
ar
X

iv
:1

90
1.

02
72

9v
5

 [
cs

.C
R

]
 9

 A
ug

 2
01

9

Attack-resistant Spanning Tree Construction in

Route-Restricted Overlay Networks

Martin Byrenheid

TU Dresden

martin.byrenheid@tu-dresden.de

Stefanie Roos

Delft University of Technology

s.roos@tudelft.nl

Thorsten Strufe

TU Dresden

thorsten.strufe@tu-dresden.de

Abstract—Nodes in route-restricted overlays have an im-
mutable set of neighbors, explicitly specified by their users. Pop-
ular examples include payment networks such as the Lightning
network as well as social overlays such as the Dark Freenet.
Routing algorithms are central to such overlays as they enable
communication between nodes that are not directly connected.
Recent results show that algorithms based on spanning trees
are the most promising provably efficient choice. However, all
suggested solutions fail to address how distributed spanning tree
algorithms can deal with active denial of service attacks by
malicious nodes.

In this work, we design a novel self-stabilizing spanning tree
construction algorithm that utilizes cryptographic signatures and
prove that it reduces the set of nodes affected by active attacks.
Our simulations substantiate this theoretical result with concrete
values based on real-world data sets. In particular, our results
indicate that our algorithm reduces the number of affected
nodes by up to 74% compared to state-of-the-art attack-resistant
spanning tree constructions.

I. INTRODUCTION

Payment or state channel networks like Lightning [13] are

the most promising approach to scaling blockchains, i.e.,

enabling blockchain-based payment systems to process tens

of thousands of transactions per second with nearly instant

confirmation. Participants in such payment networks establish

channels for trading assets such as digital coins. As estab-

lishing channels requires use of the blockchain, which is both

time- and cost-intensive, only nodes that frequently trade with

each other establish payment channels [6]. All other payments

pass from a sender to the receiver via multi-hop paths of

channels. It is essential to find these paths in an effective,

efficient, and privacy-preserving manner [16].

Similarly, social overlays require finding paths from a

peer to another in a network consisting only of connections

between trusted pairs of nodes to realize scalable and privacy-

preserving distributed services [3], [15].

Both payment channel networks and social overlays hence

share the need for a routing algorithm. A number of promising

algorithms for both networks rely on Breadth-First-Search

(BFS) spanning trees [11], [15], [16], as these permit finding

shortest paths and achieve the most efficient communication.

The underlying spanning tree construction algorithm deter-

mines the effectiveness, efficiency, and attack resilience of

the routing. Resistance to attacks by malicious parties who

aim to prevent the tree construction from converging towards

a correct spanning tree is particularly important. Preventing

the construction of a correct spanning tree results in routing

failures and hence constitutes a denial-of-service attack that

undermines communication. Such attacks are realistic for both

payment channel networks and social overlays. For payment

channel networks, adversarial parties may undermine the

routing of payments to sabotage competing operators. Social

overlays such as Freenet aim to protect communication from

censorship [3]. They clearly require attack resistance against

participants aiming to execute censorship in the form of a

denial-of-service attack.

In the context of route-restricted overlays with potentially

malicious participants, spanning tree algorithms have to fulfill

three requirements: (1) enable efficient communication by

providing short paths between honest nodes in the spanning

tree, (2) efficiently adapt to changes of the network structure,

and (3) maintain high availability in the presence of malicious

nodes that deliberately deviate from the construction protocol

in order keep the network from converging. Yet, the existing

work on spanning tree-based routing only evaluates the first

two aspects jointly, leaving protection against malicious be-

havior out of scope despite the likely existence of malicious

parties in both payment channel networks and social overlays.

In this work, we focus on achieving all three requirements

jointly, giving rise to two key contributions:

• We present a self-stabilizing algorithm for the compu-

tation of a BFS spanning tree that uses cryptographic

signatures to check the integrity of statements about the

distance to the root node. We prove that the fraction of

nodes reaching a stable, non-compromised state is higher

than in state-of-the-art protocols.

• We present results from an extensive simulation study

based on real-world data sets. The results demonstrate

that the construction of BFS spanning trees without cryp-

tographic measures is highly vulnerable to attacks, even

if the adversary establishes just a handful of connections

to honest nodes. Furthermore, we show that our algorithm

substantially raises the necessary number of such attack

connections to mislead a comparable number of nodes.

II. RELATED WORK

We review the existing work for routing in route-restricted

overlays to show that the design of attack-resistant spanning

trees is indeed the key problem to solve. Afterwards, we

consider the existing work on attack-resistant spanning tree

http://arxiv.org/abs/1901.02729v5

constructions, which we then improve upon in the following

sections.

A. Routing in route-restricted overlays

We define an overlay network, or just overlay, as a network

between multiple logically connected nodes that communicate

via a public infrastructure such as the Internet. In route-

restricted overlays, the logical connections between nodes

are explicitly managed by their respective users and hard or

even impossible to adapt to create a topology that benefits

routing. Apart from finding existing paths between nodes,

routing algorithms have to be efficient and scalable with

regard to delays for the delivery of messages, bandwidth and

memory consumption to provide adequate service for large-

scale peer-to-peer networks such as payment channel networks

and social overlays. Recent work [11], [15], [16] underlines

that only routing algorithms based on rooted spanning trees

provide the necessary efficiency. Other approaches either use

expensive flooding for path discovery [10] or setup virtual

tunnels [12], [14], [21], which, in face of network dynamics,

require costly maintenance [17]. Alternatively, some payment

channel networks of smaller size use source routing [13], [18],

which requires that each node maintains a snapshot of the

entire network. Source routing hence does not scale, as any

change to the network has to be broadcast.

In the context of social overlays, Hoefer et al. [8] suggested

using greedy embeddings based on rooted spanning trees to

enable efficient routing between nodes. The approach has

later been extended to preserve the privacy of users and offer

higher attack resistance [15]. However, their adversarial model

only considers the routing and not the construction of the

underlying spanning tree, which is an orthogonal approach

to the one taken in this paper.

For payment channel networks, Malavolta et al. [11] adapted

Landmark Routing [19], where a path between sender and

receiver is determined through an intermediate node via the

construction of a breadth-first-search tree rooted at the latter.

Roos et al. later on adapted the greedy embeddings to payment

channel networks [16]. Both works aim to achieve efficiency

and privacy and do not consider security.

It thus remains an open question, if and how such spanning

trees can be constructed in route-restricted overlays with

malicious participants.

B. Attack-resistant spanning tree construction

In the context of self-stabilization, Dubois, Masuzawa, and

Tixeuil proposed a BFS spanning tree algorithm and proved

that this algorithm guarantees that all nodes, except those that

are strictly closer to the adversary than to the root node,

will eventually converge to a correct state [5]. While the

algorithm by Dubois et al. offers provable attack resistance,

it considers a computationally unbounded attacker. Protecting

against such a strong adversary disregards mechanisms such as

digital signatures that can help to further decrease the number

of affected nodes.

In the context of distance vector routing, which implicitly

relies on BFS trees, Zapata and Asokan [23] proposed a

protocol that utilizes hash chains to keep malicious nodes from

lying about their distance from the root node. Furthermore,

their protocol employs cryptographic signatures to prevent

attacks on the mechanism for the detection of routing loops.

Subsequently, Hu et al. [9] proposed a protocol that uses

hash chains both against attacks on the reported distance

as well as against attacks on loop-detection, thus reducing

computational overhead compared to digital signatures. In

contrast to the work of Dubois et al., both approaches assume

a computationally bounded attacker. However, they do not

provide a formal proof of their security guarantees.

In summary, there exists no provably secure BFS tree

construction algorithm under the assumption of a computa-

tionally bounded attacker. We expect that such an algorithm

can provide protection to a larger set of nodes than the existing

information theoretically secure algorithms.

III. MODEL AND NOTATION

We now formalize route-restricted overlays as well as the

problem of computing a breadth-first-search tree in the context

of self-stabilization.

A. System model

We model a route-restricted overlay S = (V,E) as a finite set

V of n nodes and a set of bidirectional communication links

E ⊂ V×V . For each node u, the set N(u) = {v | {u, v} ∈ E}
denotes the neighbors of u.

We build upon the shared memory model where each pair

of nodes {u, v} ∈ E can communicate via shared registers

ruv and rvu, where u is only allowed to write into ruv and

read from rvu. We thus call ruv u’s output register and rvu
its input register.

Please note that we use the shared memory model solely to

simplify formal analysis, as it omits the modeling of message

transmission. We consider this to be reasonable, as we focus on

malicious node behavior and neither link failures nor delays.

For the computation of a BFS tree, every node u holds the

following elements:

• IDu, a fixed, globally unique ID from a set ID,

• levelu, a non-negative integer variable denoting u’s cur-

rent, assumed distance to the root,

• pIDu, a variable holding the ID of the node that is

currently considered parent, in other words, the neighbor

of u on the path to the root in the subgraph corresponding

to the tree.

Furthermore, each communication register holds two values

ID and level such that each output register of a node u
holds u’s ID as well as its current level-value. Each input

register rvu of a node u accordingly holds u’s current view

of v’s ID and level-value. In the following, we denote the

set Nmin(u) = {v ∈ N(u)|∀n ∈ N(u) : levelv ≤ leveln}
as minimal neighbors of u. Parent nodes are always minimal

neighbors in BFS spanning trees.

We refer to the values currently held by the level- and pID-

variable of a node u as well as the register contents, at one

point in time, as the state of u. The state of u is said to be

legitimate if it fulfills Def. 1.

Definition 1. (Legitimate state) Let S = (V,E) be a route-

restricted overlay with a distinguished root node l ∈ V with

ID-value IDL ∈ ID. The state of a node u whose minimal

neighbors have level lmin is called legitimate if it fulfills the

following conditions:

1) levelu = 0 iff IDu = IDL

2) levelu = lmin + 1 if IDu 6= IDL

3) pIDu = IDu iff IDu = IDL

4) ∃vmin ∈ Nmin(u) : pIDu = IDvmin
if IDu 6= IDL

B. Adversary model

In this work, we consider adversaries who aim to perform

large-scale denial of service attacks. For payment networks,

they might be competing payment network operators who want

to attract more users by rendering other networks unusable.

For social overlays, the adversary might aim to weaken the

privacy [1] or degrade utility so that users move to communi-

cation services with weaker privacy protection.

Allowing multiple adversaries to act in concert strictly

increases their power. We hence assume a single, collective

adversary who controls a set B of malicious (or adversarial)

nodes and is able to set up a bounded number of connections

between these malicious and honest nodes H . The motivation

for these bounds is the difficulty of large-scale social engineer-

ing that will only be successful for a subset of participants.

During an attack, each malicious node may report incorrect

data to the adjacent honest nodes in order to keep them from

reaching or remaining in a legitimate state. Thus, malicious

nodes may set their output registers arbitrarily and report

different ID- and level-values to different neighbors.

However, we assume that the adversary does not know all

honest nodes and their internal connections a priori. Hence, he

cannot choose which nodes will be malicious or which nodes

will connect to malicious nodes. Given that social overlay

and payment networks are large-scale and dynamic distributed

systems with participants from a multitude of countries, we

consider this assumption to be realistic.

For all practical purposes, the Dolev-Yao model, which

assumes an adversary who is limited to polynomial-time

attacks – and hence unable to break secure cryptographic

primitives – has been accepted as realistic [4]. Hence, we

aim for algorithms that protect against adversaries that are

polynomially bounded.

C. Formalization of resilience and performance

We formalize the attack resistance of a spanning tree

construction protocol via the concept of topology-aware (TA)

strict stabilization [5]. To do so, we express the state of every

node in the overlay at one point in time as a configuration γ.

Following the idea of self-stabilization, we consider that

every node starts in an arbitrary state. Thus, nodes may change

their state over time to reach a legitimate state. The sequence

of configurations γ0, γ1, . . . is called a computation Γ . The

transition from γt to γt+1 is called a step and corresponds to

at least one node processing the data in its input register and

writing corresponding data into its output register.

Note that self-stabilizing algorithms never terminate but

repeatedly update their state and communication registers.

However, a node executing a step may not actually change

the values of its variables or output registers (e.g., because its

current state is legitimate).

a) Network dynamics: Route-restricted overlays are dy-

namic: nodes may join and leave the system, connections

between nodes are established or torn down over time. An

overlay S = (V,E) changes into an overlay S′ = (V ′, E′)
with a potentially different network size as a consequence

of such events. According to literature, we call such changes

churn events. To account for the fact that computations are

defined for a fixed system S, a churn event interrupts a

computation on S and starts a new computation on S′.

At the beginning of the new computation, all nodes in V ∩V ′

have the same state as at the end of the computation on S,

reflecting the fact that they cannot detect the change until they

read from their registers. The remaining nodes in V ′ may

start in an arbitrary initial state. In route-restricted networks,

the initial state includes information about the register of

neighbors, which the new node will eventually write to.

b) Containment of attacks: TA strict stabilization for a

set SB ⊂ H of honest nodes denotes that every honest node u
except those in the set SB eventually reaches and remains in

a legitimate state. We call the set SB the containment area of

S, because SB (also called lost nodes) represents the part of

the network where the adversary can keep the state of nodes

from converging, whereas all nodes outside of SB (called safe

nodes) will eventually reach and remain in a legitimate state.

We now formalize the concept of a node having only honest

ancestors on its path to the root.

Definition 2. (Root-directed path) Given a route-restricted

overlay S and a configuration γ, the root-directed path Pu

of a node u is a finite sequence v1, v2, . . . , vn+1 of nodes in

a legitimate state such that vn+1 = u and pIDvi+1
= IDvi

for all 1 ≤ i ≤ n and either pIDv1 = IDv1 (the legitimate

root) or v1 is a malicious node. We call u ill-directed if vi is

malicious for any 1 ≤ i ≤ n and well-directed otherwise.

As long as a node is ill-directed, it is subject to changes

in the level-value reported by the adversarial node on its

root-directed path. Thus, it is not guaranteed to remain in a

legitimate state. However, an ill-directed node is not inherently

a lost node, because it might eventually become well-directed

as the execution proceeds.

We express the situation that a node’s state has converged

and remains unaffected by attacks as follows:

Definition 3. (Stable state) The state of a node u is said to

be stable if it is legitimate and u never changes its levelu-

and pIDu-variable as long as no churn event occurs. In

particular, actions performed by malicious nodes do not affect

u. A configuration γ is called SB-stable if the state of every

node in V \ SB is stable.

We define a SB-topology-aware-strictly-stabilizing (SB-TA-

strictly-stabilizing) algorithm as follows:

Definition 4. (SB-TA-strictly-stabilizing algorithm) A dis-

tributed algorithm A is SB-TA-strictly-stabilizing if and only

if starting from an arbitrary configuration, every execution

contains a SB-stable configuration.

c) Time complexity: To be able to reason about the time

complexity that a distributed algorithm requires to reach a le-

gitimate state, we use the concept of asynchronous rounds. The

first asynchronous round of a computation Γ is the shortest

prefix Γ ′ of Γ such that each node has read from and wrote

to all of its registers at least once. The second asynchronous

round then is the first asynchronous round of the computation

following Γ ′ and so on. In other words, the length of an

asynchronous round corresponds to the maximum amount of

time needed for the slowest node (regarding computational

speed) to process its inputs and write the corresponding

outputs.

IV. SIGNATURE-BASED COMPUTATION OF BFS TREES

The state-of-the-art algorithm for the construction of BFS trees

proposed by Dubois et al. [5] ensures that all honest nodes

whose distance from the closest malicious node is higher or

equal than their distance from the root will eventually reach

a stable state. As the set of nodes that do not reach a stable

state is often quite large for this algorithm, we investigate

algorithms that achieve a higher number of stable nodes. In

contract to previous work, we assume our adversary to be

computationally bounded.

In our design, each node u holds a public/private key pair

pu, su of an asymmetric cryptosystem. The public key pu of

each node u is stored in the ID-register and the secret su is

stored in a new register called secretu. The given leader ID

IDL then is the public key of the corresponding root node,

implicitly choosing it as leader. Nodes do not require global

knowledge of all other nodes’ keys.
a) Assumptions: Four assumptions underlie our design:

• There is an honest root node whose key is known to all

nodes (e.g., bank in a payment network [11]).

• The clocks of any pair of nodes differ at most by a

globally known constant ∆C .

• The time needed for one iteration of each node’s main

loop is bounded by a globally known constant ∆E .

• The delay needed until a value written into an output

register is available in the corresponding input register is

bounded by a globally known constant ∆D.

The first assumption is in accordance with the existing liter-

ature on tree-based routing in route-restricted overlays [11],

[15], [16]. The remaining assumptions allow us to compute

expiration times for the data contained in the input register

of each node, thus keeping malicious nodes from reporting

outdated values obtained in previous computations.

b) Level attestation: To keep malicious nodes from ly-

ing about their distance to the root, we add a levelAtt-
variable to each node u, which holds a finite sequence P =
(p1, t1, sig1), (p2, t2, sig2), . . . , (pn, tn, sign) of tuples called

a level attestation. The elements pi, ti, and sigi denote a public

key, a timestamp, and a cryptographic signature, respectively.

We say that such a sequence is valid for node u at time t if

the following conditions are satisfied:

1) p1 = IDL,

2) ∀i ∈ {1, .., n} : t− ti ≤ ∆C + (∆D +∆E)(n− i+ 1),
3) ∀i ∈ {1, .., n− 1} : sigi is a signature over pi+1||ti that

is valid for pi,
4) sign holds a signature over IDu||tn that is valid for pn,

where a||b denotes the concatenation of a and b.
Condition (1) ensures that the first tuple of the attestation

has indeed been generated by the root node. Condition (2)

ensures that adversarial nodes cannot use obsolete attestations

(e.g., from an earlier computation) forever. Condition (3) and

(4) ensure that the signatures are computed correctly.

c) Link signatures: Additional to the level attestation,

each node assigns a randomly chosen neighbor ID nIDv

to each neighbor v once in the beginning of the algorithm.

During the computation, every honest node tells each neighbor

its respective neighbor ID. Whenever a neighbor of a node

u transmits a new level attestation, it also has to send a

corresponding neighbor signature that includes its neighbor

ID assigned by u. Given a valid level attestation P with the

last element (p, t, sig) and a cryptographic hash function h, a

neighbor signature s is valid for node u and neighbor v if s
is a valid signature over nIDv||h(P) for p. This addendum

keeps malicious nodes from sending a shortened version of an

attestation received by an honest neighbor.

d) Adaptive neighbor preference: To ensure stabilization

in the case that a node has multiple neighbors that are minimal

according to Def. 1, each node u assigns a unique number

between 0 and |N(u)| − 1 to each neighbor and chooses

the minimal neighbor with the lowest number as parent. The

number of the current parent is kept in a variable prnt. As

the preferred neighbor may be ill-directed, the algorithm of

Dubois et al. [5] adaptively changes which neighbor will be

preferred whenever a node changes its parent. We implemented

this strategy as follows: We add an offset counter istart ∈
{0, .., |N(u)| − 1} such that u traverses its neighbors from

istart to (|N(u)|−1)+ istart mod |N(u)|. Whenever a node

u changes its parent from the neighbor with number prnt to

a neighbor with a number prnt′ that, counting from istart
with wraparound, comes after prnt, then u will set istart to

prnt′, thus favoring prnt′ over prnt in the future. To compare

nodes’ positions a and b with regard to istart, we say that

a ≺istart
b if either i) istart ≤ a < b, ii) b < istart ≤ a or

iii) a < b < istart. Informally, a ≺istart
b indicates that b be

will be reached later than a when counting from istart modulo

|N(u)|.
e) Spanning Tree Algorithm: Algorithm 1 displays the

pseudocode for our spanning tree construction algorithm: Each

output register of every node u holds 5 elements, namely

Algorithm 1: Attestation-based spanning tree on node u

1 while true do
2 foreach i in N(u) do
3 lriu := read(riu)

4 ts := getCurrentTime()
5 istart := istart mod |N(u)|
6 if ID = IDL then
7 pID := ID
8 level := 0
9 levelAtt := nil

10 else
11 parentFound := false
12 Nvalid := {i ∈ N(u) |

isValidAtt(lriu .levelAtt , lriu .level + 1) ∧
isValidLink(lriu .levelAtt , lriu .sigadj)}

13 level := min{lriu.level | i ∈ Nvalid}+ 1
14 foreach i in 1..|N(u)| do
15 j := i+ istart mod |N(u)|
16 if not parentFound and N(j) ∈ Nvalid and

level = lrju.level + 1 then
17 if prnt ≺istart j then
18 istart := j

19 prnt := j
20 pID := lrju.ID
21 levelAtt := lrju.levelAtt
22 parentFound := true

23 foreach i in N(u) do
24 siglvl := sign(lriu.ID||ts)
25 exAtt := append(levelAtt, (ID, ts, siglvl))
26 sigadj := sign(lriu.nID||h(exAtt))
27 write(rui) := (ID, level, exAtt,nIDi, sigadj)

the ID- and level-value of u as well as the levelAtt- and

nID-value together with the neighbor signature sigadj for the

corresponding neighbor. The algorithm leverages the following

cryptographic functions: The sign-function uses the key stored

in the secret-register to compute a signature sig. The function

h is a cryptographic hash function.

Every node periodically reads the content of each input reg-

ister, processes the content, and writes corresponding outputs

to output registers. The leader node first ensures that its pID-

and level-value are set correctly (Line 7–8). Subsequently, it

generates a level attestation for each neighbor and writes its

own ID and level-value together with the respective nID-

value, level attestation, and neighbor signature into the corre-

sponding output register (Line 24–27). Because the levelAtt-
variable is set to nil, the append -operation in Line 25 just

returns its second argument.

During the processing stage (Line 11–22), an honest non-

leader node recomputes its current pID-, prnt-, level- and

levelAtt-value. It first checks the validity of the received level

attestations and neighbor signatures and computes the set of

valid neighbors in Line 12. The isV alidAtt-function checks

whether a given level attestation is valid, as defined above. If

the given level attestation is valid, isV alidAtt further checks

whether the length of the attestation equals the given level

value and returns false in case of a mismatch. Given this check

succeeds, the isV alidLink-function checks if a given sigadj-

value is valid for the corresponding neighbor. If a parent node

with a valid level attestation has been chosen, the node first

checks if its previous parent became either non-minimal or

its attestation became invalid and if so, sets istart to j. It is

possible that prnt might hold a value larger than |N(u)| − 1
(e.g. because its former parent had this number and left the

overlay). prnt will then be set to j that holds a value from

the range {0, .., |N(u)| − 1} (Line 15). Afterwards, it sets its

prnt-, pID- and levelAtt-value accordingly. Finally, the node

computes the corresponding level attestation for each neighbor

and writes it into the respective output register (Line 24–27).

V. ANALYSIS

We prove that, given an honest root node r, Algorithm 1 is

S′
B-TA-strictly-stabilizing with

S′
B = {u ∈ H | ∃b ∈ B : dBmin + dS(b, u)− 1 ≤ dS(r, u)}

(1)

where dBmin = minb∈B dS(r, b). The “-1” stems from the

fact that a malicious node can copy the outputs of an honest

neighbor into its output registers (hence pretending to be

its own predecessor), thus avoiding the need to append an

attestation tuple and hence increase its maximum level.

Furthermore, let dHS (u, v) denote the length of the shortest

path between u and v in S that does not contain a malicious

node. If no such path exists, we set dHS (u, v) = ∞. If

malicious nodes repeatedly change their outputs in order to de-

stabilize honest nodes, we show that our algorithm guarantees

that all nodes in the set

S′
L = {u ∈ H | ∃b ∈ B : dBmin + dS(b, u)− 1 < dHS (r, u)}

(2)

eventually reach a stable state. Informally, we show that S′
L ⊂

S′
B is the containment area for an adversary that focuses on

disrupting convergence by changing its behavior. However, for

an arbitrary adversary aiming to maximize the fraction of ill-

directed nodes, we achieve only a smaller containment area of

S′
B .

Since the system starts in an arbitrary state, a malicious

node may initially hold a level attestation that is valid but for

which no corresponding path in the overlay exists. We hence

say that a level attestation (p1, t1, sig1), . . . , (pn, tn, sign) is

consistent for node u if it is invalid or if there exists a path

v1, . . . , vn in the system such that (1) pi is the public key of vi
for all 1 ≤ i ≤ n and (2) u either is a neighbor of vn or both

u and vn are neighbors of a malicious node b. Otherwise, we

say that the attestation is inconsistent. A configuration is called

consistent if the levelAtt-values as well as the in- and output-

registers of all nodes only contain consistent level attestations.

In the following, we assume that at the beginning of a

computation at time t, all timestamps of every inconsistent

attestation are at most t + ∆C . We consider this to be

reasonable since t + ∆C is the highest value that a honest

node (including the root) may use as timestamp and thus a

malicious node cannot have a valid attestation with a higher

timestamp from a previous computation. As a consequence,

every inconsistent attestation of length n becomes invalid after

at most ∆C + (∆D + ∆E)n time units. So, every route-

restricted overlay S with diameter diam(S) reaches a con-

sistent configuration after at most ∆C +(∆D +∆E)diam(S)
time units.

A. Proof of S′
B-TA-strict stabilization

We start the actual proof by establishing key properties of

level attestation to later leverage in the proof. In a nutshell,

malicious nodes can only influence keys that are used after

the dBmin-th element of a valid and consistent level attestation

P but before the |P | − dBu,min-th element with dBu,min =
minb∈B{dS(u, b)}. Based on this result, we can then show

that a node is well-directed if their levelAtt-value is of length

less than dBmin + dBu,min − 1. Convergence to a stable state

for all nodes in S′
B follows from the fact that the system at

some point reaches a state when these nodes have a valid and

consistent levelAtt-value with minimal levels and hence will

not change parents anymore.

Lemma 1. Let P = (p1, t1, sig1), . . . , (pn, tn, sign) be a level

attestation. Consider a node u such that sign is a signature

over IDu||tn. At time t, we have t− ti ≤ ∆C +(∆D +∆E) ·
(n− i+1) for all 1 ≤ i ≤ n and the computation has started

at least ∆C + (∆D +∆E) · n time units before, so that P is

consistent for u. If P is valid, then the following two statements

hold:

1) For j ≤ dBmin, pj is the public key of an honest node v
and dS(v, r) < j.

2) For j > n−dBmin,u+1, pj is the public key of an honest

node v and dS(v, u) ≤ n− j + 1.

Proof. We show the first claim by induction on j. As p1
always needs to be the public key of the leader and the

leader is honest by assumption, the claim holds for j = 1.

Let 1 < j ≤ dBmin and assume the claim holds for j − 1.

Then sigj−1 is a signature over pj ||tj−1 using the secret

key sj−1 associated with pj−1. By induction hypothesis,

pj−1 is the public key of an honest node w with distance

dS(w, r) < j − 1 ≤ dBmin − 1. dS(w, r) < dBmin − 1 implies

that w has only honest neighbors, which only write their own

keys to its output register for w to sign.

Furthermore, because w itself is honest, w only signs keys

and timestamps that it reads from its input registers. Thus,

for pj ||tj−1 to be signed by w, pj needs to be the key of

an honest neighbor v of w. Given that w’s distance to the

root is less than j − 1 by induction hypothesis, we also have

dS(v, r) ≤ dS(w, r) + 1 < j. This proves the first claim.

Similarly, we show the second claim by induction on j′ =
n− j + 1. Note that if dBmin,u = 1, i.e., u is the neighbor of

a malicious node, then there is nothing to show as there is no

pj such that j > n− dBmin,u + 1. So, we assume dBmin,u > 1.

For j′ = 1, we only have to consider the key pn. As u is

honest, it only writes its own key into output registers to be

signed by neighbors. If dBmin,u > 1, all of u’s neighbors are

honest. They would hence only sign u’s key concatenated with

a timestamp with their own, meaning that any node v with

public key pn is indeed an honest node and dS(v, u) = 1.

Consider 1 < j′ < dBmin,u and assume the claim holds for

j′ − 1. Hence, pn−(j′−1)+1 is the public key of an honest

node w with dS(w, u) ≤ j′ − 1. w writes its public key and a

timestamp to the registers that will be read by its neighbors. As

j′ − 1 < dBmin,u − 1, these neighbors are honest and will sign

the key and timestamp with their own keys. Hence, any public

key pn−j′+1 whose corresponding secret key has been used

to sign pn−(j′−1)+1||tn−(j′−1) belongs to an honest neighbor

v of w with dS(v, u) ≤ dS(w, u) + 1 = j′. So, the second

claim follows by induction as well.

Lemma 2. Let the computation have started a least ∆C +
(∆D +∆E) · n time units before and u ∈ V \ S′

B be a node

with a valid levelAtt-value of length n < dBmin + dBu,min− 1.

Then u is well-directed.

Proof. Because ∆C +(∆D +∆E) ·n time units have passed,

the levelAtt-value of u is also consistent. By Lemma 1, the

first dBmin public keys have to belong to honest nodes and the

last dBu,min − 1 keys have to belong to honest nodes as well.

Hence, if n < dBmin + dBu,min − 1, all keys pj have to belong

to an honest node vj for 1 ≤ j ≤ n. Set vn+1 = u.

u can only be ill-directed if at least one vj has their pID-

value set to a key provided by a malicious node. First, consider

the case that j < dBmin. By Lemma 1, dS(vj , r) < dBmin − 1,

meaning that vj only has honest neighbors. Honest nodes only

write their own keys in the register of their neighbors, so that

vj can hence only set its pID-value to one of their keys. Now,

consider j > dBmin, i.e., n−j+1 < n−dBmin+1 ≤ dBu,min−1.

According to Lemma 1, dS(vj , u) ≤ n− j + 1 < dBu,min − 1.

Again, vj has only honest neighbors and can hence only set

its pID-value to one of their keys.

It remains to consider the case j = dBmin. By the first part

of the proof, vj is the only node that can have malicious

neighbors. Assume that vj has set its pID to a malicious

neighbor b. For u’s levelAtt to correspond to a valid attes-

tation, vj−1 has to sign pj ||tj−1 resulting in sigj−1, append

(pj−1, tj−1, sigj−1) to the attestation, and write the attestation

to the register corresponding to the neighbor that wrote pj
to the register. Because vj−1 has only honest neighbors, the

respective neighbor has to be vj , the only honest node that

would claim pj as its key. So, for u’s levelAtt-value to

include (pj−1, tj−1, sigj−1), vj must have read the register

and disseminated (pj−1, tj−1, sigj−1) as part of a level at-

testation. Consequently, vj is aware that vj−1 offers a root-

directed path of supposed length j − 2 ≤ dBmin − 2. For

vj to choose a different parent, b has to produce a valid

attestation P̃ = (p̃1, t̃1, s̃ig1), . . . , (p̃l, t̃l, s̃igl) with l ≤ j − 1
and s̃igl being a signature over IDvj ||t̃l. Furthermore, b has

to ensure that the isV alidLink-function returns true. The

neighbor-related signature has to be signed by the secret key

s̃l corresponding to p̃l. As b can not forge signatures, P̃ has

to be a (potentially shortened) attestation that b has read from

one of its input registers. For such an attestation, p̃l belongs

to an honest node w at distance at most l − 1 from the root

by Lemma 1. Due to dHS (w, r) ≤ l− 1 < dBmin − 1, w has no

malicious neighbors. By Algorithm 1, w only writes signatures

over nIDw||h(L) for some L to registers of neighbors. Being

honest, these neighbors do not disseminate the respective

signatures. As a consequence, b can not obtain the required

neighbor signature and hence vj does not accept any attestation

from b as its levelAtt-value.

In summary, none of the nodes vj has its pID-value set to

a key provided by a malicious node and hence u is indeed

well-directed.

Theorem 1. Given any route-restricted overlay S with diam-

eter diam(S), a computation of Algorithm 1 starting from

an arbitrary configuration reaches a consistent configuration

after at most ∆C +(∆D+∆E) ·diam(S) time units. Further-

more the computation will reach a S′
B-stable configuration γ∗

within at most diam(S) + 1 additional asynchronous rounds.

Thus, Algorithm 1 is S′
B-TA-strictly-stabilizing.

Proof. Arrival at a consistent configuration follows from the

assumption that the timestamps of every inconsistent level

attestation do not exceed the starting time of the computation

by more than ∆C time units, as explained at the beginning of

this section. To prove the subsequent convergence to a S′
B-

stable configuration, we first show that after l+ 1 rounds, all

nodes u ∈ V \S′
B within distance l of the root are well-directed

and have valid levelAtt-values of length l. The properties from

Definition 1 follow. Last, we show that these nodes remain

well-directed.

After the first round, the root has written its information to

all registers. After the second round, the neighbors of the root

have processed these registers. Hence, each such neighbor u
will set its levelAtt-value to a valid attestation of length 1. If

u ∈ V \S′
B , the distance dS(u, b) ≥ 2 for any malicious node

b and hence by Lemma 2, u is well-directed. So, the claim

holds for l = 1.

Assume the claim holds for l, i.e., after l + 1 rounds, all

nodes v ∈ V \ S′
B within distance l of the root are well-

directed and have valid levelAtt-values of l. They know the

IDs their neighbors have assigned to them as l > 1 indicates

that they have read it from the register at least once. As a

consequence, they can construct a valid attestation of length

l + 1 for each neighbor w as well as the necessary signature

over the neighbor ID nIDw. They write this information to

the register rvw . After l + 1 rounds, any node u ∈ V \ S′
B at

distance l+1 from the root has read the register corresponding

to its neighbors at distance l to the root. As a consequence,

u’s levelAtt-value is of length l+1. As u ∈ V \S′
B , Lemma 2

shows that u is well-directed. It follows by induction that

within diam(S) rounds, all nodes u ∈ V \ S′
B are well-

directed.

It remains to prove that the nodes in V \ S′
B remain well-

directed. To become ill-directed, a node has to change its

pID-value. Let u be the first node to change its pID-value.

According to Algorithm 1, u selects the parent from those

neighbors that provide the shortest valid attestation and a valid

neighbor signature. By assumption, u breaks ties consistently,

meaning u only changes its parent if either i) u’s previous

parent does not provide any valid attestation of the shortest

length or provides an invalid neighbor signature, or ii) a

neighbor that is not the current parent writes an attestation

of a shorter length than u’s levelAtt-value to its register and

the content of the register passes the two validity checks.

In order to conclude that neither i) or ii) are possible,

consider the following: Let v be u’s parent and note that

v ∈ V \S′
B by the definition of S′

B as dS(v, r) = dS(u, r)−1
and dS(v, b) ≥ dS(u, b)−1 for all malicious nodes b. It follows

recursively that all nodes on a root-directed path of u are in

V \ S′
B . Case i) would imply that a node on the root-directed

path changed its parent, as honest nodes do not write invalid

attestations or neighbor signatures to registers. However, such

a parent change contradicts the definition of u as the first node

in V \S′
B to change its parent. If case ii) holds, by Lemma 1,

u has to be well-directed after its parent change. Hence, its

new parent w is an honest node. By the above, w and all

nodes on the new root-directed path are in V \S′
B and at least

one of them has to have changed its parent for w to write

an attestation of a different length. Again, such a change in

parent is a contradiction to the definition of u. Consequently,

nodes u ∈ V \ S′
B do not change their pID-value for the rest

of the computation and remain well-directed.

B. Proof of stabilization for S′
L under attacks

Building upon Theorem 1, we now show that under an

attacker that frequently changes the output values of its nodes,

all nodes u with dBmin − dHS (b, u) − 1 = dHS (r, u) eventually

reach a stable state as well. Our result requires the concept

of a SB-disturbance, a concept similar to Dubois et al. [5]’s

SB-disruption.

Definition 5. (SB-disturbance) Two consecutive configura-

tions γ0 and γ1 are a SB-disturbance if at least one node

u ∈ V \ SB changes its levelu- or pID-variable.

In contrast to a SB-disruption, a SB-disturbance does not

assume that all nodes in V \ SB have a legitimate state.

Theorem 2. Given any route-restricted overlay S with di-

ameter diam(S) and degsum =
∑

u∈S′

B
\S′

L
|N(u)|, a com-

putation of Algorithm 1 starting from an arbitrary con-

figuration reaches a S′
B-stable configuration γ+ within at

most ∆C + (∆D + ∆E) · diam(S) time units plus at most

diam(S)+ 1 asynchronous rounds. After reaching the config-

uration γ+, S will reach a S′
L-stable configuration within at

most (2degsum − |S′
B \ S′

L|) S
′
L-disturbances.

Proof. The S′
B-stability after ∆C + (∆D + ∆E) · diam(S)

time units plus diam(S) + 1 asynchronous rounds follows

from Theorem1. In order to have S′
L-stability, all nodes in

S′
B \ S′

L have to reach a stable and legitimate state.

Let u ∈ S′
B \ S′

L. The proof consists of showing the

following four claims:

1) u’s level-value is levelu = dHS (u, r) for any configura-

tion after γ+.

2) If u has a parent v such that v is a node on a path from u
to the root of length dHS (u, r) consisting of only honest

nodes, then v ∈ V \ S′
L and u will not change its pID-

value in any subsequent configuration if prnt = istart.
3) u will choose such a node v as a parent after at most

(2|N(u)| − 1) S′
L-disturbances that affect u, i.e., in

which u changes its level or parent.

4) The maximal number of S′
L-disturbances until u is in a

stable and legitimate state is 2degsum − |S′
B \ S′

L|.

By definition of S′
B and S′

L, u has at least one path con-

sisting of only honest nodes to the root r. Furthermore,

as dBu,min + dBmin − 1 = dHS (u, r), u never receives a

valid level attestation of length less than dHS (u, r). So, we

claim that after diam(S) + 1 asynchronous rounds, u has to

have level dHS (u, r). The previous claim obviously holds for

dHS (u, r) = 1 and by induction holds for all dHS (u, r) as any

honest neighbor v of u with dHS (v, r) = dHS (u, r) − 1 sends

a valid level attestation to u. Hence, u’s level-value does not

change and the first claim holds.

For the second claim, consider Algorithm 1. u always

selects the minimal neighbor whose unique index is reached

first. If prnt = istart, u first considers its current parent, which

is v (Line 15). u only replaces v if it does not receive a valid

attestation of length dHS (v, r) and link signature from v. As v is

honest, it does not send invalid attestations or link signatures.

So, a change would only happen if v changes its level-value.

We now show that v does not change its level-value and hence

u does not change its pID-value. If v ∈ V \ S′
B , v is in a

stable state and hence does not change its level-value. By the

first part of the proof, v ∈ S′
B \ S′

L also does not change its

level-value. So, it remains to show that v /∈ S′
L. By definition,

v has a path to r consisting of only honest nodes and being of

length dHS (v, r) = dHS (u, r)− 1. Similarly, as v is a neighbor

of u, we have dBv,min ≥ dBu,min − 1, i.e., v is at most 1 hop

closer to any malicious node than u. So, dBv,min+dBmin− 1 ≥
dBu,min + dBmin − 1 − 1 ≥ dHS (u, r) − 1 = dHS (v, r). The

third step follows from Eq. 2 because u ∈ V \ S′
L. So,

dBv,min + dBmin − 1 ≥ dHS (v, r) and hence again by Eq. 2,

v /∈ S′
L. So, indeed, u does not change its pID-value.

The third claim ascertains that u chooses such a v as parent

after at most (2|N(u)| − 1) S′
L-disturbances affecting u. By

the above, a S′
L-disturbance can only affect u’s pID-value.

We determine an upper bound on the number of times the

pID-value can change until istart = prnt and v is the parent

node. Let l be the local index of v assigned by u and

h(m, i) =

{
m− i if m ≥ i

m− i+ |N(u)| if m < i

As the result of a S′
L-disturbance, u’s parent changes to

either v or a node with pointer prnt′ 6= prnt with

h(prnt′, istart) < h(l, istart). If it changes to prnt′, we either

have h(prnt′, istart) < h(prnt, istart) or h(prnt′, istart) >
h(prnt, istart). In this first case, istart remains the same

(Line 17). However, the maximal number of consecutive

decreases of the function h(prnt, istart) is h(l, istart) − 1 ≤
|N(u)| − 1. Once istart = prnt, h(prnt, istart) = 0.

Any further change corresponds to the second case, as the

Table I
STRUCTURAL PROPERTIES OF GRAPHS USED FOR SIMULATION, WITH AVG.

SHORTEST PATH LENGTH (CPL) AND CLUSTERING COEFFICIENT (CC).

Graph # nodes # edges CPL CC

Facebook 63,392 816,886 4.32 0.253

Ripple 67,149 99,787 3.82 0.154

Randomized Facebook
63,392

816,886 3.58 0.005

Erdös-Renyi 824,096 3.74 < 0.001

condition in Line 17 will hold for any new parent and

so h(p, istart) continues to be 0. In the second case, i.e.,

h(prnt′, istart) > h(prnt, istart), istart is now set to p′, i.e.,

h(l, istart) decreases. h(l, istart) can decrease at most |N(u)|
times. So, the total number of S′

L-disturbances until u chooses

v as a parent are the sum of possible instance of the first and

the second case, namely |N(u)| − 1+ |N(u)| = 2|N(u)| − 1.

Furthermore, istart = prnt holds after these disturbances.

The fourth and last claim establishes that all nodes in V \S′
L

are in a legitimate and stable state after at most 2degsum −
|S′

B \S′
L| disturbances. First note that each S′

L-disturbance has

to affect a node in S′
B \S′

L. This is a direct consequence of the

definition of S′
L-disturbance and the fact that S is S′

B-stable.

A S′
L-disturbance requires a node in V \S′

L to change its level

or parent but nodes in V \ S′
B are in a stable state already,

so the affected node has to be in (V \ S′
L) ∩ S′

B = S′
B \ S′

L.

Combining the second and third claim, nodes u ∈ S′
B \S′

L are

affected at most 2|N(u)|−1 times by a S′
L-disturbance. So, the

total number of S′
L-disturbances until no node in V \ S′

L can

be affected anymore is
∑

u∈S′

B
\S′

L
(2|N(u)|−1) = 2degsum−

|S′
B \S′

L|. It remains to show that all these nodes are indeed in

legitimate states. By the second and third claim, all nodes in

S′
B \S′

L have an honest parent in V \S′
L. In addition, all nodes

in V \S′
B have an honest parent in V \S′

L because of the S′
B-

stability. Hence, a node u ∈ S′
B \ S′

L cannot have an ancestor

in B∪S′
L and is hence well-directed and in a legitimate state.

Furthermore, u is in a stable state by the second claim.

VI. EVALUATION

Using OMNeT++ [20], we implemented a simulation to

evaluate the impact of our attestation-based algorithm on

the number of lost nodes compared to the non-cryptographic

state-of-the-art. Furthermore, we investigated the impact of

the network structure, the position of the root node, and the

placement of edges between honest and malicious nodes.

A. Metrics, Data Sets, and System Parameters

Given a distributed system S = (V,E) with a subset H of hon-

est nodes and a SB-TA stabilizing spanning tree construction

algorithm, we measured the ratio of lost nodes (RLN) |SB |/|H|.

A low ratio of lost nodes indicates high attack resistance.

Route-restricted overlays include both social overlays and

payment networks. We hence utilized a real-world graph

for each of them and compare the results with synthetic

graphs for the purpose of characterizing the impact of various

topological features. Facebook denotes a real-world graph of

Facebook [22], as used in several prior studies [12], [15].

without attestation with attestation honestly behaving adversary

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

ra
ti

o
o

f
lo

st
n

o
d

es

25 200 1000 5000

Facebook

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

Randomized Facebook

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

ER

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

Ripple

Figure 1. Observed mean ratio of lost nodes over 100 runs per configuration for 25, 200, 1000, and 5000 attack edges under the first adversarial behavior.
The bars above and below each point represent 99% confidence intervals.

without attestation with attestation honestly behaving adversary

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

ra
ti

o
o

f
lo

st
n

o
d

es

25 200 1000 5000

Facebook

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

Randomized Facebook

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

ER

0.0

0.2

0.4

0.6

0.8

1.0

No. of attack edges

25 200 1000 5000

Ripple

Figure 2. Observed mean ratio of lost nodes over 100 runs per configuration for 25, 200, 1000, and 5000 attack edges under the second adversarial behavior.
The bars above and below each point represent 99% confidence intervals.

Ripple denotes a real-world graph from the Ripple payment

network [16]. Ripple has a low number of edges and a heavily

skewed degree distribution: 95% of all nodes have a degree

less or equal than the average degree of approximately 3.

Our synthetic data sets are i) a random synthetic network

(denoted randomized Facebook) with the same degree dis-

tribution as the Facebook graph and ii) an Erdös and Renyi

graph (ER) with approximately the same number of nodes

and edges as Facebook but normal distributed degrees [7]. We

compare Facebook with randomized Facebook to characterize

the impact of clustering while the comparison of randomized

Facebook and ER reveals the impact of the degree distribution.

We considered the number of malicious nodes and the time

of their presence to be unbounded but limit the total number

g of connections between honest nodes and malicious nodes.

To model that all nodes are colluding, we represented them as

a single node with g edges.

B. Set-up

We investigated the resistance of spanning tree algorithms

to adversarial behavior given structural differences of the

networks and a varying number g of attack edges. For all

scenarios, we performed 100 runs to obtain statistically sig-

nificant results.

We assumed the adversary knows all nodes but can only

establish a connection to a subset with limited size. Follow-

ing [2] we also assumed that users with many contacts are

more likely to accept new requests and thus connect with

a malicious node. We hence added a single adversary m to

the graph and choose the g honest neighbors at random, with

a probability proportional to their degree. Afterwards, a root

node r was chosen uniformly at random from all honest nodes

and the leader ID of each honest node was set accordingly.

We executed different spanning tree constructions for var-

ious adversarial behaviors. The two spanning tree algorithms

are Algorithm 1, i.e., spanning tree construction with level

attestation, and the state-of-the-art protocol by Dubois et

al. [5]. The two adversarial behaviors are:

1) The attacker aims to prevent convergence by causing

disturbances. By Theorem 2, the set of lost nodes

corresponds to S′
L as defined in Eq. 2. Similarly, the

set of lost nodes for the state-of-the-art protocol is

SL = {u ∈ H : dS(u,m) < dS(u, r)} [5].

2) The attacker aims to maximize the number of ill-directed

nodes. In this case, the adversary always pretends to be

as close to the root as possible and does not perform

any disturbances. In this case, the set of lost nodes is

S′
B as defined in Eq. 1 according to Theorem 1. For the

state-of-the-art protocol, the set of lost nodes is SB =
{u ∈ H : dS(u,m) < dS(u, r)}.

To investigate how strongly the cheating by one level (de-

scribed in Sec. V) affects the number of lost nodes when

Algorithm 1 is used, we furthermore simulated a modified

adversary which does not cheat, effectively following Algo-

rithm 1 correctly.

C. Impact of Level Attestation

Figure 1 show the obtained mean RLN with 99% confidence

intervals for the four graphs and both algorithms under the

ratio of lost nodes average distance to the root node average distance to the attacker node

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

v
al

u
e

Facebook

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

Randomized Facebook

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

ER

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

Ripple

Figure 3. Obtained RLN values for the state-of-the-art protocol together with the average shortest path length to the root node and average shortest path
length to the adversary node of the respective simulation run with 25 attack edges. The runs are ordered according to the RLN value in ascending order.

ratio of lost nodes average distance to the root node effective average distance to the attacker node

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

v
al

u
e

Facebook

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

Randomized Facebook

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

ER

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Run index

Ripple

Figure 4. Results for the simulation runs of Algorithm 1 and 1000 attack edges. The effective average distance to m denotes the term d(m) + d(m, r)− 1.
The runs are ordered according to the RLN value in ascending order.

first adversarial behavior. Figure 2 shows the corresponding

data under the second adversarial behavior. Especially for the

Facebook graph, its randomized version, and the ER graph,

Algorithm 1 considerably reduced the ratio of lost nodes com-

pared to the state-of-the-art protocol. For the latter, an attack

with 25 edges resulted in a mean RLN of 0.57, 0.31, 0.19,

and 0.75 for the Facebook graph, the randomized Facebook

graph, the ER graph and the Ripple graph, respectively, under

the first adversarial behavior. Under the second adversarial

behavior, the mean RLN increased to 0.77, 0.66, 0.5 and

0.91 for the four graphs. When applying Algorithm 1, the

mean RLN at 25 attack edges under the first adversarial

behavior dropped down to 0.0005, 0.00006, 0.00005, and 0.34
for the Facebook graph, the randomized Facebook graph, the

ER graph, and the Ripple graph, respectively. Similarly, the

mean RLN at 25 attack edges under the second adversarial

behavior decreased to 0.002, 0.0006, 0.004 and 0.38 for the

four graphs. Even for 1000 attack edges, the mean RLN

for the Facebook graph, its randomized variant, and the ER

graph significantly decreased from 0.93, 0.84, and 0.84 to

0.18, 0.06, and 0.12, respectively under the first adversarial

behavior. Under the second adversarial behavior, the mean

RLN at 1000 attack edges was reduced from 0.98, 0.97, 0.98
and 0.95 to 0.36, 0.21 and 0.23 for the Facebook graphs and

the ER graph. In summary, while the exact numbers differ for

the two adversarial behaviors, the overall result is the same:

Algorithm 1 achieves a considerable higher number of well

directed nodes than the state of the art.

In the scenario with an adversary that does not cheat by a

level, the mean RLN was considerably lower than in the sce-

nario with Algorithm 1 alone, especially with 1000 and 5000

attack edges for both adversarial behaviors. Referring to Table

I we realize that all graphs used in our experiment have a very

low average path length, and all nodes are in short distance

from the root node. Increasing the adversary’s reported level
value by 1 then represents a significant disadvantage for the

attack. We conjecture that this causes many nodes to remain

well-directed and investigate this relationship in more detail

in the following.

For the Ripple graph, the improvement regarding mean

RLN was considerably lower than for the other graphs. In

the following, we describe the impact of distances between

honest nodes, malicious nodes, and the root node on the RLN

to explain this stark difference.

D. Impact of Network Structure

We start with a discussion of our results for the state-of-the-

art algorithm and subsequently present results for Algorithm 1.

Because the correlations between the different aspects were

similar for both adversarial behaviors, we focus on our results

for the first adversarial behavior.

a) State-of-the-Art Spanning Tree Construction: We con-

sidered the average hop distance over all honest nodes to

the root node d(r) and to the attacker node d(m) for each

simulation run. The lower d(r) is compared to d(m), the more

honest nodes will have a lower hop distance to r than to m
and thus be well-directed. Therefore, we expected a positive

correlation between d(r) − d(m) and the RLN.

Figure 3 shows the obtained RLN values in ascending order

together with the corresponding value of d(r) and d(m) for

25 attack edges and both adversarial behaviors. Indeed, the

difference d(r) − d(m) generally correlated with the RLN.

While d(m) only varied slightly between the different runs on

each graph, there are notable differences in the behavior of

d(r): It varied highly for the Facebook graphs and to some

extent for the Ripple graph but barely for the ER graph.

The reason for the small variance in d(r) for ER is due to

the uniform probability of two nodes being connected. As a

consequence, it was very unlikely that the average distance of

any node significantly differs from the other nodes. The degree

of m, corresponding to the 25 attack edges, was close to the

average degree of 26. However, the mean RLN was only 0.19,

because there was a high number of nodes whose distance

to the root node equalled that to the malicious node. These

nodes chose the path to the root node when the malicious

node continuously causes disturbances.

For the Facebook graphs and Ripple, there is a higher

variance of the root node degree and hence of the average

distance to the root. The distances in the randomized graph

were generally lower than in the original Facebook graph due

to its lower average path length. Furthermore, d(r) correlated

more strongly with the RLN, possibly due to the absence of

outlier nodes with increased shortest path length. Because of

the highly skewed degree distribution of the Ripple graph, the

random root node’s degree was 1 in 73 out of a 100 runs. The

degree of the adversarial node, i.e., 25, was hence generally

higher than the degree of the root, leading to shorter paths to

the malicious nodes and hence the observed high RLN.

b) Algorithm 1: In addition to d(r), we computed the

effective average hop distance D(m) = d(m) + d(m, r) − 1,

as d(m, r) − 1 is the level-value that m propagated during

a simulation run. We expected a positive correlation between

d(r)−D(m) and the RLN, i.e., nodes closer to the root node

than D(m) should be well-directed and otherwise not.

In all runs with 25 attack edges, D(m) was considerably

higher than d(r) such that only a very small number of nodes

became ill-directed. Figure 4 thus shows our more distinct

results for an adversary with 1000 attack edges, ordered by

the RLN. The results indeed validated the expected correlation.

Due to the high number of attack edges, the d(m) value of

each run only differed slightly from its mean value of 2.75,

2.52, 2.63, and 2.02 for the Facebook graph, the randomized

Facebook graph, the ER graph, and the Ripple graph, respec-

tively. Thus, the values of D(m) mainly depended on d(m, r)
and hence differed by integer values.

Again, the degree of correlation between d(r) − D(m)
and the RLN varied between graphs. The Facebook graph

generally had a longer average shortest path length and hence

varied in d(r) considerably. In contrast, the value of d(r) was

more stable for the randomized Facebook graph and the ER

graph, so that d(m, r) is indeed the main impact factor.

Here, we also find the explanation for the strong difference

between the mean RLN values for the simulations of Algo-

rithm 1 with a cheating adversary and those of Algorithm 1

with a non-cheating adversary on the Ripple graph. It stems

from the fact that the d(m, r) value decreased very slowly as

the number of attack edges increases. Concretely, the mean

value of d(r) was roughly 3.8, irrespective of the number of

attack edges and the construction algorithm. In the case of

25 attack edges, the mean value for D(m) was 3.9 and in

the case of 5000 edges, it was 2.9, such that the level value

propagated by m was low enough to cause a high number

of nodes to become ill-directed. As the value of D(m) was

increased by 1 when the adversary does not cheat, it was higher

than d(r) for any considered number of attack edges, resulting

in a negative d(r)−D(m)− 1 and hence a low impact of the

attack. In contrast, d(r) −D(m) was positive, corresponding

to an attack of high impact.

c) Summary of Results: The first part of our evaluation

showed that our protocol based on cryptographic signatures is

much more robust to malicious behavior and attacks than state-

of-the-art solutions without the usage of cryptography. Indeed,

as displayed in Figure 1, to compromise a similar number of

nodes, the adversary needs to establish up to 200 times as

many attack edges compared to the algorithm by Dubois et

al. [5].

VII. CONCLUSION

In this paper, we leveraged cryptographic signatures to

design a BFS tree algorithm that greatly reduces the number of

nodes affected by attacks. Based on the concept of topology-

aware strict stabilization, we proved that this algorithm only

allows malicious nodes to report a distance to the root that

differs by at most one from the correct value. Our evaluation

based on real-world scenarios demonstrates that this novel con-

struction provides crucial security improvements over existing,

non-cryptographic algorithms. Yet, our results indicate that the

resistance to attacks is highly correlated with the degree of

the root node, highlighting the need to develop secure leader

election algorithms that prioritize high-degree nodes.

VIII. ACKNOWLEDGEMENTS

We thank Sebastién Tixeuil for shepherding our work and

the reviewers for their constructive feedback. This work has

been funded by the German Research Foundation (DFG) Grant

STR 1131/2-2 and EXC 2050 “CeTI´´.

REFERENCES

[1] Nikita Borisov et al., Denial of service or denial of security?, Computer
and Communications Security, 2007.

[2] Yazan Boshmaf et al., The socialbot network: when bots socialize for
fame and money, Computer Security Applications, 2011.

[3] Ian Clarke et al., Private communication through a

network of trusted connections: The dark freenet,
https://freenetproject.org/assets/papers/freenet-0.7.5-paper.pdf, 2010.

[4] Danny Dolev and Andrew Yao, On the security of public key protocols,
Transactions on Information Theory (1983).

[5] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil, Maximum

metric spanning tree made byzantine tolerant, Algorithmica (2015).

[6] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková, General

state channel networks, Computer and Communications Security, 2018.

[7] P Erdös and A Rényi, On random graphs i, Publicationes Mathematicae
Debrecen (1959).

[8] Andreas Hoefer, Stefanie Roos, and Thorsten Strufe, Greedy Embedding,
Routing and Content Addressing for Darknets, KiVS/NetSys, 2013.

[9] Yih-Chun Hu, David B Johnson, and Adrian Perrig, Sead: Secure

efficient distance vector routing for mobile wireless ad hoc networks,
Ad hoc networks (2003).

[10] Tomas Isdal et al., Privacy-preserving p2p data sharing with oneswarm,
ACM SIGCOMM Computer Communication Review (2011).

[11] Giulio Malavolta et al., Silentwhispers: Enforcing security and privacy
in credit networks, Network and Distributed System Security, 2017.

[12] Prateek Mittal, Matthew Caesar, and Nikita Borisov, X-vine: Secure

and pseudonymous routing in dhts using social networks, Network and
Distributed System Security, 2012.

[13] Joseph Poon and Thaddeus Dryja, The bitcoin lightning

network: Scalable off-chain instant payments, Tech. report,
https://lightning.network/lightning-network-paper.pdf, 2016.

[14] Pavel Prihodko et al., Flare: An approach to

routing in lightning network, 2016, Available at:
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf.

[15] Stefanie Roos, Martin Beck, and Thorsten Strufe, Anonymous addresses

for efficient and resilient routing in f2f overlays, INFOCOM, 2016.
[16] Stefanie Roos et al., Settling payments fast and private: Efficient decen-

tralized routing for path-based transactions, Networks and Distributed
Systems Security, 2018.

[17] Stefanie Roos and Thorsten Strufe, On the impossibility of efficient self-

stabilization in virtual overlays with churn, INFOCOM, 2015.
[18] Vibhaalakshmi Sivaraman et al., Routing cryptocurrency with the spider

network, arXiv preprint arXiv:1809.05088 (2018).
[19] Paul F Tsuchiya, The landmark hierarchy: a new hierarchy for routing

in very large networks, SIGCOMM Computer Communication Review,
1988.

[20] Andras Varga, OMNeT++ Discrete Event Simulator,
https://omnetpp.org/, Accessed November 2018.

[21] Eugene Vasserman et al., Membership-concealing overlay networks,
Computer and Communications Security, 2009.

[22] Bimal Viswanath et al., On the evolution of user interaction in facebook,
Workshop on Online social networks, 2009.

[23] Manel Guerrero Zapata and Nadarajah Asokan, Securing ad hoc routing

protocols, ACM Workshop on Wireless security, 2002.

https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf

	I Introduction
	II Related Work
	II-A Routing in route-restricted overlays
	II-B Attack-resistant spanning tree construction

	III Model and Notation
	III-A System model
	III-B Adversary model
	III-C Formalization of resilience and performance

	IV Signature-based computation of BFS trees
	V Analysis
	V-A Proof of S'B-TA-strict stabilization
	V-B Proof of stabilization for S'L under attacks

	VI Evaluation
	VI-A Metrics, Data Sets, and System Parameters
	VI-B Set-up
	VI-C Impact of Level Attestation
	VI-D Impact of Network Structure

	VII Conclusion
	VIII Acknowledgements
	References

