
Making Speculative BFT Resilient
with Trusted Monotonic Counters

Lachlan J. Gunn
Aalto University
lachlan@gunn.ee

Jian Liu
University of California, Berkeley

jian.liu@berkeley.edu

Bruno Vavala
Intel Labs

bruno.vavala@intel.com

N. Asokan
Aalto University
asokan@acm.org

Abstract—Consensus mechanisms used by popular distributed
ledgers are highly scalable but notoriously inefficient. Byzantine
fault tolerance (BFT) protocols are efficient but far less scalable.
Speculative BFT protocols such as Zyzzyva and Zyzzyva5 are
efficient and scalable but require a trade-off: Zyzzyva requires
only 3f + 1 replicas to tolerate f faults, but even a single
slow replica will make Zyzzyva fall back to more expensive
non-speculative operation. Zyzzyva5 does not require a non-
speculative fallback, but requires 5f + 1 replicas in order to
tolerate f faults. BFT variants using hardware-assisted trusted
components can tolerate a greater proportion of faults, but
require that every replica have this hardware.

We present SACZyzzyva, addressing these concerns: resilience
to slow replicas and requiring only 3f+1 replicas, with only one
replica needing an active monotonic counter at any given time.

We experimentally evaluate our protocols, demonstrating low
latency and high scalability. We prove that SACZyzzyva is
optimally robust and that trusted components cannot increase
fault tolerance unless they are present in greater than two-thirds
of replicas.

I. INTRODUCTION

Distributed ledger technology [6], [9], [23] and cryptocur-
rencies [10], [39] have become the great motivators for dis-
tributed consensus protocols today. These applications demand
scalability and performance over high-latency networks such
as the Internet. Current approaches range from proof-of-
work [10], [39] to Byzantine fault tolerance (BFT) [7], [11],
[22], [30], [34], [36], [40].

Both approaches have significant drawbacks. Proof of work
derives its Sybil-resistance from the magnitude of its power
consumption [9]. Furthermore, its scalability comes at the cost
of eschewing transaction finality [47], [48]. Conversely, BFT
protocols [30] are computationally efficient, but scale poorly.
As traditionally formulated, these require two phases [29] and
a quadratic number of messages [17]. However, a wide variety
of improvements can be obtained over classical results [11]
by varying cryptographic [43], failure-mode [32], [40], tim-
ing [15], [38], and safety [28] assumptions.

Zyzzyva [5], [28] is the simplest and most compelling
of the BFT protocols. It takes a speculative approach that
optimizes for the common case where no replicas are faulty.
MinZyzzyva [40] improves on Zyzzyva by assuming that each
replica contains a trusted monotonic counter, whose integrity
is guaranteed by hardware. In particular, it reduces the total
number of replicas needed to tolerate f faults from 3f +1 to
2f + 1.

Total # of Monotonic counters
Protocol Replicas Resilience Total Active
Zyzzyva 3f + 1 0 - -

Zyzzyva5 5f + 1 f - -
MinZyzzyva 2f + 1 0 2f + 1 2f + 1

SACZyzzyva 3f + 1 f f + 1 1

TABLE I: Comparison of speculative BFT protocols tolerat-
ing f faults. Resilience refers to the maximum number of
replicas that can be non-responsive without falling back to
non-speculative operation.

This assumption, that every replica is equipped with a
trusted component, is often unrealistic. In the real world, only
some devices will have the necessary hardware, especially
when new hardware is being rolled out. Even if eventually all
replicas have the necessary hardware support, over time some
hardware platforms will become obsolete either because have
become outdated in comparison to newly-released hardware,
or because trust in them has been revoked in response to
some vulnerability. Protocols that require trusted components
in every participant are thus fragile.

Speculative BFT protocols have extremely simple and ef-
ficient speculative execution paths when there are no faults
or delays. In the event of a fault, Zyzzyva and MinZyzzyva
have the client execute a non-speculative fallback sacrificing
performance. This results in a major drawback: if even a
single replica fails to respond to the client, the protocols
immediately fall back to non-speculative execution, unlike
non-speculative protocols which concern themselves mainly
with faulty primaries [14]. Realistic communication networks
like the Internet are only partially synchronous. In such
networks, a single slow—not necessarily faulty—replica can
trigger the non-speculative execution for each protocol run,
thereby undermining the efficiency promise of the speculative
approach. Speculative variants like Zyzzyva5 [28] minimize
the need for non-speculative fallback, but have lower fault-
tolerance, requiring 5f + 1 replicas to tolerate f faults.

In this paper, we present Single Active Counter Zyzzyva
(SACZyzzyva), which overcomes these drawbacks. It requires
only a single replica, the primary, to have an active monotonic
counter, and eliminates the need for a non-speculative fallback
(as in Zyzzyva5), thus allowing SACZyzzyva to tolerate a
subset of replicas being slow, while requiring only 3f + 1

1

ar
X

iv
:1

90
5.

10
25

5v
2

 [
cs

.C
R

]
 1

3
O

ct
 2

01
9

replicas (as in Zyzzyva). We compare SACZyzzyva to other
speculative BFT protocols in Table I. The same principles that
we use in SACZyzzyva can be applied in other settings: other
BFT protocols can be adapted to use our single active counter
approach, resulting in lower latency while avoiding the need
to equip all replicas with hardware-supported monotonic coun-
ters.

The cost of supporting this heterogeneity—of not requiring
that all replicas have trusted components—is the need for more
replicas to tolerate the same number of faults f : 3f + 1 in
SACZyzzyva, compared to 2f + 1 in MinZyzzyva. We show
that SACZyzzyva is optimally fault tolerant. Specifically, it is
not possible to tolerate more than b(n − 1)/3c failures—as
SACZyzzyva does—unless more than two thirds of parties have
access to a trusted component (as MinZyzzyva does).

In summary, our main contributions are as follows:
• We propose SACZyzzyva (Section IV), a Zyzzyva variant

that tolerates b(n−1)/3c faults and uses a trusted mono-
tonic counter to eliminate the need for a non-speculative
fallback, making it more robust to slow replicas.

• We implement and evaluate SACZyzzyva over both low-
and high-latency networks (Section V), showing that
SACZyzzyva transaction latencies increase at a rate of
less than 40 µs per additional replica.

• We show that the use of trusted components in a consen-
sus protocol cannot increase fault-tolerance unless more
than two thirds of parties have a trusted component
(Section VI).

II. PRELIMINARIES

A. Zyzzyva

Zyzzyva [28] is an efficient Byzantine-fault-tolerant state-
machine replication protocol which uses speculation to reduce
the replication overhead, at the cost of requiring rollback in
some instances. The replicas receive requests ordered by the
primary, and immediately reply to clients without running an
expensive consensus protocol. Based on the received replies,
clients are able to detect inconsistencies and can help the
replicas achieve a consistent state. In fault-free executions
with network delays that do not trigger protocol timeouts,
no further action is required by clients, thereby making the
protocol simple and fast.

The protocol works as follows: The client sends a request to
the primary, which in turn proposes an order and forwards it
to the other replicas. The replicas speculate that the primary’s
proposal is consistent and reply to the client. If the client
receives matching replies from all replicas, then speculative
execution is successful and the request is guaranteed persistent.
However, if after some timeout Tclient the client receives
between 2f + 1 and 3f matching replies, the client executes
a non-speculative fallback: it broadcasts the responses that it
has received to all replicas, and waits for 2f+1 acknowledge-
ments. The replicas acknowledge the commit certificate if it
is consistent with the local history of ordered requests. This
non-speculative fallback allows for operation in the presence
of faults, but comes with significant latency costs.

Finally, if acknowledgements are not received, the client
broadcasts the request to all replicas, who communicate with
the primary to assign a sequence number and execute it.

Zyzzyva is efficient and scalable, but this efficiency comes
at a price, in the form of fragility. If even a single replica
is faulty, or network conditions cause a single message to
be delayed beyond the timeouts, speculative execution fails
and the client must execute its non-speculative fallback, re-
quiring at least two additional rounds of communication,
in addition to the time spent waiting for the timeout. This
negates Zyzzyva’s main contribution—its high performance—
especially over the internet where Zyzzyva’s small communi-
cation footprint would otherwise be most useful.

A variant, Zyzzyva5 [28, Section 4.1], was introduced along
with Zyzzyva, which avoided this non-speculative fallback at
the cost of fault-tolerance by increasing the number of replicas
from 3f+1 to 5f+1, and allowing requests to complete after
4f +1 responses. With these thresholds, all requests complete
speculatively, but at the cost of Zyzzyva5 only tolerating b(n−
1)/5c faults in comparison to Zyzzyva’s b(n− 1)/3c.

B. Hybridization and trusted components

Another way to improve on classical BFT results is to use
hybridization [46], in which replicas contain several com-
ponents of different failure modes. Under this model, failed
replicas cannot behave completely arbitrarily; instead, they are
limited by their non-Byzantine components.

A common approach is to design the replicas around a
trusted component, whose output can be authenticated by
other parties and is subject only to crash-failures. This can
be achieved with the aid of the hardware-assisted trusted
execution environments (TEEs) that exist in many modern
CPUs.

TEEs protect the execution of a security-critical piece of ap-
plication from potentially-compromised applications, system
administrators and the operating system itself. By the process
of remote attestation, they can securely communicate the
existence of such trusted components to an external verifier, al-
lowing other parties to rely on the security guarantees provided
by the hardware. Examples of such hardware mechanisms are
Intel SGX [24] and ARM TrustZone [2].

TEEs are highly general; in concrete protocols, we generally
do not consider their full functionality, but instead use them
to implement more limited trusted functionality that can be
effectively reasoned about. An especially popular such func-
tionality is the trusted monotonic counter.

A trusted monotonic counter uses these hardware secu-
rity features to realize a verifiably monotonically increasing
counter.

Let 〈M〉X indicate that a message M has been signed by
some entity X . A trusted monotonic counter component TC
is assumed to have a well-known public key—for example,
established with remote attestation—and provide the following
interface:

2

• TCinst, 〈pkTCinst
〉TC ← TC.Init(): Create a new trusted

monotonic counter instance TCinst, with initial state c = 0
and public key pkTCinst

.
• 〈c,m〉TCinst

← TCinst.Increment(m): Update the counter
state c ← c + 1, returning a signed tuple linking a
message m to this particular increment operation and
trusted monotonic counter instance.

Trusted monotonic counters are used in BFT protocols such
as MinBFT [40] to prevent message equivocation. A trusted
monotonic counter value can be attached to a message in order
to detect whether the sender communicated the same data to all
recipients. If the sender equivocates, different messages will
have different counter values, this being detectable as a ‘hole’
in the set of counter values [31], [37], [40], [42]. Persistent
hardware-backed versions of such counters are available within
TPMs [20] and the Intel SGX [24] platform; alternatively, a
TEE can be used to implement a memory-backed monotonic
counters that offers high performance at the cost of ephemer-
ality or replication [37].

III. MODEL AND PROBLEM STATEMENT

A. Network Model

In this paper we consider the weak-synchrony model [11],
[38]. Messages and computation can be arbitrarily delayed, but
the delay delay(t) of a message sent at time t cannot grow
faster than the timeout period—which may vary adaptively—
indefinitely.

This model permits polynomially-increasing delays when
exponential backoff is used to increase message time-
outs [38, §3.1]. However, it does not allow an adversary
to continually delay messages so that they arrive after the
exponentially-increasing timeouts, thereby achieving eventual
synchrony [28]. This model enables us to analyze liveness
during a period of synchrony that will eventually occur. This
also avoids the well-known FLP impossibility result [19],
which showed that it is not possible to achieve consensus in
a fully asynchronous system [33].

B. System Model

We consider a distributed system of n replicas, of which up
to f may be faulty. We suppose that some, but not all, replicas
are equipped with a trusted component and, in particular, with
a trusted monotonic counter. The result is that b out of n
replicas can, if faulty, behave completely arbitrarily, whereas
the other n− b replicas, if they fail, are assumed to be limited
in their behavior by the trusted component.

C. Problem Statement

Our goal is to build an efficient state-machine replication
protocol that allows the replicas to complete a request
• in a linear (in n) number of messages, and
• without significant performance reductions in the event

of up to f faults.
We borrow from Zyzzyva [28] the properties that our BFT

protocol must satisfy to be correct. The first one is safety:
suppose that from the perspective of some client, a request

completes with a response indicating a history H—a sequence
of ordered and completed requests—then the history of any
other completed request as seen by any other client is a
prefix of H , or vice-versa. Hence, from the perspective of
the client, the state machine history never diverges, even if
that of individual replicas might. The second one is liveness:
any request issued by a correct client eventually completes.

IV. SACZYZZYVA

In the original Zyzzyva with 3f + 1 replicas, a request is
included in a new view only when it appears in f + 1 out
of 2f + 1 VIEW-CHANGE messages. Since up to f of these
VIEW-CHANGE messages may be from faulty replicas, this
means that every correct replica must execute the request in
order to guarantee that a speculatively-executed request will
be included in the history of future views.

The MinZyzzyva [40] protocol uses a trusted monotonic
counter in each replica to order requests and prevent equivo-
cation. In doing so, it reduces to 2f+1 the number of replicas
needed to tolerate f faults, but does not change the protocol
in a fundamental way. However, the MinZyzzyva view-change
protocol differs from that of Zyzzyva, with the initial state of
a view being determined as in MinBFT [40, p. 8]: a request
is included in the history of a new view when it appears in
any VIEW-CHANGE message. This means that MinZyzzyva
needs only one copy of a request to appear in any set of f +1
view-change messages in order to guarantee that speculatively-
executed requests are not lost. By modifying Zyzzyva to order
requests within a view using a trusted monotonic counter in
the primary, we can use the same inclusion criteria during
view-changes as in the MinBFT protocols, allowing requests
to safely complete after only 2f + 1 responses, eliminating
the need for a non-speculative fallback. We dub this protocol
Single Active Counter Zyzzyva (SACZyzzyva).

The basic principle of SACZyzzyva is to use a trusted
monotonic counter in the primary to bind a sequence of
consecutive counter values to incoming requests, ordering
requests while avoiding the need for communication between
replicas, whether directly or via the client. It does this by
signing a tuple consisting of the cryptographic hash of the
request and a fresh (i.e. has not been used before) counter
value. This is then sent to all replicas in an ORDER-REQUEST
message. Because the primary is the only replica that actively
maintains a counter, we call this counter the “Single Active
Counter” (SAC) construct. We therefore require only that f+1
replicas have a trusted component, enough that there will
always be at least one correct replica that can function as
primary.

Figure 1 shows the communication pattern of SACZyzzyva.
As in the original Zyzzyva, the primary gathers the requests
from clients and sends them to all replicas in a ORDER-
REQUEST message. The main difference is that the ORDER-
REQUEST message is bound to a monotonic counter value
to prevent equivocation by the primary. All replicas execute
the requests and reply to the client directly if the trusted
monotonic counter value is sequential to those that the primary

3

Replica

Replica

Replica

Client

Primary
Counter

Counter

REQ
U
EST

O
RD

ER-R
EQ

U
EST

RESPO
N

SE

LO
CAL-

C
O
M

M
IT

C
O
M

M
IT

SAC
Zy

zz
yv

a

C
om

pl
et

es
 ✓

Zy
zz

yv
a

C
om

pl
et

es
 ✓

Faulty

Fig. 1: The communication patterns of Zyzzyva and
SACZyzzyva with one faulty replica. Without faults or network
delays, Zyzzyva and SACZyzzyva have identical communi-
cation patterns, but if any replicas are faulty, as illustrated,
Zyzzyva requires two extra rounds of communication, shown
in gray.

has previously sent. If the client receives 2f + 1 replies
with matching values and histories, it considers the request
complete. Otherwise, it repeatedly sends the requests directly
to the replicas, so that they can detect misbehavior by the
primary and so elect a new one.

The protocol is described below in greater detail. The
basic steps are shown in boxes below; further explanation
and specifics appear beneath each step. We assume that there
is some well-known mapping from view-numbers to primary
replicas. One such mapping is pv = v mod nTMC, where the
replicas are numbered such that the first nTMC > f replicas
possess a trusted monotonic counter. For simplicity of the
protocol description, when a replica broadcasts a message to
all replicas, this includes itself.

The correct replicas are assumed to know each others’
identities and primary keys when the system is initialized, as
well as the public key of the first primary’s monotonic counter
instance.

A. Agreement protocol

Requests are initiated similarly to the original Zyzzyva.
However, unlike with Zyzzyva, only 2f+1 replies are needed
before an operation is accepted as complete. After receiving
a request from the client, the primary binds a counter value
to the request and then sends it to the replicas for execution,
who reply directly to the client.

C-1. The client sends a request to the primary.

Explanation: Since all requests must pass through the primary
in order to be executed, the client can initially send the
request to the primary only.

Details: The client sends a message

mrequest = 〈REQUEST, op, addrclient, idclient〉c

to the primary, where op is the requested operation,
addrclient is the address of the client to which the replicas

must reply, and idclient is a monotonically increasing iden-
tifier used to identify whether a request has already been
executed.

R-1. Upon receiving a valid REQUEST message, the primary
binds the request to a counter value and then broadcasts it to
all replicas as an ORDER-REQUEST message.

Explanation: Note that the primary only needs to act on valid
requests; a request might be invalid if it is not syntactically
correct, but there may be other cases, such as if the state-
machine being replicated includes client authentication or
replay protection functionality.

Details: After receiving a request

mrequest = 〈REQUEST, op, addrclient, idclient〉c,

the primary verifies that mrequest is valid and then binds a
request number to it, using its trusted monotonic counter to
obtain an ‘ordering certificate’

Corder ← TCv.Increment(H(mrequest)),

which it includes in the ORDER-REQUEST message

morder−request = 〈ORDER-REQUEST, v, Corder,mrequest〉p

that is broadcast to all replicas.

R-2. Upon receiving an ORDER-REQUEST message for the
current view with a counter value greater than that of the last
executed request, each replica executes the request contained
in the message and responds directly to the client, obtaining
any previous requests needed by sending FILL-HOLE mes-
sages to the primary.

Explanation: SACZyzzyva replicas execute requests immedi-
ately. However, since the primary uses its trusted mono-
tonic counter to number the requests within each view, the
agreement protocol ends here and no commit certificate
subprotocol is needed as in Zyzzyva [28, Section 3.2, Steps
4.b.*].

Details: Replicas execute requests immediately if they have
executed all previous requests, and store the largest identifier
of each executed request from each client. If any previous
requests have not yet been executed, the replica demands
a copy of the corresponding ORDER-REQUEST messages
from the primary by sending messages 〈FILL-HOLE, v, i〉. If
the replica does not receive a response within time T , the
primary is deemed to be faulty and so the replica requests
a view-change.

R-2a. Upon receiving a 〈FILL-HOLE, v, i〉 message from an-
other replica, a replica responds with the ORDER-REQUEST

message for request i from view v if it is in its history.

Explanation: Since not every replica is guaranteed to see
every request, they need some way to “catch up” when
there is a hole in their execution history. Correct replicas

4

are guaranteed to receive a response from a correct primary
during periods of synchrony, as the sender will only send
this message after receiving an ORDER-REQUEST message
for a later message in the same view, and so the necessary
ORDER-REQUEST message will always be in the history.

C-2a. The client waits for 2f + 1 matching replies from
distinct replicas; it then accepts the response contained in
these replies.

Explanation: During periods of synchrony, when the primary
is correct and at least 2f + 1 replicas are correct overall,
the client will receive sufficient reply messages to accept a
response. This is in contrast to Zyzzyva, which can only
accept at this point only after receiving responses from
all 3f + 1 replicas, thus necessitating additional steps as
a fallback.

Details: The client receives 2f + 1 messages

〈REPLY, 〈morder−request〉pv
, response〉i

from distinct replicas {i} for some valid ORDER-REQUEST
message morder−request in view v and response response.
The client then accepts the value response as the response
to the request contained in morder−request.

C-2b. After each time interval Tclient that the client has not
received 2f + 1 matching replies from distinct replicas, the
client broadcasts the request to all replicas.

Explanation: If the client does not receive a timely quorum
of responses, then it is possible that the replicas did not
all receive the request from the primary. In this case, the
client sends the request to the replicas directly, so that they
can determine whether the primary is willing to order the
request, and initiate a view-change if not.

Details: The client broadcasts to all replicas the message
mrequest, previously sent to the primary in step C-1.

R-3. Upon receiving a REQUEST message whose idclient is
greater than the last cached identifier for that client, a replica
will send it to the primary, and then wait for time T to receive
a ORDER-REQUEST message that will be processed as in step
R-2, otherwise requesting a view-change and broadcasting the
request to all replicas.

Explanation: Routing requests through the primary makes it
into a single-point-of-failure. In order to prevent the primary
from dropping requests—and thus violating liveness—the
client rebroadcasts its request to the replicas so that they can
submit the request on the client’s behalf, giving the replicas
the opportunity to observe the primary’s misbehavior first-
hand and then trigger a view-change. As a side-effect, this
also allows request processing to continue when the client
does not know the current primary.

Details: In addition to the above, a replica receiving a
REQUEST from another replica responds with the corre-
sponding ORDER-REQUEST if it has it.

B. View-change protocol

In the Zyzzyva protocol, a request is included in the history
of a new view if and only if there are f + 1 VIEW-CHANGE
messages available containing the request. As there might be
only f +1 VIEW-CHANGE messages from correct replicas, to
be certain that a request will be included in any new view,
the client therefore needs to ensure that every correct replica
has responded. In the SACZyzzyva view-change protocol, the
canonical ordering provided by the trusted monotonic counter
allows us to safely include requests whose ordering exists in
even a single VIEW-CHANGE message. The client therefore
needs only 2f +1 replies in order to be certain that a request
will persist across the next view-change.

VC-1. When a replica requests a view-change, it broadcasts
a REQ-VIEW-CHANGE message to all other replicas and in-
creases its timeout T in some implementation-defined way.

Explanation: This part of the view-change protocol remains
unchanged from Zyzzyva.

Details: The replica that has witnessed misbehavior
of the primary of view v broadcasts a message
〈REQ-VIEW-CHANGE, v〉i to all replicas.

VC-2. Upon receiving f +1 REQ-VIEW-CHANGE messages for
the current view v, a replica stops processing requests in the
current view and broadcasts a VIEW-CHANGE message to all
replicas. If the view-change does not complete within time T ,
the replica requests a new view-change.

Explanation: Since there is no prima-facie evidence of misbe-
havior by the primary, before committing to a view-change
each replica waits until misbehavior has been reported by
at least f +1 replicas, so that it can prove to others with its
VIEW-CHANGE message that at least one report is genuine.

Details: More specifically, replica i sets its current
view-number to v + 1 and broadcasts a message
〈VIEW-CHANGE, v + 1, i, V,R, {ri}〉i, where v + 1 is the
new view-number, V is the most recent view or checkpoint
certificate, {ri} is the set of requests that it has executed
in view v, and R is a set of f + 1 REQ-VIEW-CHANGE
messages requests for view v.

VC-3. Upon receiving 2f + 1 VIEW-CHANGE messages for a
new view v, the primary for v instantiates a trusted monotonic
counter instance and broadcasts a NEW-VIEW message to the
replicas.

Explanation: With 2f + 1 VIEW-CHANGE messages, any
request that has been accepted by a correct client in the
last view must be present in at least one of them. This
means that the primary can now safely propose a new view.
Rather than directly including the view’s initial state, the

5

NEW-VIEW message includes the 2f + 1 VIEW-CHANGE
messages directly, so that the other replicas can themselves
verify that all completed requests are included in the history
of the new view.

Details: If the view-number in these messages is less than
that of this replica’s current view number, then this step
is ignored. Otherwise, the new primary runs TC.Init(),
yielding a new trusted monotonic counter TCv with cor-
responding public key pkTCv

, then broadcasts the message
〈NEW-VIEW, 〈pkTCv

〉TC, {mVC,i}〉pv
to all replicas, where

{mVC,i} are the 2f+1 valid view-change messages that has
been received.

VC-4. Upon receiving the first valid NEW-VIEW message for
view v, each replica broadcasts a VIEW-CONFIRM message
containing a hash of the NEW-VIEW message it has received.

Explanation: Though a valid NEW-VIEW message is guaran-
teed to contain every completed request, a faulty primary
can provide a different set of VIEW-CHANGE messages
to each replica, causing them to disagree on whether un-
completed requests are included. This step ensures that
all completed requests will build on the same NEW-VIEW
message.

Details: For the NEW-VIEW message to be valid, it must con-
tain VIEW-CHANGE messages from 2f +1 distinct replicas,
and a public key that has been verified to belong to a trusted
monotonic counter instance. If the view-number in the NEW-
VIEW message is less than that of this replica’s current view,
then this message can be ignored. Otherwise, after receiving
a NEW-VIEW message m for view v for the first time, each
replica broadcasts a message 〈VIEW-CONFIRM, v, i,H(m)〉i
to all replicas.

VC-5. Upon receiving 2f + 1 matching VIEW-CONFIRM mes-
sages from distinct replicas confirming the NEW-VIEW mes-
sage from step VC-4, the view-change completes, and each
replica begins to process requests in the new view.

Explanation: After receiving 2f+1 matching VIEW-CONFIRM
messages, a correct replica can be certain that no other
correct replica will process requests in this view with a
different starting state.

Details: Consistency in this case means that all 2f + 1
messages have identical view-numbers v and NEW-VIEW
hashes H(m). The starting state for this view is taken to be
that of highest-numbered view with a certificate in any of
the VIEW-CHANGE messages in the confirmed NEW-VIEW
message, extended with the longest consecutive sequence
of requests in any of the same VIEW-CHANGE messages
containing this view. Putting a replica into this state may
require rolling-back some previously-executed requests, and
making it necessary to maintain enough information to roll
back to the last checkpoint, or in extreme cases to carry
out state transfer as in [11]. These 2f + 1 VIEW-CONFIRM
messages are stored as a view certificate.

C. Checkpointing Protocol

Since it is possible that a view-change might require a
replica to roll-back some already-executed requests in the
latest view, replicas must maintain enough information to
rewind their state to the last confirmed transaction. To keep
the required storage from growing without bound, Zyzzyva
includes a checkpoint protocol [28, Section 3.1] taken from
that of PBFT [11, Section 4.3]; we do not reproduce all of the
details, but sketch it here.

CP-1 (sketch). Every N requests, each replica broadcasts a
CHECKPOINT message containing the current view certificate,
the most recently-executed request number, and a hash of the
current state to all replicas.

Explanation: Since a correct replica will include in its VIEW-
CHANGE messages every request that it has executed, a
CHECKPOINT message is a commitment to include all of
these requests in future VIEW-CHANGE messages.

CP-2 (sketch). After receiving 2f + 1 matching CHECKPOINT

messages for the current view, a replica considers the CHECK-
POINT to be stable, and discards all ORDER-REQUEST mes-
sages from before the checkpoint.

Explanation: Once 2f +1 replicas have commit to including
a request in their future VIEW-CHANGE messages, then it
is guaranteed that at least one correct replica from among
them will have their VIEW-CHANGE message appear in any
future successful view-change. The CHECKPOINT messages
are stored as the latest checkpoint certificate.

In this sketch we do not include e.g. low- and high-water
marks; full details can be found in [11, Section 4.3].

D. Correctness

The safety and liveness properties of SACZyzzyva are
defined from the point of view of the client: the states of the
replicas may diverge, so long as the histories returned with
completed requests do not diverge.

We recall that SACZyzzyva uses n = 3f+1 replicas in order
to tolerate f faults, with nTMC > f replicas having a trusted
monotonic counter. We are therefore guaranteed that any set of
f +1 replicas will always contain at least one correct replica,
and that any two sets of 2f + 1 replicas will always contain
at least one correct replica in their intersection.

We suppose as well that there exists some well-known
mapping from view-numbers to trusted monotonic counter-
equipped replicas such that at least one correct replica will
be chosen infinitely many times. One suitable mapping is
pv = v mod nTMC, where the replicas are numbered such that
the first nTMC replicas possess a trusted monotonic counter.

1) Safety: We show that the histories of completed requests
can never diverge. A history H is a sequence of requests
m0,m1, . . . that are executed in turn. We use the notation
A v B to indicate that A is a non-strict prefix of B.

6

Lemma 1 (Consistency of the initial view state). Let H1 and
H2 be the request histories and pk1 and pk2 the trusted-
monotonic-counter public keys held any two correct replicas
that execute any two requests in view v; these requests may
or may not be distinct. Then, pk1 = pk2, and H1 and H2 are
identical with respect to requests prior to view v.

Proof. If v corresponds to the first view, then the history of
prior views is empty in both cases, and the public keys form
part of the initial state, and so the lemma is trivially true.

Otherwise, each correct replica executing a request in view
v must have received at least 2f +1 VIEW-CONFIRM message
from distinct replicas for view v containing the same hashed
NEW-VIEW message (Step VC-5). The 2f + 1 such messages
received by each replica must have in common at least one
correct sender. Each correct replica produces only a single
VIEW-CONFIRM message—Step VC-4—so the consistent set
of VIEW-CONFIRM messages must confirm the same NEW-
VIEW, and thus both replicas accept the same public keys and
history as the initial state of the view. �

Lemma 2 (Histories of completed requests do not diverge
within a single view). Let requests rx and ry complete in
view v, and let Hx and Hy be the request histories of any
two correct replicas immediately after they executing rx and
ry respectively. Then, one history is a prefix of the other—that
is, either Hx v Hy or Hy v Hx.

Proof. A correct replica responds only after having received
messages 〈ORDER-REQUEST, v, Ci,mrequest〉 from the pri-
mary p with sequential ordering certificates Ci for every
mrequest in its history of this view (Step R-2). As Ci can
be obtained only by TC.Increment and includes H(mrequest),
for any Ci there is at most one request mi for each i such
that any replica has received 〈ORDER-REQUEST, v, Ci,mi〉,
and therefore the histories of all correct replicas within view
v are identical except for partial truncation of a common suffix.
Hence, the history of any correct replica is either prefixed by
or a prefix of any other. �

Lemma 3 (Completed requests are never omitted from history
by a view-change). Let H be the history of all completed
requests up to and including view v. Then, for all views v′ > v,
a correct replica executing a request in view v′ includes H in
its history.

Proof. Let v′ > v have primary p′. By Lemma 1, all correct
replicas executing requests in view v′ will have identical
histories for views prior to v′.

We proceed by strong induction to show that this history is
prefixed by H .

Base case. Let v′ = v+1. For a correct replica to respond
to a request in view v′, it must receive a NEW-VIEW message
containing 2f + 1 VIEW-CHANGE messages from distinct
replicas. At least one of these VIEW-CHANGE messages must
be from a replica that is correct and has executed the last—and
hence all prior—completed requests in H . Therefore H will
be a prefix of the history that this replica computes for view

v′, and so H will be in the history of any correct replica that
begins executing requests in view v′.

Inductive case. Let the supposition hold for all v′′ such that
v < v′′ < v′.

From step VC-5, the history of view v′ as confirmed by
any correct replica is prefixed by the history of the most
recent view v∗ for which a view-change certificate—or a
checkpoint-certificate, which contains the corresponding view-
change certificate—is available in one of the VIEW-CHANGE
messages being confirmed, along with all subsequent requests
in view v∗ for which an order-request message is available in
one of the same VIEW-CHANGE messages.

We will always have that v∗ ≥ v, as at least one of the
2f +1 VIEW-CHANGE messages must be from a correct node
that executed r, and therefore has a view-change certificate
for view v.

If v∗ = v, then the result is trivial: any set of 2f +1 VIEW-
CHANGE messages in a valid NEW-VIEW will include one
from a correct node that executed the final request r ∈ H
in view v, and therefore a view-change certificate for view v
and the ORDER-REQUEST messages for r and its predecessors
are included.

If v∗ > v, then by supposition r and its history are a prefix
of the history of v∗, whose history is itself a prefix of the
history of v′, which is what we wanted.

The history of any correct replica that executes a request
in view v′ is prefixed the computed history of view v′, and is
therefore prefixed by H . �

Theorem 1 (Safety). Let requests rx and ry complete with
histories Hx and Hy at any two replicas that have just
executed requests rx and ry respectively. Then, one history
is a prefix of the other—that is, either Hx v Hy or Hy v Hx.

Proof. Suppose rx and ry complete in views vx and vy
respectively. If vx = vy , then the theorem follows trivially
from Lemmas 2—for the part of the history in vx = vy—
and 1—for the history of earlier views.

Otherwise, suppose without loss of generality that vx < vy .
Then, by Lemma 3, the history of completed requests up to
view vx is a prefix of Hy . Since rx completes in view vx, we
therefore have that Hx v Hy . �

2) Liveness: We show that a request by a correct client
eventually completes. We say a view is stable if the primary
is correct and enough time has passed that network delays are
less than the timeout period of the protocol. The proof follows
similarly to that of [32].

Lemma 4. During a stable view, a request by a correct client
will complete.

Proof. Since the primary is correct, a valid ORDER-REQUEST
message will be sent to all replicas. Since the network is in a
period of synchrony, the request will eventually complete, the
client receiving at least 2f + 1 replies. �

Lemma 5. For an unstable view v, either all requests will
complete, or the view will eventually change to a stable one.

7

Proof. Suppose a client makes a request during an unstable
view. Then, two things may happen: the primary provides
a consistent ordering to 2f + 1 replicas that respond to the
client before the client times out, in which case the request
completes, or it does not.

Suppose the client times out. Then, then all 2f + 1 correct
replicas will eventually receive the request directly from the
client (step C-2B), and those that have not already replied to
the client will forward it to the primary (step R-3), setting
a timeout. If no correct replicas receive the corresponding
ORDER-REQUEST, then all 2f + 1 of them will request a
view change, leading to all correct replicas initiating a view-
change. Otherwise, if at least one correct replica receives
the corresponding ORDER-REQUEST, then it will receive the
requests forwarded by the other replicas in step R-3, and
respond with the ORDER-REQUEST. Thus all correct replicas
will eventually receive the ORDER-REQUEST and respond to
the client if they have not already begun a view-change.

Therefore, either the request completes or all correct replicas
eventually begin a view-change.

If any correct replica commits to a view change, then there
are three possible outcomes:

1) All correct replicas change to a stable view.
2) All correct replicas change to an unstable view: the

client resends its request, which either completes or
results in a further view-change (as above).

3) At least one correct replica does not change view: if any
correct replica commits to a view-change, eventually so
will all others. If at least f + 1 correct replicas do not
receive confirmation of the new view before timing out,
then a further view-change will occur. Otherwise, when
the client resends its request, it will either complete or
result in a further view-change.

This cycle can repeat itself until the protocol reaches a pe-
riod of synchrony; at this point, view-changes will continue to
occur until either the faulty replicas allow the client’s requests
to complete, or a correct replica becomes primary. �

Theorem 2 (Liveness). All valid requests by a correct client
will eventually complete.

Proof. We proceed by exhaustion. Suppose the view is stable.
Then, by Lemma 4, a request will eventually complete.

Now suppose the view is not stable. Then, by Lemma 5, the
view will eventually become stable. If the request completes
before this occurs, then we are done. Otherwise, because
the client retries its request continuously, the request will
eventually arrive during a stable view, at which point by
Lemma 4 it will complete. �

V. PERFORMANCE EVALUATION

To assess the performance impact of our protocols, we cre-
ated an experimental setup, derived from [44], that runs proof-
of-concept implementations of Zyzzyva5 and SACZyzzyva
in a fault-free scenario. Note that SACZyzzyva cannot be
meaningfully compared with regular Zyzzyva here, as they
differ only in the presence of faults; we might induce a fault

ourselves, but in this case the performance of Zyzzyva is
mainly determined by the client timeout—that is, the time that
the client waits before broadcasting a commit certificate when
it does not receive responses from all replicas. We therefore
use Zyzzyva5 as a baseline for our experiments.

The trusted monotonic counter is implemented in an Intel
SGX enclave, backed by volatile memory. The counter value
is stored in an SGX-protected region of normal memory, and
set to zero at enclave initialization. The use of volatile mem-
ory provides high performance, and because a new counter
instance is used for each view, the loss of counter state in the
event of a transient fault is not catastrophic—if this happens,
a view-change will occur but the protocol will continue. All
protocols are implemented using the same BFT platform, and
so share networking and cryptographic code.

We made our measurements using Amazon EC2 [1] running
a single replica per instance, and a separate instance used
by the client. Because EC2 does not support SGX, the soft-
ware was compiled in simulation mode [3]. Separately, on a
standalone SGX-enabled machine, we confirmed that measure-
ments in SGX simulation mode are similar to measurements
using SGX.

We report medians rather than mean and standard deviation,
as the measured latencies are non-normal.

A. Performance within a single datacenter

In order to test performance on low-latency networks, we
carry out measurements on a set of replicas placed within
a single EC2 region, Frankfurt. The test setup consists of a
cluster of 50 m4.large and m5.large EC2 instances [1].

For each protocol, we measure the time it takes for a
transaction to complete, for increasing numbers of replicas,
averaged over 50 transaction attempts.

These results are shown in Figure 2a. SACZyzzyva requires
fewer replicas than Zyzzyva5 for a given level of fault-
tolerance, and therefore completes requests in less time. While
the number of replicas has a significant effect on latency—on
average, a marginal increase of 35µs/replica (SACZyzzyva)
and 37µs/replica (Zyzzyva5)—the latency is still relatively
small in an absolute sense. We will see in Section V-B that
latency is dominated by network delays even with a larger
number of replicas.

B. Performance across the internet

To assess the performance over high-latency networks such
as the internet, we measured the performance of SACZyzzyva
and Zyzzyva5 using the replicas divided between between
three EC2 regions, Ohio, Frankfurt, and Sydney in order to
approximate the performance of the protocols when organi-
cally deployed across the internet.

In each test region we provision EC2 instances of type
m4.large and m5.large—50 in Frankfurt and Ohio, and
42 in Sydney, the maximum number available to us.

As in Section V-A, we measure the response latency at the
client as a function of the number of tolerable faults. The
results are shown in Figure 2b. Here latencies are dominated

8

0 5 10 15 20 25
0

1

2

3

4

Byzantine faults tolerated

M
e
d

ia
n
 l

a
te

n
cy

 [
m

s
]

Zyzzyva5
SACZyzzyva

(a) Latency vs tolerated faults within the Frankfurt
AWS region.

0 10 20 30

100

40 50
0

200

300

400

Byzantine faults tolerated

M
e
d

ia
n
 l

a
te

n
cy

 [
m

s
]

SACZyzzyva

Zyzzyva5

(b) Latency vs tolerated faults across the internet.

Fig. 2: Latency vs tolerated faults. Each latency is the median
of 50 measurements. The number of tolerated faults f is varied
by modifying the number of replicas—f faults are tolerated
by 5f + 1 replicas for Zyzzyva5, and 3f + 1 replicas for
SACZyzzyva.

by speed-of-light delays, and increase linearly at rates of
25µs/replica (SACZyzzyva) and 8µs/replica (Zyzzyva5) re-
spectively.

In this particular geographic configuration, SACZyzzyva and
significantly reduce its latency by reducing the number of
replies needed: Zyzzyva5 needs responses from four fifths of
replicas for requests to complete, but SACZyzzyva requires
only two thirds of replicas to respond. This means that
SACZyzzyva does not need to wait for responses to arrive
across the slow trans-Pacific link as Zyzzyva does. Another
surprising effect is that the rate of latency increase per replica
is less than when the protocol is run on a low-latency network.
We hypothesize that this is because the large network latencies
mean that only the processing time of responses from the most
distant replicas affects the overall latency.

VI. OPTIMALITY IN THE HYBRID FAULT MODEL

Existing consensus protocols, to tolerate f faults, require
either 2f+1 parties with a trusted component or 3f+1 of any
kind, as shown in Figure 3; SACZyzzyva still requires 3f + 1
replicas despite the use of f + 1 trusted monotonic counters,

Non-fully-Byzantine-
Failure Nodes

All
Nodes

0 faults

1 fault

2 faults

1 4 7 3f +1

1

3

5

2f +1

f faults

...

..
.

3 nodes
3 with trusted

components

e.g. MinBFT
(f = 1)

4 nodes
no trusted

components

e.g. Zyzzyva
(f = 1)

Fig. 3: The level of fault tolerance achievable according to the
total number of nodes and the number of nodes that cannot
fail fully-Byzantine. Existing algorithms fall on the boundary
of this space, for which the optimum fault tolerance is shown
also in the interior.

and it is reasonable to ask whether these trusted components
might allow us to obtain a similar protocol that requires some
smaller number of nodes.

We show here that this is not the case; specifically, that it is
impossible to achieve both safety and liveness without either
3f+1 nodes in total, or 2f+1 nodes with trusted components.
This theoretical limit is shown graphically in Figure 3.

A. Failure model

We elaborate on the system model in Section III-B by
introducing some new terminology.

Partially-Byzantine failures. A party with a trusted com-
ponent can be split into two parts, as shown in Figure 4:

1) An untrusted part, which either behaves correctly or
suffers a Byzantine failure.

2) A trusted part, which communicates via the untrusted
part and either behaves correctly or suffers a crash
failure.

The result is that failures of a trusted-component-equipped
party are partially-Byzantine: though their untrusted compo-
nent can behave arbitrarily, the trusted component will follow
its programming, and thus other parties can remain assured of
at least some aspects of the behavior of the party.

Fully-Byzantine failures. We refer to the failures of a party
without a trusted component as fully-Byzantine: there are no
restrictions on the behavior such a party in the event of a
failure.

Crash failures. In his failure mode, nodes simply crash.
We refer to crash and partially-Byzantine failures together as
non-fully-Byzantine failures.

More formally, we consider a set of parties P executing a
protocol π, and let some subset B be fully-Byzantine in the
event of a failure, and its complement P\B be ‘non-fully-
Byzantine’.

9

Party p

Untrusted part:
Byzantine-failure
possible.

Messages

sent via

untrusted part

Trusted part:
crash-failure
only.

Fig. 4: Hybrid model of trusted-component-equipped parties
to the consensus protocol. Some parties will contain a trusted
component that is immune from Byzantine failure: an attacker
can make it crash or interfere with its communications, but
cannot access its internal state.

We allow up to f parties to fail according to their respective
failure modes: those failed parties that happen to be in in B
act under the full control of an adversary, whereas those failed
parties that are in P\B only give control of their untrusted
parts to the adversary.

B. Quorum properties

We will proceed by a quorum-intersection argument, de-
riving some properties of the quora of a consensus protocol,
and then finding the conditions under which they conflict.
However, we must re-examine this approach with the knowl-
edge that some nodes may only be partially-Byzantine. For
the avoidance of doubt, when we refer to an execution of a
protocol by a set of parties, this means that the correct parties
execute the protocol correctly, while other parties can behave
arbitrarily within the constraints of their failure model.

Definition 1 (Quorum). A set of parties Q ⊆ P is a quorum
for a consensus protocol π if, for any proposition m by a
proposer p ∈ Q, there exists some execution of π by Q in
which no correct party receives any messages from parties
P\Q outside Q, and some correct party q ∈ Q outputs m
after time at most T (Q).

Note that this definition does not require that the status of a
quorum be a determined by a simple threshold on the number
of parties. In the case of PBFT, any set of 2f + 1 parties is
a quorum, but some protocol might conceivably give greater
weight to nodes with trusted components, or nodes that are
known to have a lower probability of failure.

A subtle point here is that for a set Q to be a quorum,
it is required only that there exists an execution of π that
leads to an output in time at most T (Q); for example, we
might obtain some bound T (Q) by simply observing the
consensus protocol in normal operation without introducing
any adversarial delays. This differs from the case of Byzantine
quorum systems [35], where the set of quora is a design
parameter of the protocol.

The result is that, where the network model allows us
to delay messages by time T (Q), we can delay messages
between other nodes and some quorum, and there will be

some valid protocol execution that results in the correct parties
producing an output. We use this to show that the quora of
any consensus protocol with safety must have at least one
non-fully-Byzantine node in their intersection, mirroring the
D-Consistency property of a dissemination quorum system in
[35, Definition 5.1].

Lemma 6 (Quorum intersections cannot be fully-Byzantine).
Let Q1 and Q2 be quora of a consensus protocol π in the
weak-synchrony model. Then, Q1 ∩ Q2 contains at least one
non-fully-Byzantine node.

Proof. By the safety of π, if any two correct parties to π output
values m and m′ respectively, then m = m′. We show that
if Q1 ∩ Q2 contains no non-fully-Byzantine nodes, then it is
possible to force two correct parties to output distinct values.

Let us define the sets A = Q1 ∩ Q2, B = Q1\A, and
C = Q2\A, and consider three possible runs:

Run 1. Messages between Q1 and C are delayed for time
T (Q1). Let some p ∈ Q1 propose the value m. By the
definition of a quorum, there is at least one protocol execution
where a correct party in Q1 outputs m.

Run 2. Messages between Q2 and B are delayed for time
T (Q2). Let some p′ ∈ Q2 propose the value m′. By the
definition of a quorum, there is at least one protocol execution
where a correct party in Q2 outputs m′.

Run 3. Now suppose messages between B and C are
delayed for time max{T (Q1), T (Q2)}. Let some p ∈ B
propose the value m, and some p′ ∈ C propose the value m′,
m 6= m′. Suppose that Q1 ∩ Q2 = A contains no non-fully-
Byzantine nodes; then, we can have them behave arbitrarily.
In this case, we have the nodes in A behave as in Run 1
with respect to the nodes in B, and as in Run 2 with respect
to the nodes in C. As the correct replicas in B and C cannot
distinguish Run 3 from Runs 1 and 2 respectively, then there is
a protocol execution in which at least one correct node in each
quorum will output the distinct values m and m′ respectively,
thereby violating the assumption that the protocol is safe.

Hence, Q1 ∩ Q2 must contain at least one non-fully-
Byzantine node. �

The previous lemma gave a necessary—but not sufficient—
condition for safety in terms of quora. Now, we do the same
for liveness, mirroring the D-Availability property from [35,
Definition 5.1].

Lemma 7 (Sufficiently large sets must contain a quorum).
Let S ⊆ P be a subset of parties to a consensus protocol π
tolerating f crash failures. Then, if |S| ≥ |P | − f , S is a
quorum for π.

Proof. By the liveness of π, if a message m is correctly
proposed and the |P | − |S| ≤ f parties P\S all crash, then
all correct parties will eventually output some value. By the
safety of π, the value that they output is m. Therefore, H is
a quorum. �

Impossibility result With these two lemmas, we can now
show our main result.

10

Theorem 3. Let π be a consensus protocol amongst n parties
in the partial synchrony model, b of which, when they fail,
fail fully-Byzantine, and n− b of which, when they fail, either
crash or fail partially-Byzantine. Then, to tolerate f failures,
at least one of the following must be true:

n ≥ 3f + 1 (1)
n− b ≥ 2f + 1. (2)

Proof. We show that if neither condition holds, then if the
protocol has liveness, it is not safe for at least one allocation
of failures.

Consider arbitrary n ≤ 3f and n − b ≤ 2f . We proceed
by contradiction. Suppose π has liveness, and so Lemma 7
holds, Then, we seek some allocation of failures such that
two quora Q1 and Q2 have only fully-Byzantine failures in
their intersection.

Let

Q1 = {1, 2, . . . , n− f}
Q2 = {f + 1, f + 2, . . . , n} .

Because the numbering of the replicas is arbitrary, let us sup-
pose that parties B = {bn/2c−bb/2c+1, . . . , bn/2c+db/2e}
are subject to fully-Byzantine failure, as shown in Figure 5.

b parties
fully-Byzantine

0 n⌊n/2⌋ − ⌊b/2⌋ + 1 ⌊n/2⌋ + ⌈b/2⌉

non-fully-
Byzantine

non-fully-
Byzantine

Q₁ Q₂

n − ff+1

n−2f
common parties

Fig. 5: Constructed quora used in the proof of Theorem 3, and
the failure mode of each party. If the entire intersection can
fail fully-Byzantine, then the protocol is unsafe.

Both Q1 and Q2 have cardinality n − f , so by Lemma 7,
they are both quora.

Now, |Q1∩Q2| = n−2f ≤ f . Thus, we can make the entire
intersection faulty. For π to be safe—and thus Lemma 6 to
hold—this intersection must always contain at least one party
that does not fail fully-Byzantine. But, this is not the case:
b ≥ n− 2f , hence

min(B) = bn/2c − bb/2c+ 1

≤ bn/2c − bn/2− fc+ 1

≤ f + 1 = minQ2

and

max(B) = bn/2c+ db/2e
≥ bn/2c+ dn/2− fe
= n− f = maxQ1.

Since B = {minB, . . . ,maxB}, this implies Q1 ∩Q2 ⊆ B.

We therefore have two quora that are not guaranteed to
have a non-fully-Byzantine node in their intersection; this
contradicts Lemma 6, and thus π cannot have both liveness
and safety if both n ≤ 3f and n− b ≤ 2f . �

Therefore, it is impossible to outdo the usual requirement
of 3f + 1 replicas without 2f + 1 parties having access to
some component that cannot fail Byzantine.

VII. RELATED WORK

As SACZyzzyva is motivated by recent blockchain-based
distributed systems [10], [39], in this section we review
some research work that aims at scalability and efficiency for
distributed consensus protocol involving large populations.
Consensus protocols in blockchain scenarios. Fabric [6] and
Sawtooth [23] are two recent examples of distributed ledgers,
which support the execution of smart contracts. Both use a
consensus module to coordinate multiple parties. In particular,
Fabric can use a fault-tolerance protocol like such as BFT-
SMaRt [8], [41], while Sawtooth is mostly known for its
Proof-of-Elapsed-Time protocol, which is vastly more scalable
than BFT protocols but provides only eventual consistency.
Protocols with O(n) message complexity such as SACZyzzyva
and CoSi allow for high scalability, as in Sawtooth, but without
sacrificing finality.

Among other BFT protocols, there are also asynchronous
protocols such as Honey Badger [38] and BEAT [18], which do
not make any synchrony assumptions. However, this requires
relatively expensive primitives such as reliable broadcast and
threshold cryptography, and so such protocols are less efficient.

Byzcoin [27] is a hybrid Nakamoto/BFT consensus protocol
that uses the Bitcoin consensus protocol to select a group
of verifiers that is small enough in size to run a traditional
BFT algorithm. SACZyzzyva would serve well in this role,
as a replacement for the multisignature-based protocol used
by [27].
Protocols that reduce replica count. Several research works
recognize the importance of tackling the equivocation problem
(malicious replicas sending out different conflicting messages
to different recipients) in BFT protocols, since this allows
the reduction of the replica count to 2f + 1. MinBFT [15],
[40] proposes the use of a trusted monotonic counter to tag
the messages, making equivocation detectable. Similarly, [4]
shows how to implement a weak sequenced broadcast prim-
itive using a TPM. SACZyzzyva’s use of trusted monotonic
counters is closely related to MinBFT’s approach. A2M [12]
provides an abstraction for attested append only memory.
This is used to implement a hardware-based secure log for
outgoing messages; while incoming messages are accepted
only after the verification of a log attestation. CheapBFT [25]
and ReBFT [16] provide a way to reduce further the number
of replicas by making f of them passive, and activating
them only when it is required to handle faults and make
progress. SACZyzzyva puts a bridge between the world where
all replicas have a trusted component and the world where
only some of them have it, ultimately showing a protocol for
the heterogeneous setting.

11

Protocols with low communication complexity. Several
protocols have been proposed to reduce the message count.
Zyzzyva [28] and variants [21] avoid all-to-all broadcasts by
using speculative execution. Chain replication [45] has a low
message complexity since replicas are organized on a chain-
like communication topology and only use broadcasts in the
case of faults. Byzcoin [27] similarly uses a tree-like com-
munication topology, and uses collective signing to aggregate
messages from multiple nodes. FastBFT [32] improves on
that approach by means of a lightweight TEE-based message
aggregation technique. SACZyzzyva belongs to the former
category, using speculative execution to reduce the number of
messages, but without needing to make the trade-off between
fault-tolerance and robust performance as with Zyzzyva.
Lower bounds. BFT protocols suffer from several fundamen-
tal limitations. First, it has been shown [29] that asynchrnous
protocols require two phases to terminate. Speculative pro-
tocols like Zyzzyva or SACZyzzyva are able to terminate in
one phase since they make additional assumption (namely,
that rollback is possible). Second, BFT protocols typically
require a quadratic number of messages to terminate [17]. The
workaround for many protocols is to use cryptographic con-
structions which can err with positive probability [26]. Finally,
in [13] it has been shown that achieving non-equivocation is
actually insufficient for reducing the number of replicas, and
that transferable authentication of messages (e.g., using dig-
ital signatures) is additionally necessary. In SACZyzzyva the
trusted monotonic counter ensures non-equivocation, with an
attestation that is publicly verifiable (and so transferable) with
the aid of digital certificates from the hardware manufacturer.

VIII. DISCUSSION AND CONCLUSIONS

By incorporating a trusted monotonic counter into
Zyzzyva’s ordering process, we can eliminate its non-
speculative fallback without sacrificing fault-tolerance as pre-
vious solutions have. This removes one of the main disad-
vantages of the Zyzzyva family of protocols, namely that
without sacrificing fault-tolerance they are unable to perform
speculative execution in the presence of even a single fault.

SACZyzzyva achieves the resilience of Zyzzyva5 while
reducing the replica count from 5f+1 to 3f+1. MinZyzzyva
uses trusted monotonic counters in every replica, and so in
principle we might expect that MinZyzzyva’s non-speculative
fallback can be similarly eliminated. This is not entirely
straightforward, as we need to ensure that even a faulty replica
will disclose the requests that it has seen. We will address this
topic later in an extended version of this paper.

Our approach does not only apply to Zyzzyva-like pro-
tocols. For example, PBFT uses an all-to-all broadcast to
provide a canonical ordering of requests; when a trusted
monotonic counter is available, this step can be eliminated,
as in MinBFT [40, Figure 1], but without requiring a trusted
monotonic counter in every replica [44].

We have also shown that more than two-thirds of replicas
must have a trusted component in order to tolerate more than
b(n − 1)/3c faults. This means that our protocols achieve

optimal fault-tolerance, but shows that there is an important
part of the design space that remains unexplored.

IX. ACKNOWLEDGEMENTS

This work is supported in part by the Academy of Finland
(grant 309195) and by Intel (ICRI-CARS).

REFERENCES

[1] Amazon EC2. https://aws.amazon.com/ec2/.
[2] ARM security technology: Building a secure system using TrustZone

technology. White paper, ARM, 2009.
[3] Intel Software Guard Extensions SDK for Linux OS: Developer refer-

ence. Technical report, 2016.
[4] Ittai Abraham, Marcos K Aguilera, and Dahlia Malkhi. Fast asyn-

chronous consensus with optimal resilience. In International Symposium
on Distributed Computing, pages 4–19. Springer, 2010.

[5] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin.
Revisiting fast practical Byzantine fault tolerance: Thelma, Velma, and
Zelma. arXiv preprint arXiv:1801.10022, 2018.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, page 30. ACM, 2018.

[7] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The con-
sensus problem in fault-tolerant computing. ACM Computing Surveys,
25(2):171–220, 1993.

[8] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine
replication for the masses with BFT-SMART. In Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/IFIP International Con-
ference on, pages 355–362. IEEE, 2014.

[9] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A Kroll, and Edward W Felten. Sok: Research perspectives and
challenges for Bitcoin and cryptocurrencies. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 104–121. IEEE, 2015.

[10] Vitalik. Buterin. A next-generation smart contract and decentralized ap-
plication platform, 2014. https://github.com/ethereum/wiki/wiki/White-
Paper.

[11] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 173–186, Berkeley, CA, USA,
1999. USENIX Association.

[12] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatow-
icz. Attested append-only memory: Making adversaries stick to their
word. In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, pages 189–204, 2007.

[13] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.
On the (limited) power of non-equivocation. In Proceedings of the 2012
ACM symposium on Principles of distributed computing, pages 301–308.
ACM, 2012.

[14] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco
Marchetti. Making Byzantine fault tolerant systems tolerate Byzantine
faults. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, pages 153–168, 2009.

[15] Miguel Correia, Giuliana S Veronese, and Lau Cheuk Lung. Asyn-
chronous Byzantine consensus with 2f + 1 processes. In Proceedings
of the 2010 ACM symposium on applied computing, pages 475–480.
ACM, 2010.

[16] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. Resource-
efficient Byzantine fault tolerance. IEEE Transactions on Computers,
65(9):2807–2819, 2016.

[17] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange
for Byzantine agreement. J. ACM, 32(1):191–204, January 1985.

[18] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: Asynchronous
BFT made practical. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, pages
2028–2041, New York, NY, USA, 2018. ACM.

[19] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibil-
ity of distributed consensus with one faulty process. J. ACM, 32(2):374–
382, 1985.

[20] Trusted Computing Group. Trusted Platform Module specification, 2016.
https://trustedcomputinggroup.org/resource/tpm-library-specification/.

12

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://trustedcomputinggroup.org/resource/tpm-library-specification/

[21] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić.
The next 700 BFT protocols. In Proceedings of the 5th European
conference on Computer systems, pages 363–376. ACM, 2010.

[22] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas, Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. SBFT: a scalable decentralized trust infrastructure
for blockchains. arXiv preprint arXiv:1804.01626, 2018.

[23] Hyperledger. Sawtooth. www.hyperledger.org/projects/sawtooth.
[24] Intel. Software Guard Extensions (Intel SGX) Programming Refer-

ence, 2013. https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf.

[25] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon
Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. CheapBFT: Resource-efficient Byzantine fault tolerance.
In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 295–308, New York, NY, USA, 2012.
ACM.

[26] Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable
Byzantine agreement with an adaptive adversary. Journal of the ACM
(JACM), 58(4):18, 2011.

[27] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing Bitcoin security and
performance with strong consistency via collective signing. In 25th
USENIX Security Symposium (USENIX Security 16), pages 279–296,
Austin, TX, 2016. USENIX Association.

[28] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine fault tolerance. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007.
ACM.

[29] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed
Computing, 19(2):104–125, 2006.

[30] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382–401, 1982.

[31] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda.
TrInc: Small trusted hardware for large distributed systems. In Proceed-
ings of NSDI, volume 9, pages 1–14, 2009. Boston, MA, USA.

[32] Jian Liu, Wenting Li, Ghassan O Karame, and N. Asokan. Scalable
Byzantine consensus via hardware-assisted secret sharing. IEEE Trans-
actions on Computers, 2018.

[33] Nancy A Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[34] Dahlia Malkhi. Blockchain in the lens of BFT. In USENIX Annual

Technical Conference, 2018. Boston, MA, USA.
[35] Dahlia Malkhi and Michael Reiter. Byantine quorum systems. Dis-

tributed Computing, 11(4):203–213, 1998.
[36] J-P Martin and L Alvisi. Fast Byzantine consensus. In Proceedings

of the International Conference on Dependable Systems and Networks
(DSN), pages 402–411. IEEE, 2005.

[37] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE: Rollback
protection for trusted execution. IACR Cryptology ePrint Archive,
2017:48, 2017.

[38] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The honey badger of BFT protocols. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS ’16),
2016.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
http://www.bitcoin.org/bitcoin.pdf.

[40] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,
Lau Cheuk Lung, and Paulo Verissimo. Efficient Byzantine fault-
tolerance. IEEE Transactions on Computers, 62:16–30, 2013.

[41] Joao Sousa, Alysson Bessani, and Marko Vukolić. A Byzantine fault-
tolerant ordering service for the Hyperledger Fabric blockchain platform.
arXiv:1709.06921, 2017.

[42] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to
state continuity. In USENIX Security, volume 16, 2016. Austin, TX,
USA.

[43] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp
Jovanovic, Linus Gasser, Nicolas Gailly, Khoffi, Ismail, and Bryan
Ford. Keeping authorities “honest or bust” with decentralized witness
cosigning. In 37th IEEE Symposium on Security and Privacy, 2016.

[44] Koen Tange. High speed consensus with trusted execution environments.
Master’s thesis, Aalto University, 2018.

[45] Robbert Van Renesse and Fred B Schneider. Chain replication for
supporting high throughput and availability. In OSDI, volume 4, pages
91–104, 2004.

[46] Paulo Verı́ssimo. Travelling through wormholes: a new look at dis-
tributed systems models. ACM SIGACT News, 37(1):66–81, 2006.

[47] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In International Workshop on Open Problems in
Network Security, pages 112–125. Springer, 2015.

[48] Marko Vukolic. Eventually returning to strong consistency. IEEE Data
Eng. Bull., 39(1):39–44, 2016.

13

www.hyperledger.org/projects/sawtooth
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www.bitcoin.org/bitcoin.pdf

	I Introduction
	II Preliminaries
	II-A Zyzzyva
	II-B Hybridization and trusted components

	III Model and Problem Statement
	III-A Network Model
	III-B System Model
	III-C Problem Statement

	IV SACZyzzyva
	IV-A Agreement protocol
	IV-B View-change protocol
	IV-C Checkpointing Protocol
	IV-D Correctness
	IV-D1 Safety
	IV-D2 Liveness

	V Performance evaluation
	V-A Performance within a single datacenter
	V-B Performance across the internet

	VI Optimality in the hybrid fault model
	VI-A Failure model
	VI-B Quorum properties

	VII Related Work
	VIII Discussion and Conclusions
	IX Acknowledgements
	References

