionality of the
hardware. Currently, the underlying protocol supports Ethernet
with UDP/IP. The next step is to integrate the SpaceWire
Protocol, since it is widely used in the space domain.
SpaceWire is a network connection that is low-latency, full-
duplex and is based on point-to-point serial links [31]. The
OBC-NG network layer supports the transmission of unreliable
data, reliable data, request data, response data, reconfiguration
commands, message acknowledgements, heartbeats, error
notifications and large-size messages. Moreover, subscription
and broadcast mechanisms can be realized by using the network
layer. Furthermore, the network layer is also designed to
support monitoring, error detection and reconfiguration on
higher layers.

Fig. 2. Network layer structure (evolved from [30])

B. Tasking Framework
The Tasking framework offers application task services

[32]. The Tasking concept has its origin in RODOS and serves
as a hypervisor. It provides communication and scheduling
capabilities for task-based applications. To use the Tasking
framework, application developers need to divide their
algorithms into smaller tasks. These tasks can then be
distributed on several nodes or cores on a multi-core CPU.
Within the Tasking framework, a task has three actions, i.e.,
consuming information, performing computations, and
producing information, which can be used as input message by
other tasks. The task computation is triggered either by an event
or by the fact that all required input data have been collected.
The results of computations are information which can be used
by other subsystems or modules [32]. The Tasking framework
can be used for distributed and shared-memory system
architectures. The communication media are messages and
events. Workload partitioning as well as task mapping needs to
be realized explicitly. The Tasking framework offers thread
management and synchronization and it has been used for
several space missions at DLR.

C. Management Layer
The management layer offers task distribution, monitoring

and reconfiguration services for nodes in coarse granularity and
tasks in fine granularity. The management layer has four tasks:
monitor, reconfiguration manager, reconfiguration service and
checkpointing service. For the project OBC-NG, nodes can be
either of the type Processing Node (PN) or Interface Node (IN).
Computation and management tasks run on the Processing
Node. Thus the role of PN can be Master (M), Observer (O) or
Worker (W). As the onboard system includes various
peripheries such as sensors, actuators, instruments, and mass
storage, the Interface Node is the connection part between the
network and peripheries. Therefore the role of IN can be
Storage (S) or Interface (I) [3]. The IN is also responsible for
the management of data subscription lists, i.e., the periphery

sensor will send acquired data to the tasks, which are registered
in the subscription list of this periphery sensor.

At the end of each iterative round of application task
execution, the checkpointing service sends checkpoint values,
i.e. snapshots of states of tasks to the Storage node.

Both Master and Observer use the monitor service to send
heartbeats to other nodes to detect whether one node is running
nominally or not. The monitor can also specify threshold values
and determine whether an application task still behaves
nominally or not by comparing the control value responded
from the node running this application task.

When a failure is detected by the Master or informed by
Workers or Observers to the Master, the Master will use the
reconfiguration manager to search a decision graph for a
suitable configuration according to the failure information (see
Fig. 3). The Master broadcasts the reconfiguration command to
other nodes to trigger the reconfiguration on node level. When
no practicable configuration is found, a safe mode is triggered
by the Master which is handled only by the Master itself. In
safe mode, nonessential components are switched off and only
safety critical components are running. The reconfiguration
manager is also responsible for triggering the new phase
reconfiguration when a spacecraft enters a new mission phase.

Fig. 3. Simple example of a decision graph to mitigate node failure: Cx
denotes a configuration, Cnpx denotes a configuation in the new mission phase
and Nx denotes a failing node (evolved from [3])

All nodes, including the node with the Master, use the
reconfiguration service to perform the initialization of
management and application tasks on corresponding nodes.
During reconfiguration, if an application task uses the
checkpointing service, the nodes with this kind of application
tasks will request the checkpoint values which are periodically
saved to a Storage node.

IV. COMPOSITE COMPONENT FRAMEWORK FOR APPLICATION
SOFTWARE AND MIDDLEWARE

To facilitate the distribution and combination of application
tasks on multiple nodes, the composite component framework,
which derives from CBSE, is developed for the OBC-NG
middleware and the application layer.

A. Metamodel for the OBC-NG Middleware

To form the composite component framework for application
software and the OBC-NG middleware, a metamodel is
presented to describe and normalize the elements of the
framework that includes component models and component
interfaces, the structural relationship among elements, and the
component models’ hierarchy of the composite component.

1) Component Model: Components can be treated as a
service provider for calculations or operations. In OBC-NG, the
core functionality of a component is realized by a task. The data
types used by a component’s task, input task messages, and
output task messages should contain the message destination’s
node logic address together with the port number and
transmission type that is limited to unreliable data, reliable data,
pull request, and pull response for application tasks. A basic
component consists of a task (either an application task or a
management task), input channel, and output channel.

2) Component Interface: The communication among
components is implemented via the component interface.
Component interfaces can be divided into two categories, i.e.,
required interfaces and optional interfaces. Only when all
services connected to required interfaces are available or
collected, the component itself can then fulfill its own service.

The input channel is the component interface that requires
messages as inputs or is triggered by events for task execution.
Each input comprises a task reader, a typed task message and a
task input from the Tasking framework. The task reader is
triggered by the event handler of the network layer when the
corresponding port receives data.

The output channel is the component interface, which
provides messages and events as outputs for other component’s
tasks. Each output comprises a typed task message and a task
writer from the Tasking framework. When the task writer is
notified by the output task message, it will send messages out
through the interfaces offered by the network layer.

Due to the consideration that components can run on
different PNs and the same component can run on different PNs
under different configurations, it is necessary to unify the
component interfaces.

3) Composite Component Framework: As for a composite
component, several basic components can be composed into a
composite component if necessary (see Fig. 4).

Fig. 4. Composite component

A message is delivered to its destination according to the
port number and the node logic address (see Fig. 5 for an
example). It is a point-to-point message passing on both node
level and component level. When a message reaches its

destination node, only the component with the corresponding
port number will be triggered for execution, i.e. the message will
enter the component through the input channel.

Fig. 5. Message transmission in the network

B. Modular Distribution of Components
Both application tasks and management tasks are realized as

components. Thus, the configuration settings are used to specify
which task should run on which node for each configuration ID.
Tasks are stored locally on each Processing Node so that only
the new configuration ID is needed to broadcast to each node
during reconfiguration. Fig. 6 shows an example of the
component distribution on different PNs with different
configuration IDs. When the failure occurs on PN 2, components
running initially on PN 2 need to deploy on other properly
working nodes. The middleware support to the modular
distribution of applications is given below and the component
reusability is considered for further development.

(a) Component distribution of the initial configuration

(b) Component distribution of the configuration after PN 2 fails

Fig. 6. Distribution of components

1) Middleware Support: In order to increase the reliability
of distributed nodes and to make the system fault-tolerant, the
middleware offers several services to support components
running on a PN (see Fig. 7). These support services are
described as management layer in Section III.

Fig. 7. Middleware support on a PN

2) Reusability Considerations: In order to produce reusable
software, the API design and the utilization of the CBSE
concept are beneficial not only for component reuse but also for
the model-driven application software development with code
generation techniques. Model-based code generation is
becoming increasingly popular and important in the space
onboard software development area. Meanwhile, the methods
and elements in components need to enhance generality. The
models adopting the CBSE are easier to be integrated and
configured for different space missions.

CBSE covers not only the software architecture, modular
software design, configuration, and deployment. It also
considers software verification [35]. From an efficiency point of
view, tests and verifications of components can be decoupled
and reused with little or even without modifications.

C. Model-Based Development, Test and Verification
Model-based approaches, which use diagrams or DSLs for

modeling and model-based systems engineering, are also
beneficial for the composite component development for the
middleware and application programs. Model-based approaches
besides CBSE can largely reduce human faults and therefore
improve the safety of onboard application software.

With the help of CBSE, onboard task and mission planning
can generate automated plans and schedules, then schedule and
execute these plans on component level.

When developing and reusing components for different
missions, not only the component itself should be well tested but
also the component for a mission should be tested in the
corresponding environment [36]. In other words, components
should offer implementation and interfaces for test and
verification for a specific mission. Recently, the model-driven
architecture was applied for component testing [37].

As Marek Prochazka et al. [27] mention, when a system is
divided into several composite components and basic
components properly, the complexity of verification can be
largely reduced. It is the application programmer’s responsibility
to well divide their applications into components.

V. MIDDLEWARE IMPLEMENTATION
After establishing the OBC-NG middleware architecture and

the composite component framework for application software
and the middleware, application programmers should utilize the

API defined in OBC-NG middleware to build their application
on top of the middleware layer. The concept and methods of
using OBC-NG middleware for applications are explained in the
following subsections. In the future, a graphical modeling tool
with code generator will be provided to set up the system and
applications.

A. Application Programming Interface Design
In order to facilitate and match the model-driven

development, an application task should define the following
interfaces as shown in Fig. 8. First the internal states are set up
when the Tasking framework is initialized. Tasks are activated
on nodes. The OBC-NG middleware offers interfaces to send
and receive messages respectively. When the activated task is
triggered by events or messages, it starts the execution to
perform its specific task defined by the user and calculate the
outputs resulting from inputs and parameters of the current
configuration. The states and the control values are updated and
outputs are sent out to their destinations. After the execution, a
snapshot is taken and sent to the Storage node for the
checkpointing service. The component enters idle state again.

snapshot

initialize

idle

update

output

execute

checkpointing

configure

triggeredByEventOrMsg

Fig. 8. State diagram of the component

Inputs should specify the port number on which the message
arrives. Both inputs and outputs contain the data which are
defined as input and output data for each computation step
respectively. The states will be used as snapshot content for the
checkpointing service and reconfiguration. The control value is
set by users to check the plausibility of some application tasks’
internal states and output values. Different parameters are
specified since different mission phases or different
configurations may require different parameters for the task
calculation.

B. Middleware Configuration File
The middleware configuration file defines the placement of a

task on the distributed system. For each configuration ID, it
defines the placement of application tasks and management
tasks, node health state, application task ID, storage location,

and port number as well as the decision graph for this mission
phase. Different configuration files can be defined for different
mission phases. The configuration ID of new mission phase will
be broadcasted to all nodes in the network with enough lead time
for the preparation of the new mission phase. The OBC-NG
middleware requires this information for management and
application tasks deployment, activation, and deactivation.
During the reconfiguration, subscriber lists of the IN need to be
updated according to the information in the configuration file. In
this way, during either initial configuration or reconfiguration,
only the configuration ID needs to be broadcasted to each node.

VI. EVALUATION AND PERFORMANCE ANALYSIS
In this part, the OBC-NG middleware, designed and

implemented with the component-based approach, is evaluated.
The focus of the evaluation is the reconfiguration efficiency and
the implementation overhead. A usage scenario is given to
demonstrate the practicability of the OBC-NG middleware
concept.

Both non-real-time reconfiguration and real-time
reconfiguration are based on the CBSE support.

A. Non-Real-Time Reconfiguration
Two different situations are tested, i.e. non-real-time new

phase reconfiguration and non-real-time node failure
reconfiguration.

For non-real-time new phase and node failure
reconfigurations, the validation of the framework was carried
out on a prototype with three Processing Nodes (Xilinx Zynq Z-
7020) and one Storage node (Xilinx Zynq Z-7010). All PNs run
PetaLinux (Kernel version: 3.17). A Master, a higher-priority
Observer, a lower-priority Observer and two application tasks
are distributed on these three PNs. All PNs and the Storage are
linked via a router. Both non-real-time new phase and node
failure reconfigurations are repeated for 200 times and 150 times
respectively. The reconfiguration costs are evaluated for
heartbeat periods of 100ms, 500ms, 1000ms, 2000ms, 3000ms
and 4000ms. Especially for the node failure reconfiguration,
different seeds are used to generate random failure on different
PNs. For non-real-time reconfiguration, the requirement for time
bound of the reconfiguration costs is set as 5s.

The results in Fig. 9 show that the new phase reconfiguration
time is not affected by the heartbeat period. The new phase
reconfiguration costs for different heartbeat periods are between
611ms and 935ms with the average cost of 807ms. The standard
deviation of 57ms means that the measured reconfiguration costs
are stable.

Fig. 9. New phase reconfiguration costs

The results in Fig. 10 show that the reconfiguration time
increases as the heartbeat period increases. But all
reconfiguration times satisfy the 5s time bound of the
requirement.

Fig. 10. Node failure reconfiguration costs

B. Real-Time Task Reconfiguration
For real-time task reconfiguration, the costs of changing the

subscription list of sampling data for real-time tasks are
measured in the following situation: Sampling task A and task B
publish data at the frequency of 20ms. Task C subscribes data
from task A. At some point, task A fails so that the task C
subscribes data from task B instead. Task A and task B run on
two PNs of PetaLinux respectively and task C runs on the
RODOS real-time OS. For the real-time tasks, the switch of the
subscription list after task A fails should be within 100ms. And
the average switch time for 150 runs is 66ms (see Fig. 11).

Fig. 11. Real-time task switch costs

C. Framework Evaluation
Overhead of the framework implementation comes from the

following aspects. There is data encapsulation overhead, which
contains necessary information for data delivery to ports on
distributed nodes such as the message type and destination
address including the node logic address and the port number.
The overhead of data encapsulation for unreliable data
transmission, reliable data transmission, data request, data
response, reconfiguration request, acknowledge, heartbeat and
error notification is 17 Byte. The overhead of data encapsulation
for large message transfer (>54 KByte and <1 MByte) and large
file transfer (>1 MByte) are 24 Byte per 54 KByte and 420 Byte
per 1 MByte respectively.

In terms of memory footprint, the overhead of the composite
component framework, the network layer, the Tasking
framework, and the management layer can also affect the size of
the memory footprint. Legacy codes such as the codes of
Attitude and Orbit Control System (AOCS) need to be converted
to fit into the composite component model. In order to measure
the trend of memory consumption, we increased the number of

instantiated components. For all instantiated components, all
tasks had empty execution function. The results of hard-disk
memory usage are presented in Fig. 12.

Fig. 12. Memory footprint of binaries

We also measured the configuration cost when the number of
components scales to investigate the influence of the amount of
components. The reconfiguration time is measured from the time
the initial configuration command is triggered to the time all
components finish the initial configuration. As can be seen from
Fig. 13, the configuration time is slightly increasing with
increasing number of components. The current version of OBC-
NG middleware only supports up to 256 components on a single
node.

Fig. 13. Configuration costs for different numbers of components

As all tasks are implemented as components, the
communication and data exchange is based on message
transmission. The average transmission costs for different
numbers of components are all within 6ms. This means that the
overhead of message transmission for the component-based
middleware is very small.

D. Earth Observation
The OBC-NG middleware is suitable for many space

application scenarios that require high onboard computational
and processing performance.

For an earth observation application, it is not realistic to
downlink all raw images and data to the ground station. It is
better to first calculate the coverage of clouds on the image. If
there are too many clouds on the image, i.e., it contributes little
scientific value for earth observation, it will not be transferred to
the ground. This processing of high-resolution images also

requires high computational performance of the onboard
computer.

The following earth observation demonstration shows a
simplified version of the standard ACCA-cloud detection
algorithm [38], which is implemented using the OBC-NG
middleware framework. Four PNs are used for this
demonstration with additional monitoring and failure
reconfiguration functionalities. The sensor task is used to act as
taking images by the cameras and sending the images to ACCA
tasks. To exploit the parallel processing architecture of the OBC-
NG system, two other nodes are used for the image processing,
each running a complete identical instance of the cloud detection
algorithm (AccaTask0, AccaTask1). The images are processed
in an alternate order. Finally, the processed images are
transferred to a desktop to display the results on the monitor (see
Fig. 14).

Fig. 14. Earth observation applications

If one of the processing nodes fails, the failure is detected by
the Middleware and the system is reconfigured using the healthy
node for processing. The failure mitigation is completely
managed by the Middleware, without involving the applications
(AccaTasks).

The four channel 8-Bit 2048*2048 pixels Landsat ETM+ 7
images used for the demonstration have a size of around 16
MByte each. Due to the dependency of the OpenCV and Boost
libraries, the PetaLinux is chosen as the operating system on the
OBC-NG board. With the support of the OBC-NG middleware
API, the layout and the relationship of the earth observation
application are straightforward and easy for the reconfiguration.
Currently, the space application programmers need to care about
settings for component interfaces such as input and output
channels. An improved method to eliminate this is using tools
for modeling and code generation of component interfaces.

The binary on each node of the OBC-NG board has a size of
778 KByte excluding the application. When taking the
application into account, the binary size increases to 2.8 MByte.
Compared to the applications, the overhead of memory footprint
for the middleware is rather small (accounting for 28%).

The performance and redundancy are tested in this scenario
demonstration. The time for the transmission of one test image
(16 MByte), processing this image, and displaying the cloud
mask on the screen is 5.136s on average. After the node with
AccaTask1 failed, this image period increased to 9.608s on
average (see Fig. 15). With the component-based approach, we
can extend and upgrade the earth observation system easily by
integrated new components.

Fig. 15. Image periods before and after one node fails

VII. CONCLUSIONS
In this paper, we proposed a middleware architecture to

support reusable and model-driven application software
development in distributed onboard computers and to offer high
reliability and high performance. This paper gives an overview
of the middleware architecture which consists of a network
layer, the Tasking framework, and the management layer. The
management layer of the middleware offers application program
management, monitoring, checkpointing, and reconfiguration
services.

 The Component-Based Software Engineering (CBSE)’s
concept and methodology were adopted for the development of
composite component framework for application software and
the management layer of the middleware. In order to utilize
CBSE, the component interface and the component model were
defined and implemented. To use the composite component
framework, the middleware support was specified. Applications
were distributed modularly in the network according to the
configuration. The reusability, test and verification constraints,
and overhead of composite components were discussed in this
paper as well. Finally, the earth observation application was
carried out to verify our concept and mechanism of the
middleware. During the implementation of the OBC-NG
middleware, CBSE simplified the structure of the management
layer. Modular services including management, monitoring,
checkpointing, and reconfiguration in the management layer
were easy to realize, adjust, and reuse. The models which
adopted the CBSE were easier to be integrated and configured.
The OBC-NG middleware showed the advantages of utilizing
CBSE for the reconfigurable onboard software for spacecraft.

In the future, we will refine the monitoring mechanism,
replace UDP with SpaceWire and enhance processing
performance. A GUI for application design is also planned to be
implemented. A tool for model-based systems engineering
which is called Virtual Satellite [39] will be considered for the
component-based applications development for spacecraft.

ACKNOWLEDGMENTS
We would like to thank all the members of the OBC-NG

project team at DLR in which the development of the
middleware is carried out.

REFERENCES

[1] D. Kim, S. Lee, J.-H. Jung, T. Kim, S. Lee and J. Park, "Reliability and
availability analysis for an on board computer in a satellite system using
standby redundancy and rejuvenation," Journal of Mechanical Science and
Technology, vol. 26, no. 7, pp. 2059-2063, 2012.

[2] "Space radiation effects," [Online]. Available:
http://www.xilinx.com/esp/aerospace-defense/space/radiation-effects.htm.

[3] D. Lüdtke, K. Westerdorff, K. Stohlmann, A. Börner, O. Maibaum, T.
Peng, B. Weps, G. Fey and A. Gerndt, "OBC-NG: towards a
reconfigurable on-board computing architecture for spacecraft," in
Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2014.

[4] S. Montenegro and F. Dannemann, "RODOS-real time kernel design for
dependability," in Proceedings of DASIA 2009 Data Systems in Aerospace,
Noordwijk, Netherlands, 2009.

[5] C. Haubelt, D. Koch, F. Reimann, T. Streichert and J. Teich, "ReCoNets—
design methodology for embedded systems consisting of small networks
of reconfigurable nodes and connections," in Dynamically Reconfigurable
Systems, M. Platzner, J. Teich and N. Wehn, Eds., Springer Netherlands,
2010, pp. 223-243.

[6] I. Verma, "W model of component based software development,"
International Journal of advanced studies in Computer Science and
Engineering, vol. 3, no. 7, pp. 37-40, 2014.

[7] I. Crnkovic, M. Chaudron and S. Larsson, "Component-based
development process and component lifecycle," in International
Conference on Software Engineering Advances, Tahiti, 2006.

[8] B. Schätz, A. Pretschner, F. Huber and J. Philipps, "Model-based
development of embedded systems," in OOIS '02: Proceedings of the
Workshops on Advances in Object-Oriented Information Systems,
Montpellier, France, 2002.

[9] J. Eickhoff, A. Falke and H.-P. Röser, "Model-based design and
verification—state of the art from Galileo constellation down to small
university satellites," Acta Astronautica, vol. 61, no. 1-6, pp. 383-390,
2007.

[10] A. George, N. Psenjen, A. Gillette, J. Joji, T. Yavuz and C. Wilson,
"Toward a suite of Middleware Services for Enhanced Spacecraft
Configuration and Capability," in Workshop on Spacecraft Flight
Software, Laurel, 2015.

[11] J. Samson, E. Grobelny, S. Driesse-Bunn, M. Clark and S. Van Portfliet,
"New Millenium Program Space Technology 8 Dependable
Multiprocessor: Technology and Technology Validation," Journal of
Spacecraft and Rockets, vol. 49, no. 6, pp. 1043-1057, 2012.

[12] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W.-K. Yoon, "RT-
middleware: distributed component middleware for RT (robot
technology)," in International Conference on Intelligent Robots and
Systems, Edmonton, Canada, 2005.

[13] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W.-K. Yoon, "Composite
component framework for RT-middleware (robot technology
middleware)," in International Conference on Advanced Intelligent
Mechatronics, Monterey, CA, 2005.

[14] T. Collett, B. MacDonald and B. Gerkey, "Player 2.0: toward a practical
robot programming framework," in Australasian Conference on Robotics
and Automation, Sydney, 2005.

[15] C. Schlegel, T. Hassler, A. Lotz and A. Steck, "Robotic software systems:
from code-driven to model-driven designs," in International Conference
on Advanced Robotics, Munich, 2009.

[16] A. Elkady and T. Sobh, "Robotics middleware: a comprehensive literature
survey and attribute-based bibliography," Journal of Robotics, vol. 2012,
p. 15, 2012.

[17] A. Gokhale, K. Balasubramanian, A. S. Krishna, J. Balasubramanian, G.
Edwards, G. Deng, E. Turkay, J. Parsons and D. C. Schmidt, "Model
driven middleware: a new paradigm for developing distributed real-time
and embedded systems," Science of Computer Programming, Special Issue
on Foundations and Applications of Model Driven Architecture (MDA),
vol. 73, no. 1, pp. 39-58, 2008.

[18] S. H. Pruett, G. J. Slutz, J. L. Paunicka and E. Portilla, "Hardware-In-The-
Loop simulation using Open Control Platform," in AIAA Modeling and
Simulation Technologies Conference and Exhibit, Austin, Texas, 2003.

[19] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J. Prasad, D. Schrage
and G. Vachtsevanos, "An open platform for reconfigurable control,"
Control Systems, IEEE, vol. 21, no. 3, pp. 49-64, 2001.

[20] R. Ratcliff, S. T. LeDoux and W. W. Herling, "A modern CORBA-based
approach to ad hoc distributed process orchestrations applied to MDO," in
Infotech@Aerospace, Arlington, Virginia, 2005.

[21] U. Mittag, E. Schwartz, C. Lois and T. Rupp, "Towards a reusable micro
control center for micro satellites," in Space OPS 2004 Conference,
Montreal, 2004.

[22] A. Donati, G. Montroni, J. Eggleston and F. Zimmermann, "An ESA
mission control system external interface to enable fast deployment of
advanced operational functions," in SpaceOps 2002 Conference, Houston,
2002.

[23] C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim and C.-H. Lee,
"OPRoS: a new component-based robot software platform," ETRI Journal,
vol. 32, no. 5, pp. 646-656, Oct 2010.

[24] A. Pasetti, W. Pree, J.-L. Terraillon and T. v. Overbeek, "An object-
oriented component-based framework for on-board software," in
Proceedings of the Data Systems In Aerospace Conference, Nice, 2001.

[25] M. Panunzio and T. Vardanega, "A component model for on-board
software applications," in 2010 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), Lille, France,
2010.

[26] M. Panunzio and T. Vardanega, "A component-based process with
separation of concerns for the development of embedded real-time
software systems," Journal of Systems and Software, vol. 96, pp. 105-121,
2014.

[27] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka and J. Adamek, "A
component-oriented framework for spacecraft on-board software," in
Proceedings of DASIA 2008, DAta Systems In Aerospace, Palma de
Mallorca, Spain, 2008.

[28] J. López, P. Royo, C. Barrado and E. Pastor, "Applying Marea middleware
to UAS communications," in Proceedings of the AIAA
Infotech@Aerospace Conference and AIAA Unmanned Unlimited
Conference 2009, Seattle, 2009.

[29] A.-I. Rodríguez, F. Ferrero, E. Alaña, A. Jung, M. Panunzio, T. Vardanega
and A. Grenham, "The component layer of COrDeT on-board software
architecture," in Proceedings of DASIA 2012, Dubrovnik, 2012.

[30] B. Weps, "Entwicklung einer Schnittstelle für verteiles I/O in einer neuen
on-board Computerarchitektur (in German)," Master Thesis, University of
Applied Science Bingen, Bingen, Germany, 2013.

[31] S. Parkes and P. Armbruster, "SpaceWire: a spacecraft onboard network
for real-time communications," in 14th IEEE-NPSS Real Time Conference,
Stockholm, 2005.

[32] O. Maibaum, D. Lüdtke and A. Gerndt, "Tasking framework:
parallelization of computations in onboard control systems," in
Betriebssysteme für zukünftige Rechnerarchitekturen. Autumn Meeting:
Special Interest Group Operating Systems, Gesellschaft für Informatik,
Berlin, Nov. 2013.

[33] B. S. Ainapure and S. S. Jadhav, Object oriented modeling and design,
Pune, India: Technical Publications Pune, 2008.

[34] B. Councill and G. T. Heineman, "Definition of a software component and
its elements," in Component-Based Software Engineering: Putting the
Pieces Together, Addison-Wesley, 2001, p. 5–19.

[35] A. Kaur and K. S. Mann, "Component Based Software Engineering,"
International Journal of Computer Applications, vol. 2, no. 1, pp. 105-108,
2010.

[36] I. Crnkovic and M. Larsson, "Component-Based Software Engineering -
new paradigm of software development," in Proceedings of the
Conference MIPRO 2001, Opatija, 2001.

[37] A. Javed, "A model-driven framework for context-dependent component
testing," Ph.D. Thesis, School of Information Technology and Electrical
Engineering, University of Queensland, Queensland, 2014.

[38] R. R. Irish, J. L. Barker, S. N. Goward and T. Arvidson, "Characterization
of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA)
algorithm," Photogrammetric Engineering & Remote Sensing, vol. 72, no.
10, pp. 1179-1188, 2006.

[39] V. Schaus, D. Lüdtke and A. Gerndt, "Advanced Spacecraft Systems
Design using Model-based Techniques," in 2nd Federated Satellite
Systems Workshop, Moscow, Russian Federation, 2014.

	I. Introduction
	II. Related Work
	III. Overview of the Middleware Architecture
	A.
	A.
	A.
	A. Network Layer
	B. Tasking Framework
	C. Management Layer

	IV. Composite Component Framework for Application Software and Middleware
	A. Metamodel for the OBC-NG Middleware
	1)
	1)
	1)
	1)
	1) Component Model: Components can be treated as a service provider for calculations or operations. In OBC-NG, the core functionality of a component is realized by a task. The data types used by a component’s task, input task messages, and output task...
	1) A basic component consists of a task (either an application task or a management task), input channel, and output channel.
	2) Component Interface: The communication among components is implemented via the component interface. Component interfaces can be divided into two categories, i.e., required interfaces and optional interfaces. Only when all services connected to requ...
	1)
	1)
	1)
	1) Composite Component Framework: As for a composite component, several basic components can be composed into a composite component if necessary (see Fig. 4).
	3)

	B. Modular Distribution of Components
	1) Middleware Support: In order to increase the reliability of distributed nodes and to make the system fault-tolerant, the middleware offers several services to support components running on a PN (see Fig. 7). These support services are described as ...
	2) Reusability Considerations: In order to produce reusable software, the API design and the utilization of the CBSE concept are beneficial not only for component reuse but also for the model-driven application software development with code generatio...

	C. Model-Based Development, Test and Verification

	I.
	I.
	V. Middleware Implementation
	A. Application Programming Interface Design
	B. Middleware Configuration File

	VI. Evaluation and Performance Analysis
	A. Non-Real-Time Reconfiguration
	A.
	A.
	A.
	A.
	B. Real-Time Task Reconfiguration
	C. Framework Evaluation
	A.
	A.
	D. Earth Observation

	I.
	VII. Conclusions
	Acknowledgments
	References

