
HAL Id: hal-02353945
https://hal.science/hal-02353945

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Atomic Swapping Bitcoins and Ethers
Léonard Lys, Arthur Micoulet, Maria Potop-Butucaru

To cite this version:
Léonard Lys, Arthur Micoulet, Maria Potop-Butucaru. Atomic Swapping Bitcoins and Ethers. SRDS
2019 - 38th International Symposium on Reliable Distributed Systems, Oct 2019, Lyon, France. �hal-
02353945�

https://hal.science/hal-02353945
https://hal.archives-ouvertes.fr


Atomic Swapping Bitcoins and Ethers
1st Léonard LYS

PALO IT
LIP6, Sorbonne University

Paris, France
llys@palo-it.com

2nd Arthur MICOULET
PALO IT

Paris, France
amicoulet@palo-it.com

3rd Maria POTOP-BUTUCARU
LIP6, Sorbonne University

Paris France
maria.potop-butucaru@lip6.fr

Abstract—Blockchains interoperability is one of the hardest
problems to be solved in the nowadays blockchain ecosystem
that contains thousands of different blockchains. This paper
focuses on swapping assets from a blockchain to another
without a trusted third party. One recent scheme for atomically
swapping assets, Atomic Cross Chain Swap (ACCS), has been
formally analyzed in [2]. This paper proposes an implementa-
tion of an ACCS between the two most valued crypto-currencies
today: Bitcoin and Ether.

Index Terms—Atomic transactions, Atomic Cross Chain
Swaps, Bitcoin, Ethereum.

I. Motivation
Let’s say Alice owns some Bitcoins and Bob some

Ethers. If they want to exchange their assets, and that
they do not trust each other, the current solution in
production will require them to trust a third party (an
exchange platform) that will handle the swap.

The scenario of the swap would be as follows: Alice
would have to send her Bitcoins from her wallet to an
address provided by the exchange, and Bob would have
to do the same with his Ethers (1). Then each of them
would have to make an order (2), wait for the platform to
make both orders match (3) and let the platform handle
the swap (4). Finally both of them would have to withdraw
their respective assets to their blockchain wallets (5).

Centralized exchange platforms as described above do
not publish the transaction between Alice and Bob to the
blockchain. Instead, they maintain a private ledger listing
the assets that have been deposited by their clients, but
everything (including transaction) is made off-chain.

As stated in the white paper of the Bitcoin protocol [3]
the main benefits of a decentralized system are lost if a
trusted third party is required. Indeed this raises several
flaws in the system:

• Security - From stage (2) to stage (4) all crypto assets
are stored inside the exchange platform’s blockchain
wallets. At the time of writing, the richest Bitcoin
address owned by an exchange platform, holds the
equivalent of 1.5 billion USD inside a single wallet
[1]. This makes it an attractive target for a malicious
attacker and therefore it is a major single point of
failure.

• Governance - Centralized exchange platforms are
sitting on a huge amount of crypto assets. By moving,

buying or selling those huge mass of assets, they have
the capacity to influence the markets at the expense
of the people (Whale effect).

Therefore we need to find a protocol that would allow
Bob and Alice to swap their assets without having to trust
each other or any third party. A proposed solution for
this problem are Atomic Cross Chain Swaps. It has been
a discussed topic in the blockchain ecosystem as early as
2013 [5] but the first formal analysis [2] defines an ACCS as
a protocol that guarantees the atomicity of an exchange. It
must guarantee that no party conforming to the protocol
will lose its coins(1) and that by no means a malicious
party can retrieve both coins(2).

In order to comply to those properties a protocol has
been proposed under the name of Atomic Cross Chain
Swap. It is assumed that assets on the blockchain can be
automatically stored, locked and transferred by scripts or
so-called smart contracts. The described protocol relies on
hashed time locked contract [4]. Those contracts allow a
party A to lock some assets (or coins) on a blockchain
such that they can be unlocked in two manners: by party
A after a period of time ∆ or by party B right away but
only if party B is able to provide a secret s. By setting
two similar contracts on two different blockchains, A and
B can safely exchange their coins without having to trust
each other or any other third party.

A hashed time locked contract (or just HTLC) can
be defined by parameters h,A,B, v, t. Parameter h is
the computed image of a secret h = H(s), H being a
cryptographic hash function. Parameter A represents the
blockchain address of the swap initiator and B the one of
the recipient (or participant). Parameter v is the amount
of coins transferred and t is the period of time during
which the assets cannot be unlocked by A. The scenario
of an Atomic Cross Chain Swap between two parties,
Alice and Bob, exchanging one Ether for one Bitcoin is as
follows:

• (1)Alice creates a secret s and computes its image
h = H(s). Then, Alice locks her Bitcoins on a hashed
time-lock contract with parameters h, Alice’s Bitcoin
address, Bob’s Bitcoin address, v = 1, t = 2∆.

• (2)Bob looks up Alice’s contract and checks that the
correct recipient, amount and time-lock have been set.



• (3)Bob creates a similar HTLC on the Ethereum
blockchain with parameters h, Bob’s Ethereum ad-
dress, Alice’s Ethereum address, v = 1, t = ∆.

• (4)Alice unlocks the ether that has been locked by
Bob. Doing so, she reveals to Bob the secret s that
he did not know.

• (5)With the secret Bob just unveils, he can now
withdraw the Bitcoin that has been locked by Alice.

The time-lock value matters. That is, the time-lock of
the party that has generated the secret s (or the initiator)
has to be higher than the other one (or the participant).
Indeed if the ∆ has been set for the contracts to elapse at
the same time, then Alice could wait for the time to elapse,
withdraw the Ethers when t → ∆ and then withdraw the
Bitcoins at t > ∆.

If the parameters have been correctly set, at no stage of
this scenario any malicious party is able to withdraw both
coins. If any party halts at any stage of the protocol, the
secret s will not be revealed and eventually all contracts
will time out and both parties will be able to withdraw
their coins.

The motivation of our work is to prove the feasibility of
implementing the ACCS protocol between Ethereum and
Bitcoin.

II. Model
This protocol has been described with the assumption

that blockchains are temper proof and public ledgers of
transactions. It is also assumed that scripts or smart
contracts can be set up to trigger transfers if and only
if some conditions have been met. In the following section
we review how accurate those assumptions are in a real
world implementation.

A. Ethereum and Solidity
Ethereum operates using accounts and balances in

a manner called state transitions. We can assimilate
Ethereum as a worldwide replicated state machine.

In order to transfer some Ethers one has to create
and sign a transaction message and broadcast it to the
network. Such message consist of the following parameters
: nonce, gas price, gas limit, toAddress, value [9]. Then
the message has to be signed and finally broadcast to the
network.

Solidity is a high level smart contract programming
language. It allows one to create smart contracts with high
level programming abstractions such as structures and
complex objects. Solidity code is compiled into bytecode,
published on the Ethereum blockchain and then executed
by the Ethereum Virtual Machine or EVM [6].

B. Bitcoin and SCRIPT
Unlike Ethereum, Bitcoin is based on a list of Unspent

Transaction Output or UTXO [7].
In order to transfer some Bitcoins one has, like in

Ethereum, to create a transaction message, sign it and

broadcasts it to the network. But unlike Ethereum, instead
of only providing the sender’s address, one has to provide
a list of UTXO’s. In UTXO based blockchains, the
ownership of a coin boils down to the capacity to spend
the said UTXO.

In order to build an UTXO Bitcoin is fitted with a
scripting language named Bitcoin SCRIPT [8]: a list of
instruction that defines how the UTXO can be spent.

III. ACCS implementation
When implementing ACCS, it is not necessary to

implement it as a pair. Indeed, if one is able to implement
the logic of an HTLC on a particular blockchain, then
an ACCS can be executed with any other assets that can
execute the same logic.

In a two party ACCS, there is an initiator and a
participant. The initiator is the one that generates the
secret s and computes its h = H(s). The participant is the
one that setups an HTLC with parameter h but without
knowing the secret s.

A swap can be in five different states depending on the
stage of the protocol:

• Invalid: nothing has happened yet.
• Initiated: the initiator has created the swap and

locked some funds. But the swap has no participant
yet.

• Open: the swap has been created, some funds are
locked in and the participant has been set.

• Closed: the participant has unlocked the funds and
transferred them to his address. The secret s has been
reveled, the exchange has taken place.

• Expired: one of the party halted during the protocol
so the contract eventually timed out and the initiator
can withdraw its funds.

A. Ethereum Implementation
We made use of the high level programming abstractions

to implement an HTLC in Solidity. We created a structure
meant to keep in memory the parameters of a swap:

Then we created a list of states and the functions that
handle the state transitions. Full code available here [10].
This is how the state transition between INVALID and
OPEN is done:

As you can see, we create a new swap object and store
it inside an array. Then in order to trigger state changes,
checks will be made on the said stored swap. For example,
to go from OPEN to CLOSED we must verify that the



participant has in fact provided the good secret s. To
do so, solidity provides a programming assumption called
modifiers:

Similar functions are used to check the validity of a
state transition request. Refer to full code [10].

The smart contract is deployed on the blockchain and
function calls are public. We will generate the transaction
thanks to an online client and then sign it with our
wallet. Finally a RPC (remote protocol call) provider will
broadcast the transactions to the network.
B. Bitcoin Implementation

As explained earlier Bitcoin is not fitted with high level
programming language but instead with a stack-based
scripting language. Thus is not possible to save inside
a complex object the parameters of the swap. Here is
how the state transition between INVALID to OPEN is
handled:

It is a simple if-else statement representing the two
manners in which an HTLC can be unlocked. See full code
here [10]. As explained earlier, we cannot provide a single
signature for a Bitcoin transaction to pass. We first have
to gather some spendable UTXO. This is done thanks to
an API. Then we create and sign the transaction. Finally,
we broadcast it to the network using a Bitcoin client. Once
this HTLC has been set up and published to the chain,
the other party has to generate a transaction in order to
spend the coins. The spender provides his signature and
the secret s. If both are matching the HTLC UTXO, a
brand new UTXO will be created on the bitcoin blockchain
and will be spendable by the spender. This is how the
spend transaction is built:

C. Tests
For Ethereum, there are javascript testing libraries

available. We made use of them perform both unit and
functional tests:

As Bitcoin has no virtual machine, unit and functional
testing has to be done manually. A performance analysis
is still to be performed.

IV. Discussions and Future work
Our implementation of an ACCS between Bitcoin and

Ehereum, [10], assumes a pseudo finality in the block pro-
duction. We indeed consider that ∆ is very small compared
to the time a transaction takes to be confirmed, resolving
therefore all asynchrony related problems. However, our
system is still vulnerable to DOS attacks or client crash or
Byzantine failure. Moreover, even if we could ensure the
atomicity of a swap, there would still be incentives for a
Byzantine node to not respect the protocol. For example,
we know that crypto-currencies are subject to very high
volatility. Then an attacker could be interested on having
a victim coin locked until the exchange rate changes.

Moreover we have not yet performed performance anal-
ysis of our implementation of an ACCS.

Our future work will be focused on studying the reliabil-
ity and security of atomic swaps. To do so we will simulate
both blockchains and see how our implementation resist
to network overload or DDOS attacks. We would like to
estimate the correct parameter ∆ for each blockchain to
assume a probabilistic finality and therefore reliability.

References
[1] Top 100 richest bitcoin addresses

https://bitinfocharts.com/top-100-richest-bitcoin- ad-
dresses.html Last accessed July 5, 2018

[2] Maurice Herlihy, Atomic Cross-Chain Swaps. v4 May 2018
https://arxiv.org/pdf/1801.09515.pdf

[3] Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi
Nakamoto August, 2008
https://bitcoin.org/bitcoin.pdf

[4] Bitcoinwiki Hashed timelock contracts
https://en.bitcoin.it/wiki/HashedTimelockContracts As of July
1, 2018



[5] TierNolan Bitcoin talk forum
https://bitcointalk.org/index.php?topic=193281.msg
2224949#msg2224949 As of May 21, 2013

[6] Ethereum Virtual Machine
https://en.wikipedia.org/wiki/Ethereum#Virtual _Machine
Last accessed July 5, 2018

[7] Unspent Transaction Output UTXO
https://learnmeabitcoin.com/glossary/utxo
Last accessed July 5, 2018

[8] Bitcoin SCRIPT
https://en.bitcoin.it/wiki/Script Last accessed July 5, 2018

[9] Transactions readthedoc
https://web3j.readthedocs.io/en/latest/ transactions.html Last
accessed July 5, 2018

[10] Implementation of HTLC for bitcoin and ethereum
https://github.com/leoloco/BTC-ETH_HTLC Last accessed
July 5, 2018

[11] Bitcoin HTLC
https://github.com/leon-do/Bitcoin-HTLC-Wallet Last accessed
July 5, 2018


