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I. HARDWARE-ASSISTED MEMORY PROTECTION
MECHANISMS

Major cloud providers such as Amazon [1], Google [2] and
Microsoft [3] provide nowadays some form of infrastructure as
a service (IaaS) which allows deploying services in the form of
virtual machines [4], containers [5] or bare-metal [6] instances.
Although software-based solutions like homomorphic encryp-
tion exit, privacy concerns [7] greatly hinder the deployment of
such services over public clouds. It is particularly difficult for
homomorphic encryption to match performance requirements
of modern workloads [8]. Evaluating simple operations on
basic data types with HElib [9], a homomorphic encryption
library, against their unencrypted counter part reveals, that
homomorphic encryption is still impractical under realistic
workloads.

In recent attempts to enable privacy-preserving operations,
publish/subscribe systems among other types of communica-
tion services have received much attention. Meanwhile, Intel
and AMD have introduced hardware-assisted memory protec-
tion mechanisms inside x86 processors to provide answers
overcoming the limitation of current software-based solutions.
With the launch of the Skylake generation, Intel added a new
technology called Software Guard Extension (SGX) [10] to
their processors. SGX allows applications to create secure
enclaves protecting the confidentiality and integrity of data
and its associated code during execution. An application has
to be signed and shipped as an unencrypted shared library
(respectively a shared object on Linux systems) in order to
be executed in an enclave. Execution of an enclave on a
genuine Intel processor with enabled SGX technology can
be ensured by a remote attestation protocol. The enclave is
stored in the enclave page cache (EPC) when executed; a
limited memory area predefined at boot time. Page eviction
is handled by the SGX driver and confidentiality, integrity,
replay and tamper protected by the memory encryption engine
(MEE) [11]. AMD’s recently introduced Zen microarchitecture
is capable of transparently encrypting memory pages using
their novel technologies Secure Memory Encryption (SME)
and Secure Encrypted Virtualization (SEV). SME and SEV
make use of ephemeral encryption keys required by an AES
engine located on the core’s memory controller. While SME
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Fig. 1: Architecture of our system and differences when
deployed with Intel SGX and AMD SEV-ES. The components
with a diagonally hatched pattern on a blue background are
trusted, those with a dotted red background are untrusted,
respectively. Redis is configured in streaming-mode [13].

creates a single key to encrypt the entire system’s memory,
SEV can generate and assign a key to a limited number of
distinct virtual machines and a single hypervisor running on
the processor. The creation of the memory keys is delegated
to the secure processor (SP), an ARM TRUSTZONE-enabled
system-on-chip (SoC) embedded on-die [12].

II. ARCHITECTURE

We designed and implemented a simple yet pragmatic event-
based streaming system to evaluate our execution. The core of
our system consists of a key-value store with native support
to register and trigger callback functions associated to CRUD
operations (i.e., create, read, update, delete) on key-value
entries. These callback functions implement matching filters
for subscribers of a publish/subscribe system, that will receive
events upon notification of the channel.

The main components of the event-based streaming system
are depicted in Figure 1 with Intel SGX (left) and AMD
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Fig. 2: Macro-benchmark: energy cost of publish/subscribe.

SEV (right). All potentially sensitive components i.e., the
key-value store and its content, the callback functions and
the endpoints of the publish/subscribe channels, have to be
protected by SGX or SEV. However, only the key-value store
entries are considered to be protected by SGX or SEV in our
implementation. Furthermore, we do not include other addi-
tional stages in the processing pipeline nor do we explicitly
include broker or broker overlays [14]. Under these carefully
controlled conditions side-effects of SGX and SEV can be
better highlighted on the main processing node, in particular
memory-bound operations and their energy cost.

The workflow of operations is as follows. First, a subscriber
manifests its interests by subscribing to the channel (Figure 1-
Ê). Then, publishers start emitting events with a given content,
e.g., the results of a sport event (Figure 1-Ë). As soon
as the content is updated, a callback function is triggered
(Figure 1-î). Finally, the potential subscriber(s) receive the
event (Figure 1-Ì).

III. IMPLEMENTATION

The architecture was implemented on top of well-known
open-source systems and libraries. Redis [15] (v4.0.8), an
efficient and lightweight in-memory key-value store, is used
as core component. It also features a built-in publish/subscribe
system, which is exploited in order to realize our experimental
platform. Publishers and subscribers connect to the channels
provided by Redis using Jedis [16] (v2.9.0) Java bindings
for Redis. The callback system is implemented by leveraging
Redis’ ability to load external modules [17]. Despite Redis
being a single threaded application, modules can be run in a
multi-threaded setup.

While applications run under AMD SEV do not require
any changes, they do need to be modified under Intel SGX.
Graphene-SGX [18] is a library allowing to run unmodified
applications inside enclaves and was used for this benchmark.

In order to run unmodified applications under SGX, a manifest
file has to be provided to Graphene-SGX specifying the re-
sources, e.g., shared libraries, files, network endpoints, which
the enclave is allowed to make use of. The manifest file is
pre-processed by an auxiliary tool generating signatures that
are later checked by the Graphene loader.

Various workloads were injected using YCSB [19], v0.12.0
commit 3d6ed690, to record latency, throughput, perfor-
mance and energy values.

IV. EVALUATION

The benchmark measures the latency from the moment a
publisher emits a new event until the moment all subscribers
receive the content of the event. Four different configurations
of the system are evaluated: (i) Intel without SGX protection,
(ii) with SGX by leveraging Graphene, (iii) AMD without
memory protection and (iv) AMD with SEV. Publishers are
configured such that they inject new events at fixed through-
puts with fixed message sizes ranging from 64B up to 512B.

Measured latencies for smaller message sizes are consis-
tently lower for higher throughputs (requests/second). The cost
of serialization reduces the efficiency of our system for larger
message sizes. A pairwise comparison of the configurations
for Intel and AMD reveals how these memory protection
mechanisms are negatively affecting the observed latencies,
which is particularly evident for Intel configurations. This
observation is further confirmed by bandwidth usage values.

The energy cost of messages send over the publish/subscribe
system is shown in Figure 2. As the system begins to occupy
a significant amount of the machine’s resources, energy con-
sumption begins to increase at a linear rate relative to the target
throughput. This behavior is reflected by the decreasing energy
cost per message before reaching a minimal energy cost.

Memory requirements do not exceed the available EPC
for the Intel configurations under these evaluation settings.



Consequently, the measurements indicate that both memory
protection mechanisms consume an even amount of energy
compared to their native setup.

Due to the energy being recorded for the entire system
using an external power measurement device, it becomes
difficult to make an implication on the energy consumption
of the memory protection mechanisms. In a next step we
are developing tools to measure the energy consumption of
precesses at a much finer grained level, for instance the
processor’s core. Such tools would then give us the opportunity
to observe in more detail the influence of memory protection
mechanisms on processes and assist in the development of
novel security and energy-aware system components.
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