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Abstract—This paper presents the use of outlet temperature
and water meter data as inputs to a physical model of a
domestic electric water heater (EWH) for estimating the energy
consumption for various control settings. Four sets of actual
household data, consisting of at least 7 consecutive days each,
is used to determine the accuracy of the energy consumption
estimates in comparison to measured energy consumption. Both
the outlet temperature and water meter data inputs used were
able to estimate the total energy input with an error of less
than 10 percent for 3 of the 4 datasets considered. Additionally,
both methods are also implemented as a smartphone application
that can be used to obtain input from users, as well as provide
instantaneous feedback on the impact of control changes.

I. INTRODUCTION

South Africa is in the midst of an energy crisis, with the
national electricity utility resorting to load shedding in order
to cope with the lack of generation capacity. Additionally,
major water shortages in certain parts of the country have
lead to water rationing [1]. The heating of sanitary water,
which consumes both energy and water, in South African
commercial and residential buildings remains one of the largest
contributors to the national electricity grid demand peaks [2].
These characteristics are not unique to South Africa, as warm
water consumption is the second largest overall energy use
activity in the residential sector in the USA (second to space
heating) [2]. Also, residential usage of water constitutes two
thirds of the total water consumption in Gold Coast, Australia
[3].

Smart grid technologies, such as smart metering, have
allowed for more intelligent control of household appliances
that can reduce their overall energy consumption, as well as
the cost of energy usage in certain instances (e.g. time of
use tariffs) [4]. Appliances capable of storing energy, such
as electric water heaters (EWHs), are ideal candidates for
intelligent control as they provide the most flexibility in terms
of their scheduling capabilities. The energy usage of EWHs
can significantly be reduced with the use of a timer control
unit and, if controlled correctly, these appliances are still able
to provide warm water to meet household demand [5].

Smart metering technologies have also been leveraged to
increase consumers’ awareness of their energy and water usage
through more timely and detailed feedback of consumption
data. For example, Willis et al [3] installed alarming visual
display devices in the showers of 44 households in Gold Coast,
Australia. These devices are installed at the shower head and
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Fig. 1. Diagram of system inputs and feedback.

include a display that provides users with feedback on the
flow rate, duration and temperature of their shower events. The
device also produces a beep after 1 minute to indicate when
a user should stop showering. The use of this device resulted
in a mean reduction of 27% for shower water usage volumes
for the households included in the study.

Due to their ubiquitous nature, mobile phones are increas-
ingly being used in smart metering systems as a means of
disseminating consumption information to users. PowerPedia,
for example, is a community-based smartphone application
that allows users to connect their smartphone directly to a
smart electricity meter [6]. Users are then able to determine
the electricity consumption for individual domestic appliances
(e.g. energy efficient lightbulbs and low water-use dishwash-
ers). This information can then be published on PowerPedia,
as well as social networking platforms (Twitter and Facebook),
where it can be compared to other similar devices that have
been published by other users. The normative comparisons and
ranking system provided by this application allows users to
benchmark their consumption data for specific devices.

Smart metering and mobile devices can be leveraged in
combination to provide users with immediate usage feedback
and enhanced control functionality through a conveniently
accessible application on a mobile device. Booysen et al [5]
presents intelligent EWHs fitted with cellular modems and
the use of an online interface to provide users with high
resolution data (i.e. 1 minute sampling intervals) detailing the
energy consumption of their EWHs. This functionality was
extended in [7] to include warm water usage, time of day
that the consumption occurred, and an Android smartphone
application was implemented to allow users to monitor their
usage and control the settings of their EWH from their mobile
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device. The mobile application was then utilised to analyse
users’ consumption patterns and provide recommended on
and off times (i.e. schedules) for their EWHs based on their
usage [8]. However, with this additional control functionality,
users require a means of determining the impact on the EWHs
energy consumption as a result of implementing schedules and
other control decisions (e.g. set temperature).

A. Contribution
This paper presents two methods for estimating the energy

consumption of a domestic EWH for various control settings
with the use of a physical model, as shown in Figure 1.
The first method consists of a water meter that measures
the total volume of warm water consumed by a household.
The second method uses a single outlet temperature sensor
to determine when usage events occur using the algorithm
and system presented in [8] and then estimates the volume of
warm water consumed by using typical flow rates of end uses
of warm water. The data generated by these methods is used
to create a usage profile for a household that is subsequently
utilised as an input to a physical model of an EWH to estimate
energy consumption. These methods are evaluated using actual
household data to determine the accuracy of their estimates in
comparison to measured energy consumption. Both methods
are also implemented as a smartphone application that can be
used to obtain input from users, as well as provide instanta-
neous feedback on the impact of control changes.

The rest of this paper is organised as follows: section II
describes related work in detecting usage events and estimating
EWH energy consumption; section III presents a model of
the EWH outlet pipe used in the event detection algorithm;
section IV describes the classification of domestic warm water
usage events used in estimating typical usage event volumes
and flow rates; section V details the results and accuracy of
the EWH energy estimation using outlet temperature data and
water meter data; section VI outlines future work to be done;
and section VII concludes the paper.

II. RELATED WORK

Paull et al [9] extracted electric water heater load from
household load data recorded by smart meters with a 15
minute sampling interval. EWH have a large energy rating
(typically 2 kW or higher) and therefore generate a rapid
increase in the household load. These rapid increases and
subsequent decreases were extracted from household data and
used to estimate the warm water usage. These results were
then used to develop a water usage profile which was, in turn,
used in conjunction with a physical EWH model to estimate
the temperature of the water in the EWH tank. Although
this method is able to determine the household water usage
profile for an EWH under normal thermostat control, it is not
applicable if an EWH is controlled using a schedule as energy
input may not coincide with usage events. Additionally, the
method may be prone to errors when multiple high-power
devices (e.g. kettle, stove) are operating simultaneously, which
is likely to occur in a 15 minute interval, and create a similar
load curve to the EWH.

Beal et al [10] used high resolution water meters (0.014
litres/pulse logged in five second intervals) for 252 residences
in South-east Queensland, Australia over a two week contin-
uous period. This data was then analysed using flow trace

analysis software capable of disaggregating the data into end
usage events, even when events occur simultaneously. This
paper highlights the importance of feedback to users as actual
and perceived consumption for these households were not
well matched. Additionally, this misperception held across
gender, education and socio-demographic groups. This method
of determining end uses is very effective but requires the use
of sophisticated software and high resolution hardware that
is expensive and generates a significant volume of data that
needs to be stored and analysed. Such high resolution data is
not necessary for making useful estimates of EWH energy and
water consumption.

Weihl and Kempton [11] describe the development of an
instrumentation system based on a single flow meter at the
EWH inlet and temperature probes on the EWH outlet pipe
and at each end point (i.e. outlet) in the domestic warm
water distribution system. The proposed system is used to
disaggregate measured warm water usage into end uses. The
temperature at each outlet is recorded in one minute intervals
when the warm water flow reaches at least 0.1 litres per
minute and continues for an additional five minutes after flow
drops below this minimum threshold. A five-step algorithm
is then used to infer which tap used the water for a specific
usage event by determining the outlet with the highest rise in
absolute temperature. This method requires at least one minute
of zero flow to distinguish between subsequent water events,
and multiple events occurring simultaneously will be treated
as a single event (although an attempt is made at attributing
a secondary usage event if two events occur together, but the
success of this is limited). If the system is unable to determine
which tap consumed the water, then the event is considered as
undetermined but is still included in the total volumetric usage
of the EWH. A sample of 5 houses in central Michigan (USA)
with a total of 231 days of measurement data including 7075
total usage events were used to evaluate the efficiency of the
system. The end usage point of 96% of all events was inferred,
with most of the undetermined events being smaller usage
events (typically less than 1 litre). These results are similar to
the system used in [8] to detect events using thermal transients
at the outlet.

Fogarty et al [12] presents a low-cost microphone-based
sensor system for elder activity sensing. Battery powered
sensors are attached to pipes at critical locations in the house-
hold’s water distribution system. These sensors collect audio
samples every 2 seconds which can be used to identify end
use activities. Although water pipes are good conductors of
sound, this also implies that they will conduct the ambient
noise well (e.g. sound of central air conditioning) which can
lead to erroneous detection of events. Since the sensors are
mounted to pipes, a plumber is not needed for installation.
However, the suitable placement of the sensors is essential for
the system to function correctly and professional installation
of the system will be required. However, proper placement
of the sensors leads to accurate detection of events including:
94% of shower usage; 95% of dishwasher usage; as well as 73
and 81% of bathroom and kitchen sink activity, respectively,
lasting 10 seconds or longer.

Larson et al [13] uses a centralised low-cost pressure-
based sensor for automatic disaggregation of water usage
events in ten households. The opening and closing of water
fixtures causes a pressure wave (i.e. surge/water hammer)
which propagates through the water distribution system which
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is observed by the sensor. This pressure wave signature differs
depending on the valve type, location and the way in which
the valve is opened or closed. These pressure transients are
then classified into specific end uses as well as individual
fixtures. For example, if two identical toilets are located in
two separate bathrooms of a single household, each pressure
wave traverses a different path to the sensor, creating unique
signatures which can be used to differentiate between the
two fixtures. The system is able to classify the end uses of
water, the specific valve used during usage events and classify
events as hot or cold water events with accuracies greater than
90%. Additionally, the flow rates of individual fixtures were
estimated in four households and with three of the four had
error rates less than 8%. The fourth household had an error
rate of 22%which is believed to be as a result of incorrect
placement of the sensor.

III. EWH OUTLET PIPE MODEL

In order to detect water usage events, the outlet temperature
is monitored with the use of a temperature sensor mounted
on the pipes surface. A usage event is defined by a sudden
increases in outlet temperature as warm water flows through
the pipe, followed by a gradual decrease in this temperature
as the pipe cools. The optimal values for these start and stop
conditions can be determined using a combined analytical and
empirical approach.

A lumped-heat-capacity analysis is used to model the tem-
perature of the cross-section of a copper outlet pipe and the
water inside it. This implies that the water and the pipe can be
considered to have a uniform temperature which only varies
with time. During the heating state, the warm water and pipe
temperatures are not identical and only the pipe is being
heated. In the cooling state, the pipe and the water are at the
same temperature and are therefore cooling together. These
two states are shown in Figure 2. For this analysis, we assume
a starting condition in which the pipe has been exposed to
some ambient temperature for a prolonged period of time and
that the water in the EWH tank is warm. A standard 22 mm
residential copper piping 100 mm in length (L), with an outer
diameter (do) of 22.22 mm and an inner diameter (di) of 18.92
mm [14], is considered during the analysis. Additionally, only
heat transferred in the radial direction is considered. Although
this analysis is performed on a copper tube of a specific
size, the parameter values may be adjusted for pipes of other
materials and dimensions, as long as the Biot number of the
system remains at a suitable level to justify the use of a lumped
analysis [15]. Weihl and Kempton [11] compared the response
of copper and steel pipes and determined that, although steel
has a more sluggish response, it still exhibited a clear rise in
temperature.

During the heating state warm water flows through the outlet
pipe as a result of being drawn from the EWH for a usage
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event. The temperature of the water is higher than that of the
pipe, which causes heat transfer from the water to the pipe.
This results in an increase in the temperature of the pipe to
a maximum value of the temperature of the water. When the
temperature of the pipe reaches this maximum value, it will
be maintained at this value until the end of the usage event.
During this state, we consider the temperature increase of the
pipe in isolation and therefore make use of the specific heat
capacity (cp(Cu)) and density (ρCu) of copper when calculating
the temperature of the pipe.

In the cooling state no water is being drawn from the EWH
and the water inside the pipe is stagnant. The temperature of
the outlet pipe and the water are equivalent and can be assumed
to remain in good agreement throughout the duration of this
state as the thermal conductivity of copper is high and the pipe
wall is thin, therefore the temperature drop across the pipe
wall is negligible [15]. Since the temperature of the system
is higher than the ambient temperature of its surroundings,
heat is dissipated to the environment through the pipe surface
during this state as a result of the temperature difference. The
temperature of the system will continue to decrease until it
reaches the ambient temperature of the air surrounding the
pipe, or another usage event occurs.

Figure 3 shows the thermal equivalent circuit for the outlet
pipe system as sensed by the temperature sensor. R and C are
the total thermal resistance and capacitance, respectively, for
the outlet pipe system during a specific state. The temperature
of the pipe at a given time (t) can therefore be modelled using
an RC transient circuit analysis and is determined using the
following equation:

Tpipe(t) = T∞ −
[
T∞ − Tpipe(0)

]
e

−t
RC (1)

Where: Tpipe(t) is the temperature of the outlet pipe system at
time t; T∞ is the temperature that the system is being exposed
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Fig. 5. Measured and simulated outlet pipe temperatures for small, low
temperature usage event - the resolution of the sensor is 1 ◦C.
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Fig. 6. Measured and simulated outlet pipe temperatures for large, high
temperature usage event.

to (Twarm for heating and Tambient for cooling); and T (0) is
the initial/starting temperature of the system. The value of the
time constant can be determined using:

R =
1

hA
; C = ρcpV (2)

Where C is given by the product of the density (ρ), specific
heat capacity (cp) and volume (V ) of the material under
consideration. The value of R is determined from the inverse
of the product of the surface area for convection (A) and
the overall heat transfer coefficient (h) of the system. The
overall heat transfer coefficient can be broken down into
three components [16]: convective heat transfer between the
water inside the pipe and the inner pipe wall; conductive
heat transfer from the inner and outer surfaces of the pipe;
and convective heat transfer from the outer pipe wall to the
surrounding environment. Figure 4 shows the total thermal
resistance network for the outlet pipe system. The value of
h is dependent on the flow rate of the water in the pipe but,
if the algorithm is designed to capture the minimum increase
in temperature as a result of smaller usage events with lower
flow rates, then the larger events with higher flow rates will
also be detected.

The overall heat transfer coefficient for each state was deter-
mined empirically using measurement data and by rearranging

Equation 2 to obtain:

h =
ρcpV

A · t
ln

[
T (t)− T∞
T (0)− T∞

]
(3)

Table I shows the parameter values used for Equation 3 to
determine the overall heat transfer coefficient for the heating
and cooling states. The value of A for the heating state is given
by the inner surface area of the pipe which is exposed to the
warm water and for the cooling state it is given as the outer
surface area of the pipe, which is exposed to the environment.
The value of V for the heating state is given by the volume
of the copper tube that makes up the outlet pipe and for the
cooling state it is given by the volume of the water inside the
pipe as all the thermal energy of the system is stored in the
water as copper has a much lower heat capacity than water.
The simulated and measured pipe temperatures are shown in
Figure 5 for a small usage event (7 litres) for an EWH with
a set temperature of 65 ◦C. The EWH implemented schedule
control and was only allowed to turn the element on from
04:15 to 06:00. The event shown occurred mid morning after
two significant usage events (25 and 95 litres), resulting in a
lower tank temperature. Additionally, it was a warm day with
a maximum temperature of 28 ◦C which lead to an increased
pipe temperature. Figure 6 shows the measured and simulated
outlet pipe temperatures for a large usage event (74.5 litres)
for an EWH with a set temperature of 65 ◦C. The EWH
implemented regular thermostat control (i.e. on all day) and
the event shown occurred 8 hours after the previous event.

The simulated temperature of the pipe was calculated in
10 second intervals to clearly illustrate the overall shape of
the temperature curve. It should be noted that the initial start
of the temperature may lag or lead the measured data as
it is not possible to determine when exactly during the one
minute sampling interval the usage event started. Additionally,
since the temperature at the surface of the pipe was measured,
the temperature sensor reading reaches a maximum value
that is lower than the set temperature of the water in the
tank. The exposed temperature value for the heating state
in Equation 3 was adjusted accordingly in order to obtain
more accurate simulation results. The simulation results have a
similar shape to the EWH outlet temperatures measured in 10
second intervals by Weihl and Kempton [11] and are in good
agreement with the measured outlet temperature values. From
Figure 5, it can be seen that the minimum rise in temperature
that needs to be detected for a small usage event is 6 degrees
over 2 samples and that the pipe takes approximately 13
samples to fall by 2 ◦C. However, in order to obtain accurate
duration estimates of the events, the decay must be adjusted
for events that cause the outlet temperature to rise by a more
significant amount (i.e. closer to the set temperature), as shown
in Figure 6. Therefore an increase of 4 ◦C over 2 samples was
chosen as the characteristics of a start event. For a stop event,
a decrease in 2 ◦C was chosen and the number of samples was
varied depending on the maximum outlet temperature reached
after a start event. A value of seven samples was chosen for
events that increase the outlet temperature above 35 ◦C and a
value of 14 samples for an outlet temperature below 35 ◦C.

From these results, it can be seen that the minimum rise
in temperature that needs to be detected for a small usage
event is 6 degrees over 2 samples and that the pipe takes
approximately 13 samples to fall by 2 ◦C. However, in order
to obtain accurate duration estimates of the events, the decay



TABLE I. THERMAL CIRCUIT PARAMETER VALUES FOR HEATING AND
COOLING STATES [15], [17].

ρ( kg
m3 ) cp(

J
kg·K ) A(m2) V (m3)

Heating ρCu= 8740 cp(Cu)= 385 πdi × L π
4 (d2o − d

2
i )× L

Cooling ρH2O
= 1000 cp(H2O)= 4180 πdo × L π

4 d
2
i × L

TABLE II. TOTAL VOLUME OF WATER USED PER EVENT FOR SPECIFIC
END USES [18], [19].

End Use Low Typical High V̇typical(
litres
min )

Bath 39.0 80.0 189.0 9.0

Shower 7.6 59.1 303.0 30.0

Bathroom basin 0.3 3.8 60.0 4.8

Kitchen sink 0.6 6.7 73.0 9.0

Washing machine 60.0 113.6 200.0 8.5

Dishwasher 15.1 25.0 43.0 3.8

must be adjusted for events that cause the outlet temperature
to rise by a more significant amount (i.e. closer to the set
temperature). Therefore an increase of 4 ◦C over 2 samples was
chosen as the characteristics of a start event. For a stop event,
a decrease in 2 ◦C was chosen and the number of samples was
varied depending on the maximum outlet temperature reached
after a start event. A value of seven samples was chosen for
events that increase the outlet temperature above 35 ◦C and a
value of 14 samples for an outlet temperature below 35 ◦C.

IV. EVENT CLASSIFICATION

Warm water in residential buildings is used for indoor-
type events and can be broken down into 6 end uses [18]:
bath; shower; bathroom basin; kitchen sink; washing machine;
and miscellaneous indoor usage. Table II shows the typi-
cal volumetric usage amounts for specific indoor end uses
(combined hot and cold water consumption) in South African
suburbs [18]. Warm and cold water are mixed to create a
blended (i.e. desired) water temperature for usage events at
an end point. The desired temperature is typically 40.2 ◦C
and can be assumed to remain constant over different seasons
for specific individuals [18]. From Table II, the volume of
water used for events can differ significantly depending on the
duration of the event and the type of fixture at the tap (e.g. low-
flow shower heads). For example, the total volume of water
consumed by a shower event can be as low as 7.6 litres and as
high as 303 litres. The algorithm used in this paper to detect
events at the outlet is able to determine the duration of events
with reasonable accuracy [8] and, therefore, only approximate
warm water flow rates for specific end uses are required in
order to estimate the energy consumption of the EWH.

Usage events can be classified as being either fixed energy
or fixed volume [20]. A shower or bath, for example, can be
considered as fixed energy events as the hot and cold water
are mixed to create a certain blended (i.e. desired) temperature
at an outlet tap. If the temperature of the warm water is
lower, a higher ratio of warm water will be required to deliver
the same desired temperature (i.e. thermal energy) at the tap.
Washing machine and dishwasher events, however, can be
considered fixed volume events as they draw a specific volume
of warm water regardless of the set temperature [20]. Fixed
energy events need to have their flow rate scaled according
to the set temperature of the EWH. The nominal warm water
temperature setting for EWHs in South Africa is 65◦C and
is used to determine the flow rates of events [21]. Typical

TABLE III. CLASSIFICATIONS OF WARM WATER END USES.

End Use Small Medium Large
Bath ×

Shower ×
Bathroom basin ×

Kitchen sink ×
Washing machine ×

Dishwasher ×

flow rates for water at 65◦C can be used and scaled according
to the set temperature of the EWH using the first law of
thermodynamics [21], based on the assumption that the amount
of energy used by each event will remain constant and that
water at the inlet temperature is at baseline energy [5]:

Eadjusted = Etypical (4)

ρcpV̇adjusted(Tadjusted−Tinlet) = ρcpV̇typical(Ttypical−Tinlet)
(5)

V̇adusted = V̇typical ·
(Ttypical − Tinlet)
(Tadjusted − Tinlet)

(6)

Warm water events can be classified into three separate
categories: small, which consists of warm water usage events
that consume 15 litres or less; medium, where more than 15
but less than or equal to 30 litres are used; and large, which
are events for which more than 30 litres of warm water are
consumed. The amount of water used by typical end use events
(mwarm can be calculated using the typical combined usage
(mtotal) shown in Table II in combination with the energy
balance equation as follows:

Ewarm = Etotal (7)

mwarmcp(Twarm − Tinlet) = mtotalcp(Twater − Tinlet) (8)

mwarm = mtotal
(Twater − Tinlet)
(Twarm − Tinlet)

(9)

The amount of warm water used by each typical end use
was calculated using Equation 9 with: a set temperature of
65 ◦C (Twarm); a blended temperature of 40.2 ◦C (Twater);
and a inlet temperature (Tinlet) of 20 ◦C . This usage amount
was then used to classify each event into one of the three
categories mentioned above and the results summarised in
Table III. Bathroom basins, kitchen sinks and dishwashers are
categorised as small events as their usage volumes are typically
quite low. The flow rate for small usage events was therefore
chosen as 3 litres per minute to allow all of these events
to be captured by this category. Showers are the only event
categorised as a medium event size. A typical shower is 3 to 4
minutes in duration and typically consumes 26 litres of warm
water. A flow rate of 6 litres per minute was designated to
medium events in order to capture both of these typical events.
Since both washing machines and baths are considered large
events, the flow rate for a large event was chosen as 9 litres
per minute. The flow rates used are for typical events in South
Africa but can be modified further for: different regions (e.g.
USA); additional end uses (e.g. washing of face or hands);
sub-categorisation of end uses (e.g. large or small shower); or
even specific types of fixtures (e.g. low-flow shower head).

Figure 7 shows screenshots of the mobile application that
users can utilise to determine the energy usage of their EWHs.
The left screenshot shows the use of outlet tempreature data for



Fig. 7. Screenshot of mobile application using outlet temperature (left) and
water meter (right) data.

event detection and the user input required for manual event
classification. The right screenshot shows the same day’s data
using water meter data for event detection (no classification
required).

V. RESULTS

A water meter was installed on the water inlet pipe of the
EWH, as shown in Figure 8, to determine the actual volume
of warm water consumed by usage events to test the thermal
approach. The water meter outputs a pulse for every 0.5 litres
of water used, but requires a flow of more than 2 litres per
minute. The total number of pulses generated in a sampling
interval (typically a minute) is reported to an online server. The
mobile application can typically be used to obtain input from
users in order to classify events. However, in the absence of
user input, the events were classified using water meter data.

Each detected event was classified as small, medium or
large according to the amount of water recorded by the water
meter. Once classified, the relevant flow rate was assigned
to each usage event over the duration detected by the outlet

Element
Hot Water

Cold Water Inlet

Hot Water Outlet

Temperature Sensor

000000

Water Meter

Fig. 8. Hardware configuration of EWH system used during testing.

TABLE IV. DESCRIPTION OF DATASETS.

Dataset # Days
Control
Mode

Season
Inlet

Temperature (◦C)
1 9 Schedule Summer 22

2 10 Schedule Autumn 19

3 7 Thermostat Summer 20

4 10 Thermostat Winter 17

temperature algorithm. In some instances, events with very
low usage amounts (i.e. less than 0.5 litres) or flow rates (i.e.
less than 2 litres per minute) are detected using the outlet
temperature but are not registered by the water meter. These
events consume little warm water and are therefore classified
as small events.

After the event classification process, a one node model was
used to simulate an EWH with a set temperature of 65 ◦C
for 4 datasets with varying schedule settings spanning several
seasons, as shown in Table IV. Additionally, Table V shows a
summary of the number of each type of usage events included
in the datasets, as well as the total volume of warm water
measured by the water meter (Vtotal Measured) and the
estimated amount of warm water consumed using the outlet
data (Vtotal Estimated). Finally, Table VI contains the results
of the simulations for each dataset using the water meter and
the outlet temperature data.

The overall estimated energy input of the EWH (Einput) was
in good agreement with the measured values for both the water
meter and outlet temperature data. The calculated energy input
error was less than 10% for the first 3 datasets, with dataset 4
yielding inaccurate results. As expected, the water meter data
yielded more accurate results for the energy estimation than
the outlet temperature data for all the datasets. However, the
volumetric estimation of the outlet temperature data was able
to estimate the volume of water consumed within 10 percent
accuracy for the first 3 datasets.

Dataset 4 includes several extremely large usage events that
warrant further consideration. Six of the 18 large events in
dataset 4 consumed more than 95 litres of water each. This
results in a significant error in the estimation of the EWHs
energy usage when using both the water meter and outlet
temperature data. This is because the one node model is not
able to accurately model such large events as it does not
account for the stratification that occurs within the tank when
large amounts of water are withdrawn [22]. Additionally, the
duration estimates from the outlet temperature for such large
events are inaccurate. This is because the events consume
enough warm water to empty the EWH tank and reduce
the water temperature flowing through the outlet pipe to the
inlet temperature. This causes a sudden drop in the outlet
pipe temperature which, in turn, leads the event detection



TABLE V. SUMMARY OF USAGE EVENTS FOR DATASETS.

Dataset
# Small
Events

# Medium
Events

# Large
Events

Total
Events

Total Volume
Measured [litres]

Total Volume
Estimated [litres]

Error [%]

1 14 12 7 33 650 687 5.69

2 9 9 7 25 706 648 8.21

3 2 5 4 11 343 315 8.16

4 13 1 18 32 1489 576 61.3

Total 38 27 36 101 3188 2226 30.18

TABLE VI. ENERGY ESTIMATES USING WATER METER AND OUTLET TEMPERATURE DATA.

Water Meter Outlet Temperature

Dataset
Energy Input

(Measured) [kWh]
Energy Input

(Calculated) [kWh]
Error [%]

Energy Input
(Calculated) [kWh]

Error [%]

1 38.90 38.81 0.25 38.50 1.05

2 41.86 42.23 0.88 41.25 1.46

3 34.73 32.16 7.41 31.55 9.17

4 115.20 92.89 19.37 61.21 46.9

algorithm to significantly underestimate the duration of these
events and therefore the amount of water consumed. It may
therefore be necessary to further classify larger end uses,
such as showers and baths, as the volume of water consumed
by these events can vary drastically, which concurs with the
findings in Table II.

VI. FUTURE WORK

Future work will include further research into accurate flow
rates for various fixtures and end uses as well as the differences
in these flow rates across seasons. Water meter data will be
used in conjunction with water diaries kept by users in order to
classify events more accurately in terms of their end uses and
obtain more accurate estimates of usage volumes for events.
Additionally, the system presently uses a flat rate cost structure
and can be extended to include a dynamic price schedule in
order to more accurately estimate the cost of specific events,
especially for DSM programs where time of use tariffs are in
effect. This data could then be used to provide the user with the
cost of specific events and the potential financial and energy
savings as a result of deferral of the event to a cheaper tariff
time or curtailment (e.g. results of reducing shower time by
one minute). The EWH was set at 65 ◦C for all the datasets
analysed. Investigation into the change in energy and warm
water consumption of an EWH for various set temperatures
will be performed.

VII. CONCLUSION

This paper presents the use of outlet temperature and water
meter data as inputs to a physical model of a domestic EWH
for estimating the energy consumption for various control
settings. Both the outlet temperature and water meter data
inputs used were able to estimate the total energy input with an
error of less than 10 percent for 3 of the 4 datasets considered.
The limitations of the volumetric estimation as well as the
one node EWH model when estimating energy usage for high
volume usage events as a result in differences of user behaviour
(e.g. shower/bath duration) are illustrated.
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