
Evaluation and Ranking of Replica Deployments in
Geographic State Machine Replication∗

Shota Numakura, Junya Nakamura†, and Ren Ohmura

Toyohashi University of Technology, Japan

Abstract

Geographic state machine replication (SMR) is a replication method in which replicas
of a service are located on multiple continents to improve the fault tolerance of a general
service. Nowadays, geographic SMR is easily realized using public cloud services; SMR
provides extraordinary resilience against catastrophic disasters. Previous studies have
revealed that the geographic distribution of the replicas has a significant influence on the
performance of the geographic SMR; however, the optimal way for a system integrator to
deploy replicas remains unknown. In this paper, we propose a method to evaluate and rank
replica deployments to assist a system integrator in deciding a final replica deployment. In
the method, we also propose a novel evaluation function that estimates a latency of SMR
protocols with round-trip time (RTT). To demonstrate the effectiveness of the proposed
method, we build thousands of geographic SMRs on Amazon Web Services and present
experimental results. The results show that the proposed method that estimates a latency
based on RTTs can generate consistent rankings with reasonable calculation time.

1 Introduction
Services running on the client-server model may crash or behave unintentionally from time
to time due to software bugs or attacks by malicious users. To prevent such problems and
continuously provide services to clients, fault tolerance is an important consideration. State
machine replication (SMR) [1] is commonly used to improve fault tolerance by replicating a
service over multiple replicas. In SMR, the replicated service is called replicas, and the state of
all replicas are kept consistent by executing a replication protocol. Hence, using this method,
an active operation can be continued as a whole even if a failure occurs in a part of the replicas.
Several SMR protocols have been proposed in previous studies [2–8].

An SMR that deploys replicas on a continental scale is called geographic SMR [9–14].
Replicas in geographic SMR are separated by a large distance to withstand a catastrophic
disaster, such as an earthquake. If some of the replicas fail, the service can be continued by
the replicas in other sites (regions). With the development of public cloud services after the
2000s, geographic SMR can be easily realized.

Although geographic SMR could have been easily implemented, ways of obtaining the best
performance using the optimal replica deployment remain unclear. Performance of a replica
deployment depends on several factors, including the location of the leader replica, distances
between replicas, and distances between clients and replicas. For example, if replicas are
deployed in nearby regions, the time taken for request processing can be shortened, but the
fault tolerance will be reduced. In contrast, if the replicas are distributed farther apart from

∗This work was supported by JSPS KAKENHI Grant Numbers JP16K16035 and JP18K18029.
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

†Corresponding author: junya[at]imc.tut.ac.jp

1

ar
X

iv
:2

11
0.

04
61

5v
1

 [
cs

.D
C

]
 9

 O
ct

 2
02

1

one another, the fault tolerance will increase, but the processing time for a normal request will
be slower.

In this paper, we propose a performance-estimation method to determine the optimal replica
deployment for building a service using geographic SMR. First, we define the task to find
the optimal replica deployment among all possible candidates as replica deployment decision
problem, which requires to output a ranking of all possible replica deployments sorted by their
latencies. The proposed method solves this problem by using an evaluation function that
estimates a latency of each replica deployment based on the round-trip time (RTT), which is
generally regarded as an important parameter in geographic SMR. Although it is unrealistic
to actually build all possible replica deployments and measure their latencies, RTTs can be
measured relatively easily. Therefore, this evaluation function is practical and can be used to
select the optimal deployment for actual service construction.

Finally, we conduct an experimental evaluation using Amazon Web Services with 15 regions
to demonstrate the effectiveness and practicality of the proposed method. In the experiment, we
actually build thousands of geographic replications and measure their latencies; then we create
the measured latency ranking and compare it against the rankings generated by the proposed
method. The results exhibit that the proposed method with the RTT-based evaluation function
can generate a consistent ranking with reasonable calculation time.

In particular, this paper makes the following contributions:

1. It presents a new method that generate a ranking to assist deciding a replica deployment
for geographic SMR.

2. It also presents a evaluation function that consistently calculates latency of a replica de-
ployment by using round-trip time between sites, which can be easily measured compared
with the actual latency of the deployment.

3. It conducts exhaustive experiments with thousands of replications built on Amazon Web
Services, and evaluates the proposed method and the evaluation function.

2 Background

2.1 State Machine Replication
State machine replication (SMR) [1] is a replication method for the client-server model. In
SMR, the server is modeled by a state machine; thus, on receipt of a message, the server changes
its state and sends messages to other processes if necessary. The server’s role is replicated over
n replicas that independently operate the functions on distinct hosts and interact with clients
via request and response messages.

Client requests to be executed are submitted to all replicas, and the order in which differ-
ent replicas receive these requests may differ due to variations in the communication delays.
Therefore, the replicas execute a replication protocol to guarantee that they process requests
in the same order to maintain consistency. After a replica processes a request, it replies to the
client with the execution result.

There are two variations of SMR; SMR that can withstand crash failures (resp. Byzantine
failures) is called CFT SMR (resp. BFT SMR). The number of faulty replicas that a replication
can tolerate f is related to n as follows [15]: n ≥ 2f + 1 for CFT SMR and n ≥ 3f + 1 for
BFT SMR. Hereafter, we assume BFT SMR and n = 4 (i.e., f = 1); however, the proposed
method is applicable for any n and f of BFT SMR and CFT SMR.

2.2 Related Work
The problem of determining the optimal replica deployment has been extensively studied in
the field of data replication. Cook et al. formulated the time required to read and write data
as a cost in a simple read-write policy (when reading a data object, refer to one replica. When
writing data, a client transfer the data to all servers that have its replica) and proved that
this problem is NP-complete [16]. They also proposed an approximation algorithm for the

2

problem. Although the target replication problem is different, their formulation is very similar
to the evaluation function proposed in this paper. The survey by Sen et al. [17] provides
a comprehensive overview of the previous studies on the data location optimization problem
using mathematical models.

In the field of geographic SMR, there are a few methods that optimize a replica deploy-
ment [10, 11]. In [10], Liu and Vukolić proposed two methods for geographic SMR: Droppy
that dynamically relocates a set of replication leaders according to given replication settings
and workload situations, and Dripple that divides the replicated system state into multiple
partitions so that Droppy can efficiently relocate the leaders. Eischer and Distler proposed
Archer [11] that relocates leaders based on their response times as measured by clients. A
Hash-chain-based technique was employed in the protocol to allow clients to detect illegal
phases caused by Byzantine replicas to prevent such replicas from being wrongly assigned as
leaders.

In this paper, we propose a method that can help identify the best replica deployment
when building an geographic SMR. The proposed method differs from these prior studies in
several ways. First, the proposed method can be used with any replication protocol by defining
an evaluation function to calculate the estimated latency of different replica deployments. In
contrast, although Droppy and Archer can dynamically relocates the leader replica locations,
they only support leader-based replication protocols. Second, the proposed method can also
identify the best replica deployment from all possible replica deployments; this complements
these existing methods, which are limited to determining an assignment of replication roles to
the replicas in a replication.

3 Replica Deployment Decision Problem
We formally define the problem addressed herein as a replica deployment decision problem. In
the definition, we call a location wherein a replica (or a client) can be deployed to as a site1.
In the problem, the following inputs are provided by a user.

• n: the number of replicas that the user wants to deploy

• SC: a set of candidate sites wherein replicas can be deployed

• C: a set of client locations

The goal of this problem is to output a ranking2 of replica deployments sorted by latency
(of course, a replica deployment with smaller latency is ranked higher). The user will then
choose the final replica deployment for the SMR from this ranking. Here, latency is defined as
the time taken by a client from sending a request to the replicas until receiving its response.

4 Proposed Method
In this section, we propose a method to solve the replica deployment decision problem and
to determine the optimal replica deployment from all the possible deployments for geographic
SMR. Using the proposed method, any replication configuration can be evaluated without
actually building it.

4.1 Overview
Figure 1 illustrates the overview of the proposed method and the method consists of the
following steps:

1For example, if the SMR is built on a public cloud service, each region is a site; if it is built in facilities on
premises, each data center is a site.

2The proposed method outputs not only the best replica deployment, but also the whole ranking of all
possible deployments, because the best deployment may not be acceptable for some reason other than latency.

3

3

2

1

Replica
Deployment

Leader
Location Other Replica Locations

Deployment 1 Ireland London, Mumbai, Oregon
Deployment 2 Ireland Ohio, Seoul, Singapore
Deployment 3 Ohio Canada, Ireland, N. Virginia

⁝ ⁝ ⁝
Deployment N Seoul Ireland, São Paulo, Sydney

Ranking

Deployment 2Rank Deployment Latency
1 Deployment 3 78.34
2 Deployment 1 401.59
3 Deployment 2 626.27
⁝ ⁝ ⁝
N Deployment N 1048.20

Deployment 1

Deployment 2

Deployment 3

Deployment N

Latency: 401.59

Latency: 626.27

Latency: 78.34

Latency: 1048.20

𝑓(𝑥,𝐶)

……

Client locations 𝐶

Figure 1: Overview of the proposed method

1. First, a set, DC, of all possible replica deployments is created based on SC and n.
Each replica deployment is expressed as a pair of locations for the leader and the other
replicas3.

2. Next, for each replica deployment x ∈ DC, its latency is estimated using the evaluation
function f(x,C) based on the measured RTTs. This function is further described in
Section 4.2.

3. The elements in DC are sorted based on their calculated latency; the sorted result is
outputted as the ranking for the inputs.

Thus, the replica deployment with the shortest latency is ranked as the best replica deployment.

4.2 Evaluation Function f(x,C)

The evaluation function f(x,C) outputs an estimated latency based on replica deployment, x,
and the client locations, C by tracing message transmissions specific to a replication protocol
being used. The function plays an important role in the proposed method.

4.2.1 Approach

If site candidates SC is large, it is impractical to actually build SMRs with all possible replica
deployments to evaluate their latencies. Therefore, the evaluation function estimates them
based on round-trip time (RTT) between sites, which can be measured more easily, and outputs
as an latency for that deployment. In other words, before using the proposed method, a user
must measure RTTs between candidate sites in advance. Here, the time required for message
processing in a replica is disregarded because the communication delay between replicas is
relatively large compared with the processing time in a geographic SMR.

Assuming that a latency can only be estimated from the communication time, two factors
must be considered: the types of message communications (i.e., message transmission patterns)
that constitute latency and the communication time between sites. The message transmission

3Here, we assume rotating coordinator-based SMR protocols similar to those [4, 6, 7, 18]. If the proposed
method is applied to leader-less SMR protocols similar to those [2,3,5], then each replica deployment is simply
expressed as a set of replica locations of size n.

4

Req.

Replica 1 (L)
Replica 2
Replica 3
Replica 4

P W A Res.

Client
Byzantine Consensus

Figure 2: The message transmission pattern for Mod-SMaRt protocol [7] in BFT-SMaRt [8].
Replica 1 is the leader replica and Req., P, W, A, and Res., indicate Request, Propose, Write,
Accept, and Response messages, respectively.

pattern can be found by referring to an SMR protocol used in a replication. Then, for a given
set C of clients and replica locations x, the function simulate the transmission and receipt
of messages based on the message transmission pattern of the replication protocol and the
measured RTTs.

Here, we model the message transmission pattern of Mod-SMaRt [7] of BFT-SMaRt [8] as
an example; however, we believe the same approach can be applied to other SMR protocols. In
Mod-SMaRt, a special replica (called a leader replica) determines the order in which requests
are executed and communicates this order to the other replicas. The message transmission
pattern involves five types of messages that are exchanged among the client and replicas to
process the request, as shown in Fig. 2. First, the client sends a request to each replica
(Request). When the leader replica receives the request, it sends Propose messages to each
replica to propose a candidate value for agreement (Propose). Then, Write and Accept messages
are exchanged between all replicas to confirm the validity of the candidate values to determine
the final agreed value (Write and Accept). Finally, the replicas execute the ordered request
and return the result to the client (Response). Hereafter, an RTT and a message transmission
delay between sites a and b is denoted as RTT(a, b) and delay(a, b) = RTT(a, b)/2, respectively.

4.2.2 Latency Formulation

The evaluation function f estimates a latency of each client location c ∈ C, and outputs the
average of these latencies as follows:

f(x,C) =
∑
c∈C

fc(x, c)/|C|, (1)

where fc is a evaluation function for a single client. Hereafter, we explain how fc(x, c) calculates
a latency on a replica deployment. The message pattern of Mod-SMaRt comprises five parts as
depicted in Fig. 2, and we denote the timings of these parts by Sreq, Spro, Swrt, Sacc, and Sres,
respectively. If necessary, we denote the timing for a specific replica ri by adding a superscript
such as Si

pro.
First, we calculate the timing Sreq at which the leader receives a request. In the replication

protocol, a request message is sent from a client to each replica although only the leader replica
processes the request in the fault-free case; thus, Sreq can be expressed as the average of the
RTTs from each client c to the leader replica l:

Sreq =
∑
c∈C

delay(c, l)/|C|. (2)

Then, the leader sends the request to each replica as Propose messages; the timing Si
pro at

which the replica ri receives the Propose message is expressed as follows:

Si
pro = Sreq + delay(l, ri). (3)

When a replica receives the Propose message, it broadcasts a Write message to all replicas.
Each replica accepts the Write message when it receives the same Write messages from a

5

majority d(n + 1)/2e of the replicas. The timing Si
wrt at which replica ri accepts the Write

messages can be calculated based on the timing at which the replica ri receives the Write
message sent from replica rj :

Si
wrt = find(T i

wrt, d(n + 1)/2e), (4)

where twrt(ri, rj) = Sj
pro + delay(rj , ri), T i

wrt = {t | twrt(ri, rj), 0 ≤ j < n}, and find(S, k) is a
function that returns the k-th smallest element of set S.

An Accept message is sent in the same way as Write messages. Therefore, if we define
tacc(ri, rj) = Si

wrt + delay(rj , ri), Si
acc is

Si
acc = find(T i

acc, d(n + 1)/2e), (5)

where T i
acc = {t | tacc(ri, rj), 0 ≤ j < n}.

Finally, when a replica receives a majority of Accept messages, it executes the request and
sends the execution result to the client as a Response message. When a client receives the
same response message from f + 1 distinct replicas, it accepts the result. Therefore,

fc(x, c) = Sres = find(Tres, f + 1), (6)

where Tres = {t | Si
acc + delay(ri, c), 0 ≤ i < n}.

5 Evaluation
In this section, we examine the effectiveness of the proposed method described in Section 4.
First, the evaluation of replica deployments in terms of the RTT is verified in Section 5.1. Next,
the latencies of thousands of replica deployments on a public cloud service are measured to
evaluate the accuracy of the ranking generated by the proposed method in Section 5.2. Finally,
Section 5.3 characterizes the time that it takes to generate a ranking.

All experiments are conducted using Amazon Web Services EC2, a representative public
cloud service. We use 15 regions4 of Amazon EC2 as site candidates SC for replica deployments
(i.e., |SC| = 15). Replica and client programs are executed on Ubuntu Server 16.04 (64 bit).
For replicas and clients, we use t2.micro instances that have one vCPU, 1 GiB memory, EBS
storage, and a network interface of "Low to Moderate" performance.

5.1 Validation of the Use of RTTs
The proposed method calculates lantecies based on the RTTs between sites. Here, we evaluate
whether it is appropriate to use the RTTs for estimating lantecy and how long the generated
ranking is valid.

5.1.1 Method

An instance is deployed in each of the regions, and the ping command is executed against the
instances in the other 14 regions every two seconds. RTTs were measured during the following
periods (all times are displayed in UTC in 24-h notation):

• Term A: March 7, 19:27 – 22:13, 2018

• Term B: January 11, 11:14 – January 28, 3:41, 2019

• Term C: April 15, 15:48 – April 23, 11:15, 2019

5.1.2 Results and Discussion

RTTs measured during Term C are shown as a boxplot in Fig. 3 (only the results for the Ireland
instance are shown due to space limitations). Although RTT varied from region to region, these

6

 0

 50

 100

 150

 200

 250

 300

O
h
io

N
.V
irg
in
ia

N
.C
a
lifo

rn
ia

O
re
g
o
n

C
a
n
a
d
a

M
u
m
b
a
i

S
in
g
a
p
o
re

S
e
o
u
l

T
o
k
y
o

S
y
d
n
e
y

F
ra
n
k
fu
rt

L
o
n
d
o
n

S
a
o
P
a
u
lo

P
a
ris

R
o
u
n
d

 T
ri
p

 T
im
e

 [
m
s
e
c
]

Figure 3: Distribution of RTT from Ireland to each region during term A.

1 1000 2000 3000 4000 5000 5460
Estimated Latency Rank (TermA)

1

1000

2000

3000

4000

5000
5460

Es
tim

at
ed

 L
at

en
cy

 R
an

k
(T

er
m

C
)

Figure 4: Difference between the rankings of Terms A and C.

variations were small. The largest variation was observed between the Ireland and Singapore
regions, and its mean and standard deviation were 180.3 and 24.1 ms, respectively.

Next, we compare the RTTs from Ireland to Singapore (where the largest variations were
observed) during terms A, B, and C. The average RTTs were 175.3 ms in term A, 179.8 ms
in term B, and 180.3 ms in term C. Over the 13 months between term A and term C, RTT
increased by 5 ms. Although this may seem like a small difference, if similar changes occurred
between all regions, it is likely that the ranking generated by the proposed method would
change considerably.

To investigate how these difference affects a replica deployment ranking, we generated two
rankings from the RTTs measured during Terms A and C with the client location Multiple (see
Section 5.2.1 for its definition). Figure 4 shows the correlation between these rankings. We
can observe that the RTT changes affected the ranking certainly, especially for the 2000–5000
ranks. The largest difference happened on the replica deployment of Tokyo (leader), Canada,
Oregon, and Singapore. The deployment was in 3523rd place in the term A ranking, while it
was in 2688th place in the term C ranking.

The results indicate that the RTT variations in the public cloud are sufficiently small in
the short term; thus, estimating a replica deployment in terms of based on the RTTs between
sites is valid. In contrast, RTTs between regions changed over long periods (on the order of
one year). Therefore, a replica deployment that is found to be optimal may no longer be
optimal after a long time has passed, suggesting that replicas should be relocated periodically
to maintain optimal performance.

5.2 Ranking Accuracy
Here, we discuss the accuracy of a ranking generated by the proposed method by comparing the
rankings with those derived from the experimentally measured latencies of all possible replica
deployments.

4N. Virginia, Ohio, N. California, Oregon, Mumbai, Seoul, Singapore, Sydney, Tokyo, Canada Central,
Frankfurt, Ireland, London, Paris, São Paulo

7

Table 1: RMSE and correlation coefficient (CC)

RMSE CC
Client location fsimple f fsimple f

Ireland 759.411 620.686 0.884 0.922
N. Virginia 722.516 548.982 0.895 0.939
Sydney 985.598 638.275 0.804 0.918
Multiple 697.473 629.228 0.902 0.920

5.2.1 Method

We introduce a baseline evaluation function fsimple(x,C) to compare the accuracy of the
evaluation function of the proposed method. This function roughly estimates a latency based
on a simplified message pattern for Mod-SMaRt. First, it divides the pattern into three parts:
Request, Byzantine Consensus, and Response as Fig. 2 and calculates their timings Sreq, Scon,
and Sres as follows: Sreq is the average of the half RTTs from each client to the leader replica.
Scon is the sum of the half RTTs between all pairs of replicas. Sres is the average of the half
RTTs from each replica to each client. Finally, this function outputs the sum of these timings
as a latency.

In this experiment, all possible replica deployments are built on AWS and the latency of
each one is measured. We do not assume that multiple replicas are deployed in the same
region. Since |SC| = 15 and n = 4, the total number of possible replica deployments |DC| =
|SC| × |SC|−1Cn−1 = 5, 460. If replicas are deployed to the same combination of regions, the
location of the leader replica may differ; hence, such deployments are considered independently.

As with replicas, it is assumed that the clients are also located in the AWS regions. To
evaluate the effects of the number and locations of clients, clients are placed in geographically
distant regions, namely Ireland, Sydney, and N. Virginia. The case wherein multiple clients are
placed in multiple regions (we call this deployment as “Multiple”) is also evaluated: 10 clients
are placed in Ireland, 3 clients are placed in Sydney, and 5 clients are placed in N. Virginia.

SMR is built using the open-source SMR library BFT-SMaRt [8]5. A replication is build
to withstand Byzantine failures; the tolerable number of failures is f = 1 and the number of
replicas is n = 4. The defaults are used for all other BFT-SMaRt settings.

All latencies are measured using the sample programs LatencyClient and LatencyServer
bundled in BFT-SMaRt. LatencyClient periodically sends requests to the service and measures
the latency. LatencyServer is a dummy service that provides no functionality; it simply returns
a response immediately after receiving a request from a client. The payload sizes of the requests
and responses are 1,024 bytes. LatencyClient sends requests 50 times every 2 sec. The top
10% (i.e., the highest five values) and bottom 10% (i.e., the lowest five values) of the measured
values are considered as outliers and disregarded; the average of the other values (40 values in
total) is considered as the latency of the replica deployment. The latency is estimated with
the average RTTs measured during Term C in Section 5.2.1.

5.2.2 Results and Discussion

Figure 5 shows the correlations between the rankings generated via the proposed method using
the evaluation functions. Due to space limitations, only the results for the multiple are shown.
Table 1 also shows the root mean square error (RMSE) calculated based on the ideal ranking
(i.e., y = x), which perfectly matches the ranking based on the measured latencies, and the
correlation coefficient (CC) for each client location. The results indicate that the RMSE was
lower and the CC was higher (exceeding 0.91 in all cases) for f than for fsimple for all client
locations. This implies that f yielded more accurate rankings by tracing the communications
between the replicas in detail.

5https://github.com/bft-smart/library/releases/tag/v1.1-beta

8

https://github.com/bft-smart/library/releases/tag/v1.1-beta

1 1000 2000 3000 4000 5000 5460
Estimated Latency Rank

1

1000

2000

3000

4000

5000
5460

M
ea

su
re

d
La

te
nc

y
R

an
k

fsimple f

Figure 5: Scatter plots of measured latency rank and estimated latency rank (C = Sydney,
|DC| = 5460). Each plotted point represents the latency of a replica deployment (red for f
and blue for fsimple). The horizontal axis represents the ranking derived from the latencies
output by the proposed method with f or fsimple, and the vertical axis represents the ranking
derived from the measured latencies.

Table 2: Calculation time by size of site candidates SC (n = 4)
|SC| Time t [sec] |DC| t/|DC| [msec]
15 12.9 5,460 2.36
20 39.5 19,380 2.04
25 110.5 50,600 2.18
30 227.3 109,620 2.07

These experiments confirmed that the proposed method can generate consistent rankings
in various client locations. Further, it was revealed that the rankings generated by f are more
accurate than those generated by fsimple (particularly for the higher-ranked deployments).
Hence, a higher reproducibility of the replication protocol can reproduce more accurate replica
deployment ranking.

5.3 Calculation Time to Generate a Ranking
Finally, we evaluate the calculation time required to generate a ranking with the proposed
method6. The ranking calculation times of fsimple and f were 1.88s and 10.88s, respectively
for n = 4, that is, fsimple is about five times faster than f . This finding indicates that more
time is required to calculate the estimated latency using the evaluation function and to improve
the reproducibility of the communication.

Next, we investigate the influence of the size of SC on the calculation time with f . Table 2
shows the resulting calculation times for different |SC| values and the corresponding calculation
times per replica deployment t/|DC|. The result shows that as the size of SC increased, the
calculation time required to generate the rankings considerably increased because the total
number of replica deployments |DC| increases exponentially with |SC|.

Furthermore, the influence of the number of replicas n on the calculation time with f .
Table 3 shows the calculation time t for different |DC| values and the corresponding calculation
times per replica deployment, t/|DC|, as n is varied. The result shows that t and |DC| were
maximized at different values of n (10 and 7, respectively) because the calculation time of a
replica deployment t/|DC| increases as n increases.

These measurement results reveal that the rankings for replica deployments can be calcu-
lated in several hundred seconds when the replica number and site number are relatively small.
This is considered a reasonable calculation time since a deployed SMR is typically operated for
more than one year. In contrast, if large numbers of replicas and SC are used, the calculation
time becomes very high. In such a case, some changes need to be made so that the solution is

6All the rankings were calculated by the program implemented with Python 3.6 on the following PC: Intel
Core i5 7400, Windows 10 Home 64-bit.

9

Table 3: Calculation time by the number of replicas n (|SC| = 15)
n Time t [sec] |DC| t/|DC| [msec]
4 12.9 5,460 2.36
7 429.1 45,045 9.53
10 792.1 30,030 26.38
13 77.7 1,365 56.90

still practical, e.g., calculations latencies in parallel, discarding replica deployments that seems
to be slow, and so on.

6 Conclusion
In this paper, we addressed on the difficulty of determining the optimal replica deployment for
geographic state machine replication by proposing a novel method to generate a ranking of all
possible replica deployments. We introduced an evaluation function that estimates a latency of
each replica deployment based on the RTTs between sites, which are easy to measure without
actually building the deployments. Hence, all possible replica deployments can be evaluated
and ranked accordingly to determine the optimal replica deployment for geographic SMR. We
confirmed the validity of evaluating replica deployments in terms of their RTTs. After that, we
measured the latencies of thousands of replica deployments built on Amazon Web Services, and
ranked the deployments accordingly. Then, we compared this experimentally derived ranking
with those rankings generated using the proposed method. The results exhibited that the
proposed method can create a ranking with sufficient accuracy in a reasonable time.

References
[1] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach:

a tutorial,” ACM Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[2] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “RITAS: Services for Randomized
Intrusion Tolerance,” IEEE Transactions on Dependable and Secure Computing, vol. 8,
no. 1, pp. 122–136, 2011.

[3] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous
broadcast protocols,” in CRYPTO, 2001.

[4] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,”
ACM Transactions on Computer Systems, vol. 20, no. 4, pp. 398–461, 2002.

[5] J. Nakamura, T. Araragi, S. Masuyama, and T. Masuzawa, “Efficient Randomized Byzan-
tine Fault-Tolerant Replication based on Special Valued Coin Tossing,” IEICE Transac-
tions on Information and Systems, vol. E97-D, no. 2, pp. 231–244, 2014.

[6] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: speculative byzantine
fault tolerance,” in SOSP, 2007.

[7] J. Sousa and A. Bessani, “From Byzantine Consensus to BFT State Machine Replication:
A Latency-Optimal Transformation,” in EDCC, 2012.

[8] A. Bessani, J. a. Sousa, and E. E. P. Alchieri, “State Machine Replication for the Masses
with BFT-SMaRt,” in DSN, 2014.

[9] J. Sousa and A. Bessani, “Separating the WHEAT from the Chaff: An Empirical Design
for Geo-Replicated State Machines,” in SRDS, 2015.

10

[10] S. Liu and M. Vukolic, “Leader set selection for low-latency geo-replicated state machine,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 7, pp. 1933–1946,
2017.

[11] M. Eischer and T. Distler, “Latency-Aware Leader Selection for Geo-Replicated Byzantine
Fault-Tolerant Systems,” in DSN-W, 2018.

[12] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building efficient replicated state
machines for wans,” in OSDI, 2008.

[13] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA: Efficient byzantine
agreement for wide-area networks,” in HASE, 2010.

[14] P. Coelho and F. Pedone, “Geographic state machine replication,” in SRDS, 2018.

[15] L. Lamport, “Lower bounds for asynchronous consensus,” https://lamport.azurewebsites.
net/pubs/bertinoro.pdf, 2002, [Online; accessed July 31, 2019].

[16] S. A. Cook, J. Pachl, and I. S. Pressman, “The optimal location of replicas in a network
using a READ-ONE-WRITE-ALL policy,” Distributed Computing, vol. 15, no. 1, pp. 57–
66, 2002.

[17] G. Sen, M. Krishnamoorthy, N. Rangaraj, and V. Narayanan, “Facility location models to
locate data in information networks: a literature review,” Annals of Operations Research,
vol. 246, no. 1-2, pp. 313–348, 2015.

[18] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Systems,
vol. 16, no. 2, pp. 133–169, 1998.

11

https://lamport.azurewebsites.net/pubs/bertinoro.pdf
https://lamport.azurewebsites.net/pubs/bertinoro.pdf

	1 Introduction
	2 Background
	2.1 State Machine Replication
	2.2 Related Work

	3 Replica Deployment Decision Problem
	4 Proposed Method
	4.1 Overview
	4.2 Evaluation Function f(x, C)
	4.2.1 Approach
	4.2.2 Latency Formulation

	5 Evaluation
	5.1 Validation of the Use of RTTs
	5.1.1 Method
	5.1.2 Results and Discussion

	5.2 Ranking Accuracy
	5.2.1 Method
	5.2.2 Results and Discussion

	5.3 Calculation Time to Generate a Ranking

	6 Conclusion

