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Abstract—With the development of neural networks based
machine learning and their usage in mission critical applications,
voices are rising against the black box aspect of neural networks
as it becomes crucial to understand their limits and capabilities.
With the rise of neuromorphic hardware, it is even more critical
to understand how a neural network, as a distributed system,
tolerates the failures of its computing nodes, neurons, and its
communication channels, synapses. Experimentally assessing the
robustness of neural networks involves the quixotic venture of
testing all the possible failures, on all the possible inputs, which
ultimately hits a combinatorial explosion for the first, and the
impossibility to gather all the possible inputs for the second.

In this paper, we prove an upper bound on the expected
error of the output when a subset of neurons crashes. This
bound involves dependencies on the network parameters that
can be seen as being too pessimistic in the average case. It
involves a polynomial dependency on the Lipschitz coefficient of
the neurons’ activation function, and an exponential dependency
on the depth of the layer where a failure occurs. We back up
our theoretical results with experiments illustrating the extent
to which our prediction matches the dependencies between the
network parameters and robustness. Our results show that the
robustness of neural networks to the average crash can be
estimated without the need to neither test the network on all
failure configurations, nor access the training set used to train the
network, both of which are practically impossible requirements.

I. INTRODUCTION

Beating the world champion in the game Go [1], recogniz-
ing images with supra-human precision [2] or, more recently,
diagnosing skin cancer with dermatologist level precision [3],
all of the impressive progress made in machine learning and
artificial intelligence in the past decade is due to the use of
neural networks [4], [1], [5]. Initially inspired by the working
principles of the natural nervous system [6], a neural network
is a mathematical object with outstanding, yet not very well
understood computational capabilities [7].

Today, most of the implementations view a neural network
as a software, a mathematical abstraction that is only simulated
on top of Turing machines [8]. This induces a computational
bottleneck [9], due to the transition from a discrete digital
computation to a continuous, analogue computation, each
time the software (simulating a neural network) queries the
hardware and gets the result back.

One of the paths to scale up machine learning is to use a
new kind of hardware that does not suffer from the aforemen-
tioned bottleneck. Recent progress in neuromorphic hardware
brings such a solution, going beyond the Von Neumann
paradigm (relying on logical circuits) and using electronic
chips that are themselves neural networks [10], [11], [9], [12].
A year ago, teams from IBM reported [13], [14] a successful
neuromorphic implementation of neural networks that requires

a running power as low as 25 mW to 275 mW to perform
image recognition tasks that would require orders of magnitude
more energy on a classical computer.

Neural networks are now considered for critical and safety-
sensitive applications such as flight control [15], radars [16]
or self-driving cars [17]. If one cannot yet elucidate all of
the working principles of neural networks, one should at least
guarantee their robustness to failures in order to use them
safely.

To achieve robustness, one can stick to the view of the
entire neural network as a single piece of software [18],
replicate this piece on several machines, and use classical state
machine replication schemes to enforce the consistency of the
replicas [19]. In this context, no neuron is supposed to fail
independently: the unit of failure is the entire machine hosting
the network. This coarse-grained approach is the one taken by
recent works on the robustness of machine learning [20], [21],
[22]. However, forcing an entire network to run on a single
machine clearly hampers scalability as stated above. One could
also consider strict subsets of the neural network as different
pieces of software, each running on one Turing machine [23].
In this case, classical replication schemes can still be applied,
but one has to face usual distributed computing problems, e.g.,
to handle the synchronicity of messages exchanged between
subsets of the network [24], and even-though subsets of the
network are distributed over machines, the computation still
goes through the Von Neumann bottleneck described above:
we are still using Boolean circuits to simulate the analogue
and continuous computation of the neural network.

The scalability promise of neuromorphic hardware, calls
for going one step further and considering each neuron as a
single physical entity that can fail independently, i.e., to go
for genuinely distributed neural networks [10]. In this setting,
the unit of failure is one single neuron or synapse, and not a
whole machine.

In fact, the enthusiasm around the efficiency of neuromor-
phic hardware is not a futuristic hype. This type of hardware
is already used in sensitive applications for which robustness
to the failures of single neurons is crucial. As of January 2017,
U.S Air Force acknowledged the use of an IBM Brain-inspired
chip that uses 20 to 30 times less power than a classical
computer for military applications. Unsurprisingly, this chip
is made of neuromorphic circuits [25].

Now say, for the sake of example, that we would like to
send a neuromorphic chip made of 150 neurons (a rather small
amount) in a satellite, and we want it to run for (at least) 10
years. Let us suppose that, due to solar radiations, we expect
a maximum loss of 50 neurons over those 10 years. Evidently,
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losing1 neurons will change the chip output for every input
by some ε(input), and if ε(input) gets too large for some
inputs, the chip might become useless/dangerous according to
its purpose. So, prior to asserting the chip usefulness/safety,
one must obtain ε(input) for every possible input, or at
least bound them with max

inputs
ε(input). In the absence of a

theoretical guarantee, we will have to test our chip for every
possible combination of 50 neurons lost among 150 and every
possible input. In our example, this represents

(
150
50

)
≈ 2×1040

different neural networks, that must then be tested for every
possible input. And if this safety assessment is performed for
the aforementioned IBM chip, containing a million neurons,
the test will require more executions than there are atoms in
the observable universe (1080). This motivates the need for
a theoretically–grounded robustness guarantee that does not
require unrealistic testing.

Traditionally, neural networks were considered robust in
the sense that the failure of neurons gracefully degrades their
accuracy [8] and that this degradation can be compensated by
additional learning phases [26]. To the best of our knowledge,
the work on failures at the level of individual neurons has
been mostly experimental [27], [28], [29], [30], [31], or, when
it included a theoretical analysis, it focused on bounding the
effect of the lost of a single neuron [32] or the cost in terms
of additional learning [26].

It is actually well known that the failure of neurons can
be tolerated through additional learning phases [8]. Never-
theless, stopping a neural network and launching additional
learning phases is simply unimaginable for critical real-time
applications. One can also consider specific learning schemes
a priori that make it possible to tolerate failures a posteriori,
e.g., shutting down parts of the network while learning, in
order to cope with failures at run-time (dropout) [27], [33]. Yet,
no theoretical result exists to predict the effect of dropout on
robustness. The question we address can be actually stated as
follows: if (a) we do not make any assumption on the learning
scheme and (b) we preclude the possibility of adding learning
phases after computations have started, what is the maximum
number of faulty neurons that can be tolerated by a neural
network?

As we pointed out in [34], the answer to this question
is simply none. Indeed, why would a neural network tolerate
failures if it was not specifically devised with that purpose in
mind? More specifically, if the failure of a number of neurons
does not impact the overall result, then these neurons could
have been be eliminated from the design of that network in
the first place. In fact, the reason why the question is nontrivial
is over-provisioning [35]. Neural networks are rarely built with
the minimal number of neurons to perform a computation.
To estimate exactly this minimal number, one needs to know
the target function the network should approximate, which by
definition is unknown2. In fact, it has been experimentally ob-
served that over-provisioning [8], [27] leads to robustness. In a
recent work [34], [36], we provided a first theoretical guarantee
of neural networks robustness, given an over-provision budget.
However, we focused on worst case situations that can be too

1What losing a neuron means is specified in section II-B, definition 2.
2In machine learning, we only know a finite number of the values of the

target function: the training set

pessimistic compared to the average case of practical ones.

In this paper, we prove that a practical estimator of neural
networks robustness can be computed directly from the net-
work parameters, without the costly comparison on all possible
inputs and all crash situations, and that the average case suffers
from similar dependencies as the worse case. We validate
experimentally our equations and show how the predicted
dependencies on each parameter are reflected in practice.
We do that both on randomly generated neural network of
small size (for which testing all the possible crash situations
is possible), and on realistic neural networks that recognize
handwritten digits (on which we tested up to a certain value
of number of failures).

We establish this relation and provide experimental evi-
dence of the role played by each of the key parameters of
a neural network. To do so, we consider the classical and
general model of a multilayer perceptron [8], which is the
most general model to mathematically abstract the topologies
used in modern deep learning such as the popular convolutional
scheme [23], [33].

We experimentally explore this predictive method on the
average case for realistic tasks such as image recognition. To
do so, we introduce two quantities: Ω that can be computed
using all possible inputs and all possible crash situations
(expensive computation), and Erf , that can only be computed
by some constants of the network (cheap computation). We
experimentally show how Ω varies when we vary key constants
of the network, then we provide experimental evidence that
Erf is a safe estimator of Ω.

Our experiments show that the value of the Lipschitz coeffi-
cient of the activation function, together with the distribution of
large synaptic weights and the depth of the network are the key
parameters to control how errors propagate in a neural network.
In short, robust neural networks are those that (1) have low
and evenly distributed synaptic weights, (2) are shallow if
the Lipschitz coefficient is smaller than 1, and deep if this
coefficient is larger than 1, (3) when depth is a requirement,
can use an activation function with a low Lipschitz coefficient.
If choosing such an activation function is not possible (in
practice, not all activation functions enable networks to learn
with the same efficiency [2]), alternatives are functions for
which the Lipschitz behavior is restricted to a narrow area.

Finally and most importantly, our work shows how an eas-
ily computable quantity can be used to estimate the robustness
of a network without the costly testing that requires as much
computations as there are possible inputs to the networks and
combinatorial possibilities of sub-networks when we consider
all possible crashes. Interested readers can find both the source
code and the raw data of our experiments in the following
repository [37].

The rest of the paper is organized as follows. Section 2
gives a general description of a neural network of which com-
ponents can fail and the criteria we follow to assess robustness.
Section 3 provides the theoretical framework for our robustness
estimator and proves the dependencies between robustness and
networks parameters in the average case. Section 4 describes
our main experimental results. Section 5 explores the main
trade-offs between robustness and ease of learning. Section 6
summarizes the paper and discusses related work.



II. MODEL OF COMPUTATION

A. Main Components

We use the same model as in [34]. We view a neural
network as a distributed system comprised of computing nodes,
neurons, and communicating channels, synapses:

Processes: Neurons are the computing nodes: we assume
them to be unreliable in the sense that they can stop computing,
a situation we will call a crash. The failure of any node
is independent from the failure of any other node. Neurons
communicate via message-passing [24] through directed com-
munication channels called synapses. During the operating
phase, the communication is always from the side of the input
to that of the output3. In the experiments, we will say that a
neuron was killed when we purposely switch it off, the network
will behave as if the killed neuron has crashed.

Channels: Synapses have a similar reliability model to
the neurons with two situations: either they are correct, or
they crash and do not transmit the messages. The failure of a
synapse is also independent from that of other synapses and
neurons. Based on [34], synapses failures can be abstracted as
mathematically equivalent to some related neurons’ failures,
our experimental work focuses therefore on neurons failures.

A notable property of synapses is that they are weighted,
each weight represents the importance that the neuron on the
input side of the synapse represents for the neuron on the
output side. To build a network in a supervised fashion, one
uses a training set of inputs for which correct outputs are
provided. Typically, the training set of a network is comprised
of thousands of labelled files. Although the theory behind
learning procedures is out of the scope of this paper, one should
keep in mind that these procedures consists of looping through
the training set for enough time until the convergence of the
values of the weights to some ideal point that corresponds to
the computation model described in what follows.

Network: A neural network is a distributed system com-
prised of neurons, connected by synapses, in this paper, we
consider the model of feed-forward neural network. A simple
yet general model that encompasses today’s most popular mod-
els such as the convolutional network used in deep learning [4].
Feed-forward network are organized in layers, in this paper we
use the conventional notation [8] and refer to the number of
layer by L, to the number of neurons in the lth layer by Nl,
and to the weight of the synapse linking the jth neuron in the
(l−1)th layer to the ith neuron in the lth layer by w(l)

ij . Figure
1 provides a simple illustration of this notation.

Computation: Let ε be any positive real number (an
accuracy level), and F any continuous function mapping [0, 1]d

to [0, 1]. A neural network implements a function Fneu as
given by Equation 1 and Figure 1, such that Fneu approximates
the target function F with an accuracy ε in a series of local
computations consisting of linear combinations of the outputs
from the layer on a neuron’s input side (Figure) -with the
synaptic weights w(l)

ji as coefficients in that linear combination-
to which neurons apply the activation function ϕ after adding

3During the learning phase, there are also communications in the other
direction but this paper does not tackle learning

a bias b(l)j , a monotone and K-Lipschitz-continuous non lin-
earity. We recall that a K-Lipschitz-continuous function ϕ is
a function such that4 |ϕ(y) − ϕ(x)| ≤ K.|y − x| for every
inputs x and y. In this paper, we consider two classes of such
activation functions: (a) the bounded sigmoid function, and (b)
the unbounded linear rectifier (Figure 2).

Fneu(X) =

NL∑

i=1

w
(L+1)
i y

(L)
i (1)

with y
(l)
j =

{
xj for l = 0

ϕ(s
(l)
j ) for 1 ≤ l ≤ L (2)

and s
(l)
j =

Nl−1∑

i=1

(w
(l)
ji y

(l−1)
i + b

(l)
j ) (3)

Fig. 1. A (feed forward) neural network (solid nodes and edges), with d = 3,
L = 3, N2 = 3 and N1 = N3 = 4. Input and output nodes (dotted) are
not considered as parts of the network, but as its clients. For readability, only
some synaptic weights are represented (bold blue). X = (x1, . . . , xd).

The effectiveness of feed-forward neural networks relies
on a fundamental theorem [38] that guarantees their universal
approximating power with as few5 as one single layer.

Definition 1. (Approximation) We denote by A =
C([0, 1]d, [0, 1]) the space of continuous functions mapping
[0, 1]d to [0, 1], and by ‖.‖ an appropriate norm on A. Fneu as
defined by Equation 1 is said to be a neural ε-approximation
of a target function F ∈ A for the norm ‖.‖ if we have:
‖F − Fneu‖ ≤ ε.

4For differential functions, K is simply the maximal value of the first
derivative (steepest slope).

5Note that universality for L=1 is harder to obtain than for L > 1: fewer
layers to approximate the target function.
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Fig. 2. (Left) The profile of a sigmoid function, centered around 0 and tuned
with several values of K. The larger is K, the steeper is the slope and the more
discriminating is the activation function at each neuron. The Lipschitz behavior
in the text means the attitude of sigmoid in the area given by the tangent on
0, as we see, the smaller is K the larger is this area. (Right) The profile of a
linear rectifier (ReLu) with similar variation of the Lipschitz coefficient. The
Lipschitz behavior for ReLu concerns all positive values at the input.



Naturally, for the worst case analysis, one might consider
‖.‖ as the infinite norm, while for an average case analysis the
L1 norm will be more appropriate.

Universality. We recall the universality theorem for a
single layer network6: Let d be any integer and ϕ : R →
[0, 1] a strictly-increasing continuous function, such that
limx→−∞ ϕ(x) = 0 and limx→+∞ ϕ(x) = 1. Given any
function F ∈ A and ε > 0, there exist an integer N(ε), and
a set of coefficients (w

(1)
ji )1≤i≤d1≤j≤N(ε) and (w

(2)
i )1≤i≤N(ε) such

that Fneu defined in Equation 1 is a neural ε-approximation
of F .

B. Evaluating Robustness

Given an over-provisioned network implementing Fneu and
achieving ε′-acccuracy (ε′ ≤ ε), we would like to evaluate how
many neurons can crash without harming the ε-approximation
of F by Fneu. We use the same definitions as in [34].

Definition 2. (Failures) We say that a neuron i in layer l
crashes when neuron i stops sending values, in which case
y
(l)
i is considered7 to be equal to 0 by other neurons8.

Definition 3. (Expected Robustness) We say that a neural ε-
approximation Fneu of a target function F realized by N
neurons tolerates Nfail crashed neurons on average, if we
have E|Ifail|=Nfail

‖F − Ffail‖ ≤ ε, where the expectation
runs on all subsets of neurons Ifail ⊂ {1, · · · , N} of size
Nfail, and Ffail is a modified version Fneu for the neurons
in Ifail according to Definition 2.

In the case where the activation function is bounded, worst-
case theoretical analysis reveals [36]9 that the robustness of the
network is completely encompassed in the weight distribution
and the network topology: a network of L layers with a K-
Lipschitz activation function tolerates the crash of fl neurons
per layer l if the quantity Erf defined in Equation 4 is smaller
than the error margin ε− ε′ enabled by the over-provision.

Erf =
L∑

l=1

(
ClflK

L−lw(L+1)
m

L∏

l′=l+1

(Nl′ − fl′)w(l′)
m

)
(4)

In Equation 4, w(l)
m = max(|w(l)

ji |, (j, i) ∈ [1, Nl][1, Nl−1])
is the maximum norm of the weights of the incoming synapses
to layer l, K is the Lipschitz coefficient of the activation
function, Nl the total number of neurons in layer l, fl the total
number of crashed neurons in layer l and Cl is the maximum
value on the neurons output in layer l (1 for sigmoid, and
network-specific for ReLu).

Taking the average weight in Equation 4, we generalize
the formula on Erf to (1) the average case which we ex-
perimentally show to be less pessimistic than the worst case
(especially for the saturating activation function sigmoid), and

6The interested reader can refer to the proof of [38].
7The strictly-increasing activation function ϕ does not allow a correct

neuron to output value 0.
8Remember that we assume synchronous transmission.
9This is a companion theoretical technical report that proves Equation 4 in

the worst case situation.

to (2) the case where the activation function is not bounded,
which is more relevant in today’s applications where the
linear rectifier (ReLu) is becoming more popular [2] than the
bounded sigmoid function. Then we test the predictive power
of our formula by computing the averages and worst cases on
all the available inputs for a given network.

We proceed by generating random networks, assigning
values to synaptic weights that follow a normal distribution
around 1 with a standard deviation of 5. It is natural to consider
each of those networks as an approximation of itself with
ε′ = 0, then we take the error made by the network - after
some neurons are purposely crashed - as an estimator of ε.

To provide more realistic orders of magnitude, we train
feed forward neural networks with different activation func-
tions (sigmoid, and the linear rectifier) and with different
values of the Lipschitz coefficient on the standardized data-
set MNIST of handwritten digits [39], and test them against
neurons removal.

In the following, we introduce a function Ω such that for
a given input X, Ω(X) = ‖Fneu(X)− Falt(X)‖ where Falt is
an altered version of the network due to failures. We say that
a network tolerates f failures while keeping the error smaller
than ε on input X, if for every altered version of the network
missing f neurons we have Ω(X) < ε.

For a given number of failures f , Ωav (for "average")
Ωmav(for "max average") and Ωmax are respectively the
average of Ω on all possible combinations of f failures and
all inputs, the average on all possible inputs of the maximal Ω
given by f failures, and finally the maximum on all possible
inputs of the maximal Ω given by f failures.

Similarly, we introduce variants of Erf as defined in
Equation 4 and note them Erfmax, Erfav(for average). Note
that there is no Erfmav(for max average) since Erf is input-
independent.

One should keep in mind that computing Erf and its
variants only requires access to the network properties
(weights and topology), while computing Ω requires the same
amounts of computation needed for Erf multiplied by the
number of possible inputs the network can work on and by the
combinatorial explosion due to all the sub-networks possible
when f neurons are crashed.

While Ω gives a precise evaluation of the robustness of a
network, our goal is to show how Erf , as cheap to compute
as it could be, is still a fair estimator of Ω and thus of the
robustness of the network.

III. THEORETICAL ESTIMATOR

In this section, we extend the results of [34] to derive a
bound on the average error made by the network, when neurons
are crashed at random. In all of the following, ‖.‖ refers to the
L1 norm on real valued functions, recall that for two functions
f and g, ‖f − g‖ =

∫
x∈H |f(x) − g(x)|dx, where H is the

input space of the functions f and g.

To understand the rationale behind our robustness estimator
Erf , let us start by exploring what happens on average in a
single layered network when random sets of Nfail neurons
crashe. We later extend the bound for a multi-layer network.



Theorem 1. Let F be any function mapping [0, 1]d to [0, 1].
Let ε and ε′ be any two positive real numbers such that
0 < ε′ ≤ ε. For any neural ε′-approximation Fneu of F
(Definition 1) and any integer Nfail: If Nfail ≤ ε−ε′

C·wav
where

C is the maximum absolute value of the activation function10,
wav = mean(|w(2)

i |, i ∈ [1, N ]) is the mean absolute value of
a weight from the single layer to the output node, then Fneu
is a neural ε-approximation of F that tolerates Nfail crashed
neurons on average (Definition 3).

Proof: In all of this proof and for notational convenience,
Ev means the expectation of the random value v over all
possible random sets Ifail containing Nfail crashed neurons.

Let ε and ε′ be any two positive real numbers such that
0 < ε′ ≤ ε. Applying the universality theorem11 on F and ε′,
let Fneu be a neural ε′-approximation of F with N the number
of neurons of Fneu and wav the average absolute value of the
weights from the single layer of Fneu to the output.

Let Nfail be any integer such that Nfail ≤ ε−ε′
C·wav

. Denote
by Ffail a random variable that corresponds to the modified
values of the neural function Fneu after Nfail neurons crashed:

Ffail =
N∑

i=1,i/∈Ifail

w
(2)
i yi, where Ifail is a a set containing

Nfail crashed neurons.

By the triangle inequality and taking the expected value 12

we have:

E‖F − Ffail‖ ≤ E‖F − Fneu‖
+E‖Fneu − Ffail‖.

(5)

Since Fneu is not affected by the random crashed neurons
(only Ffail is) and since it is an ε′-approximation of F we
have:

E‖F − Fneu‖ = ‖F − Fneu‖ ≤ ε′. (6)

From the definition of Ffail, we have, for every input (X):

Fneu(X)− Ffail(X) =
N∑

i=1,i∈Ifail

w
(2)
i yi(X) .

The random nature of Ffail is now fully represented by
the values {w(2)

i , i = 1, i ∈ Ifail} for which we know the
expected value wav .

Using the Jensen inequality we obtain:

E‖Fneu − Ffail‖ ≤
N∑

i=1,i∈Ifail

E|w(2)
i | · ‖yi‖ (7)

10C = 1 for sigmoid, and equals the diameter of the input space times the
Lipschitz coefficient in the case of ReLu. We can expect finer precision on C
if we average failure situations and take maximum value on inputs but this
requires knowledge of the diameter of the input space.

11As in [34], the existence of a neural approximation for a given target
function is taken here as granted by the universality theorem.

12When dealing with the worst case in [34], we applied the triangle
inequality point-wise, here we are considering the L1 norm as announced
above, since it encompasses an averaging on all the input space, and we
take expected value E that encompasses averaging on all the different sets of
crashed neurons.

Note that if we impose on the weights to be all positive, and
when the yi’s are positive functions (the case for sigmoid and
ReLu described in the model), Inequality 7 is an equality and
the bounds on the expected values in this proofs are tight.

By definition of wav and the hypothesis on the activation
function, E|w(2)

i | = wav and yi(X) ≤ C for all X and i.
Inequality 7 becomes:

E‖Fneu − Ffail‖ ≤
N∑

i=1,i∈Ifail

C · wav = Nfail · C · wav

(8)

Using inequalities 5, 6 and 8 we obtain: E‖F − Ffail‖ ≤
Nfail · C · wav + ε′.

Since Nfail ≤ ε−ε′
C·wav

, we have E‖F − Ffail‖ ≤ ε.
With the last inequality, we proved that the condition

on Nfail : Nfail ≤ ε−ε′
C·wav

, guarantees that Fneu is robust
according to Definition 3.

In the previous proof, we used two key facts:

• Fneu is an ε′-approximation

• The effect of failures is bounded by ε− ε′

Then we plugged this into Inequality 5. The first fact will in
fact always hold, thanks to the over-provision. All the work to
guarantee robustness is in fact about assuring that the average
deviation from the full neural network (E‖Fneu − Ffail‖ is
bounded by our error budget ε − ε′ (enabled by the over-
provision).

Denote by Erfav the quantity given by replacing maximal
weights in Equation 4 by average absolute value of weights,
this quantity is smaller that Erf and is therefore a finer upper
bound. The following theorem guarantees that the expected
deviation from the full neural network E‖Fneu − Ffail‖ is
bounded by Erfav , therefore, it is sufficient to compare Erfav
to the error budget to assess the average robustness.

Theorem 2. Consider a neural network containing L layers. If
in each layer l, fl neurons among the Nl neurons are crashed,
then the effect on the output is bounded as follows:

E‖Fneu − Ffail‖ ≤ Erfav (9)

where Fneu is the nominal neural function, Ffail a random
variable describing the neural function whith crashes (as in
the single layer formalism), and w

(l)
av = mean(|w(l)

ji |, (j, i) ∈
[1, Nl][1, Nl−1]) is the mean absolute value of the weights of
the incoming synapses to layer l.

Proof: We proceed by induction on L the number of
layers.

Initiation. When L = 1, Erfav = C1 · f1 · wav and the
result follows from Inequality 8 considering Nfail = f1 the
number of crashed neurons in the single layer of the network.

Induction step. Assume Theorem 2 holds for networks
with up to some number of layers L ≥ 1. Consider now a
network consisting of (L+ 1) layers.



We proceed with the same methodology as in [34] that we
adapt to the expected value of the error. The layered structure
of the network enables us to see each of the NL+1 neurons of
the (L+1)th layer, first as an output to an L-layer network (all
the nodes to the input side of that neuron), and second, after
applying the activation function, as a neuron in a single-layer
neural network (consisting of the (L+ 1)

th layer alone).

In this last (L+ 1)th layer, we can distinguish two subsets
of neurons:

1) (Crashed neurons at layer L+1) A subset of fL+1

crashed neurons, that yields, as in the initiation step
(sigle layer), an error of at most fL+1w

(L+2)
av CL+1.

2) (Correct neurons at layer L+1) A subset of NL+1 −
fL+1 correct neurons. Those neurons transmit to the
output side (their right side in Figure 1), in addition
to their nominal value, the error E of the L-layer
neural network on the output side of layer (L+1),
multiplying it on average by at most the average
synaptic weight from layer L to layer (L+1), w(L+1)

av

and the Lipschitz constant K, yielding an error with
the following expected value E(E·(NL+1−fL+1)K).

By the induction hypothesis we have:

E(E) ≤
L∑
l=1

ClflK
L−l

L+1∏
l′=l+1

(Nl′ − f ′l )w
(l′)
av

As the output node is linear the errors mentioned in 1 and
2 are added, so are their expected values, which yields a total
expected error bounded as follows (using Jensen inequality as
in the proof of Theorem 1):

E‖Fneu − Ffail‖ ≤ fL+1w
(L+2)
av CL+1 + (NL+1 − fL+1)KE(E)

≤
L+1∑

l=1

ClflK
L+1−l

L+2∏

l′=l+1

(Nl′ − f ′l )w(l′)
av

which is the desired bound for an (L+ 1)-layer network.

By induction, Theorem 2 is true for any integer L ≥ 1.

IV. EXPERIMENTAL RESULTS

In subsections IV-A and IV-B, we present our experimental
findings based on randomly generated 4-layers networks, each
layer of which contain 4 neurons. We studied those networks
with both sigmoid and ReLu activation functions, and they all
have a linear mono-dimensional output.

In subsection IV-C, we report on a couple of more realistic
neural networks, namely networks that we trained to recognize
images from the standardized MNIST database of handwritten
digits. One category of networks was constituted of 3-layers
networks of 8 neurons each, using the ReLu activation function
and the other category is constituted of single-layered networks
of 48 neurons using the ReLu activation as well, and trained
with the dropout procedure [27] that consists of randomly
switching off neurons during the training phase. In both
categories, the output is 10-dimensional, each component i
provides the probability that the given input is the digit i.

The dimensions of our networks can seem rather small if
we forget the introductory note: looking at all crash situation

induces a combinatorial explosion. The reader should keep in
mind that each of the data points presented below is the result
of averaging the results of as much runs as there are possible
combinations of lost neurons and inputs. For instance, in figure
10, measuring Ω and its standard deviation for up to 5 crashed
neurons among 48 took about two months on our computer. In-
deed, there are 60000 data points in the MNIST dataset, which
yields a total of 60000×

((
48
1

)
+
(
48
2

)
+
(
48
3

)
+
(
48
4

)
+
(
48
5

))
≈

1011 different runs, and one run costs approximately 50µs with
our sequential algorithm13.

Interested readers can find both the source code and the
raw data of our experiments in the following repository [37].

A. Role of the Lipschitz coefficient and the depth

The activation function is behind the non-linearity of neural
networks, and is therefore one of the key factors in the their
computational expressivity. The theoretical analysis showed
that, in a network with L layers, the error made on the output
when a neuron in layer l crashes is proportional to KL−l,
where K is the Lipschitz-coefficient (c.f Figure 2) of the
activation function. In this subsection, we will explore the role
played by the steepness of parameter on the robustness of a
network, more precisely, on how this parameter amplifies or
reduces the propagated error to the output.

On the role of the Lipschitz coefficient on robustness, our
experiments confirms that: (a) the consequence (on the output
error) of a crash is polynomial on the Lipschitz coefficient, (b)
the degree of this polynomial dependency is, in the worst case,
equal to the depth of the crash: how far is the crash from the
output layer (Figure 5), thus an exponential dependency on the
depth where the crash occurs.

In figures 3 and 4, we plot the evolution of the variables
Ω. The attitudes are representative of what we on the many
generated networks and we observe the following:

1) While ReLu acts as a propagator of the polynomial
dependency on K predicted by Erf , sigmoid has a saturating
effect.

This can intuitively be understood from Figure 2, and the
notion of area of Lipschitz behavior: for sigmoid, this area
is restricted to a narrow interval that becomes narrower as K
grows, while this area consists of all the positive inputs for
ReLu, whatever is the Lipschitz coefficient.

2) In the case of ReLu as an activation function, estimating
the propagated error by Ωmax is on average two orders
of magnitude more pessimistic than considering Ωmav . The
saturating effect of sigmoid makes of Ωmav a good estimator
of Ωmax (only Ωmav is kept for plots for sigmoid for figures
readability, interested readers can check the raw data provided
in [37]). The difference between different Ωs translates the
activation function the effect of the size of the input space, as
noted in the proof of Theorem 1 and footnote 10.

3) The slope of Figure 3 corresponds exactly to K4 as
given by Equation 4. In Figure 4 this is the case only when
K << 1.

13A parallelization of the algorithm would not be worth the benefit: on 100
cores, we could measure Ω for 6 crashed neurons in roughly 4 days, but Ω for
7 crashed neurons would already take a month, and Ω for 8 crashed neurons
is out of reach with more than 4 months of execution.
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Fig. 3. Average error (Ωmav and Ωmax) for different number of crashed
neurons on random networks, with linear rectifiers (ReLu), plotted as a
function of the Lipschitz coefficient. The linear rectifiers act as pure propagator
of the Lipschitz effect: we observe a clear polynomial dependency.
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Fig. 4. Average error for different number of crashed neurons on random
networks, with sigmoidal actival functions, plotted as a function of the Lips-
chitz coefficient. Sigmoid has a saturating effect that reduces the polynomial
dependency on K when K increases (Cf. comments on tightness in the proof
of Theorem 2.
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Fig. 5. Inversion of the depth effect when K crosses 1: average values of Ω
on all crash situations of 1 neuron are plotted as a function of K, for three
different depths: 1, 2 and 3. When K is smaller than 1, a deeper layer results
in lower error, the opposite occurs when K becomes larger than 1
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Fig. 6. Effect of scaling up or down the weights on the propagated error.
Straight curves correspond to the case of ReLu as an activation function,
while saturating behaviors correspond to sigmoid. The slope (in the case of
the non saturating ReLu) is consistent with Equation 4: when all the weights
are multiplied by 10, Erf is multiplied by 10L+1.

B. Role of the Weights

What happens to the error at the output when we change
the scale of the weights of our random networks?

As we observe in Figure 6, for the ReLu activation func-
tion, scaling up the weights (and therefore the maximal weight
involved in Equation 4) by a factor of 10, increases the value
of Omega by 10L where L = 4 is the number of layers of our
network, which consistent of the multiplicative nature of Erf
suggested by Equation 4. In the case of sigmoid, we again
obtain the late saturation when K ≥ 1 similarly to what has
been observed for the Lipschitz coefficient dependency.

C. Orders of Magnitude on a Real-Life Case

Generating random networks is very informative to have
a glimpse of the possible numerical phenomena occurring in
neural networks and their altered versions when some of the
neurons are crashed, however, if this was enough to provide
experimental evidence for all the dependencies appearing in
Equation 4, it does not provide orders of magnitude one could
use in real life implementations.

"How many crashed neurons can my network tolerate if my
margin of error is 0.15 averaged on all my inputs ?" - "I have
trained three different networks with the same precision on a
data-set (that I would not disclose), can you tell me which of
the three will tolerate more crashes without testing them on my
data-set ?". Those are the kind of questions Equation 4 tackles.
In this part, we provide experimental evidence of how good
does Erf estimates (upper bounding) the propagated error Ω.

Consider, for instance one of the most common use of neu-
ral networks: classifying handwritten digits, the final product
is a neural network that, given an image X, will output a vector
Fneu(X) ∈ (0, 1)10 such that the ith coordinate of Fneu(X)
is the probability that X is a handwritten version of the
digit i. Using the MNIST database, we trained several neural
networks to perform this digits classification task, we could
achieve precision levels on a test set (of data unseen during
training) ranging from 65% to 97% depending on the network
topology, the activation function and the rigor of our robustness



constraints. In particular, we used the dropout procedure [27],
[33] consisting, as the name suggests, in dropping out neurons
during training. We varied the probability with which a neuron
is dropped out, from 0 to 0.3 by steps of 0.1.

In Figure 7, we observe that the networks learning with
the dropout procedure are more robust, in the sense that their
overall Ω is lower than the network for which the dropout
rate was 0. Dropout acts as a robustness enhancer, and the
less dropout is performed during learning, the closer is the
measured robustness to the upper bound of Theorem 2. It is
also worth noticing that the theoretical prediction Erf is a
good indicator of the range of Ω, in that sense, looking at
Erf alone is enough to predict that the upper network cannot
tolerate 3 crashes if the requirement is that the average error on
the output does not exceed 0.15 (i.e that the network predicts
the correct probability for a digit i to be in image X by an
average of 85%) while the three lower networks can tolerate
3 crashes and keep that requirement. Similarly, only the two
later networks (dropouts of 0.20 and 0.30) will tolerate 1 crash
failure if a more severe requirement of keeping a maximum
error of 0.03. Note also that higher dropouts during learning
make Erf a safer estimation for robustness (the real error Ω
is much lower than the predicted one Erf ). This is consistent
with the general intuition that networks trained while dropping
out neurons will learn to perform a task while not always
relying on "every neuron on-board" [27]. Finally, in Figure 10,
we observe that even in the least robust situation (no dropout in
the learning phase), the measured error is still safely estimated
by the theoretical estimator as shown by the standard deviation.

V. ANALYSIS

A. Cost of Robustness

Obviously, building robust neural networks never comes
without a cost. Indeed it can be tempting from the observations
of the effect of the Lipschitz coefficient to choose a low
one in order to increase robustness. Unfortunately, one cannot
just choose to decrease this coefficient arbitrarily without
consequences on the cost of learning. A naive perspective
after looking at the activation function profile (Figure 2) is
to consider that the higher the Lipschitz coeffiscient -i.e the
steeper is the slope in the transition zone (Figure 2), the
most discriminating is the activation function, and therefore
the easier it is for a network to be trained to classify a given
data-set. Maybe surprisingly, our experiments contradict this
intuition. The number of epochs needed to converge to a given
precision target can be so random (depending on how the
weights were initialized for example) that for 100 runs over 9
different values of K, we observe a mean number of needed
epochs so random that it is in the same range as its standard
deviation (Figure 8).We also observe, as discussed sometimes
in the literature, that for a given task, there always is some
sweet spot for K [40] where learning is the most efficient.

The bad news for designers whose goal is to build a robust
network is that they have to give up on learning efficiency in
order to gain robustness: decreasing K to improve robustness
can lead you further from that sweet spot. But the reward in
robustness is worth the sacrifice as shown in figures 3 and 4.
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Fig. 7. Quality of Erf as an estimator of Ω: Erfav as an estimator of the
observed Ωmav . The dropout rate is respectively 0, 0.1, 0.2 and 0.3 from the
higher plot to the lower one. The more dropout is used in learning, the more
robust is the network compared to the theoretical upper bound.



Figure 9 gives a rough schematic view of the dilemma we
faced when trying to combine robustness (low value of the
Lipschitz coefficient K), and reasonable convergence time to
train a network to reach a given precision level.
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Fig. 8. The ratio of the standard deviation to the mean value of the learning
time for 100 runs at each value of the Lipschitz coefficient ranging from 0.1
to 0.3.

Fig. 9. Schematic view of the robustness-ease of training dilemma. Bellow
the red line is the regime for which no 3-layers network of 14 neurons each
could reach 95% accuracy on MNIST. On the left of the blue line, is an
utopic robustness zone where K is close to zero but where no convergence is
observed after a long number of epochs (»1000). The regime on the right of
the magenta vertical line (K>1), is of no robustness interest since the output
error explodes as shown by Figure 3 and Figure 4 and predicted by the Kl

theoretical dependency.

B. Realism versus Safety

The second take-away from our experiments is that, if the
worst-case bound on the error provides a tight bound defining
the robustness criteria, leaving no doubt that the network will
be correct (inside the margin enabled by the over-provision)
, this criteria reveals to be too harsh when we want the
network to behave correctly withing reasonable average case
situations. In those situations, the estimator Erfav is closer
to the expected error (cf. comments on equality cases in the
proof of Theorem 1).

In both cases, a designer can submit his network weights
to our implementation [37], and without having to disclose
his training set, or specifying the task performed by his
network, get estimators of how much error his network will
generate, both on average and worst case, given a desired
budget of failures.

Fig. 10. The average measured error Omegaav (blue) exhibits a close
behaviour to the theoretical predication Erfav as showed by the measured
standard deviation (vertical bars).

VI. CONCLUSION

Before the actual regain of interest in deep learning, the
interest in neural networks faded in the mid-nineties, so did
the interest in their tolerance to the failure of individual neu-
rons. With the growth in modern neuromorphic hardware, the
question of robustness to individual neurons failure becomes
critical. This paper is a step towards a better understanding of
this robustness, while most of the recent work on robustness
has been driven by the coarse-grained view where the unit of
failure is a machine, not a single neuron [20], [21], [22].

In fact, moving from the traditional view, where the unit
of failure is a machine, hosting the neural network as a
software abstraction, to a more granular view where a single
neuron is the unit of failure, is somewhat equivalent to the
approach taken in a paper by Borkar [41] on the failures of
single transistors, or the paper by Constantinescu on VLSI
circuits [42]. In all of these cases, the unit of failure is not a
whole machine, but just a microscopic part of it (a neuron, a
transistor, etc).

Our paper shows that the robustness of a neural network
can be assessed solely in terms of constants of the networks,
without the need to analyze the numerous inputs such a
network can deal with during its lifetime. Or to test the shut
down of every possible subset of neurons of a given size.

More precisely, we provided theoretical proofs and exper-
imental evidence that the error propagated to the output due
to neurons failures is a function that grows, even on average
situations, polynomially with K, the Lipschitz coefficient of
the activation function. This polynomial dependency on K has
a degree equal to the depth of the layer where the failure
happens (the error has therefore an exponential dependency
on the depth). We also showed that the propagated error to
the output is proportional to the product, over all the layers
of the network, of the average absolute values of weights per
layer. This is yet another exponential dependency on the depth
that adds up to the dependency created by the Lipschitz factor.
Based on those observations, we conclude that neural neutral



networks with steeper activation functions (higher Lipschitz
coefficient) are less robust compared to their counterparts with
gentle activation functions. The catch being that robustness
comes at the cost of learning: for a neural network to learn,
the Lipschitz coefficient should be high enough, however,
theoretically assessing how high this coefficient should be,
remains a challenging open problem [40], [43].
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