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Abstract—Robust optimization tries to find flexible solutions
when solving problems with uncertain scenarios and vague infor-
mation. In this paper we present a multiobjective evolutionary
algorithm to solve robust multiobjective optimization problems.
This algorithm is a novel adaptive method able to evolve separate
populations of robust and non-robust solutions during the search.
It is based on the infeasibility driven evolutionary algorithm
(IDEA) and uses an additional objective to evaluate the robustness
of the solutions. The original and adaptive IDEAs are applied
to solve the r-TSALBP-m/A, an assembly line balancing model
that considers a set of demand production plans and includes
robustness functions for measuring the temporal overloads of
the stations of the assembly line with respect to the plans. Our
results show that the proposed adaptive IDEA gets more robust
non-dominated solutions for the problem. Also, we show that,
for the case of the r-TSALBP-m/A, we can obtain Pareto fronts
with a higher convergence by using the adaptive version of the
algorithm.

I. INTRODUCTION

Real-world applications normally involve uncertainties be-
cause of operating conditions or manufacturing process [1].
Robust optimization tries to find flexibility by its way of solv-
ing the latter problems. Particularly, flexibility is an important
asset to manufacturing firms to respond to changes in the
environment [2] and this flexibility applies to the many opera-
tion research problems and industrial fields such as automotive
industry, assembly line balancing, or scheduling. Robustness
can be applied to many components in an optimization process:
noise in constraints, objective function, or uncertainties in data
variables [3], [4], [5].

In this work we integrate the concept of robust solu-
tions [4], [5] during the search of an evolutionary mul-
tiobjective optimization (EMO) method to directly provide
practitioners with robust solutions for their problems. The
original infeasibility driven evolutionary algorithm (IDEA) [6]
was explicitly designed for industrial constrained optimization
problems. In the current contribution we propose a novel
variant of the IDEA, an extension of the original version
to search for robust solutions during the search. The novel
IDEA is adaptive and this behavior is achieved by dividing
the population of the algorithm in robust and non-robust sub-
populations of solutions and by adapting the size of both
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populations depending on the robustness of the Pareto archive
at every generation.

In order to show the potential of the adaptive IDEA to deal
with robust optimization problems we apply it to a well-known
industrial problem, the assembly line balancing (ALB) [7], [8].
An assembly line consists of a set of workstations and different
tasks requiring an operation time for their execution. These
tasks divide the manufacturing of a production item and the
ALB is one usual and difficult problem which determine how
these tasks are efficiently assigned to the stations by fulfilling
certain restrictions. The simple assembly line balancing prob-
lem (SALBP) [9], [10] belongs to the ALB family of problems
and optimally partitions tasks to stations with respect to some
objective (such as line cycle time) in such a way that all the
precedence constraints are satisfied.

The r-TSALBP is a new SALBP model which searches for
the most efficient assembly line configurations when demand
changes. The model links robustness with the flexibility of an
assembly line configuration when demand changes based on a
set of real production plans. The goal is to identify how robust
a line configuration is for a set of production plans according
to both operation time and linear area. This is carried out by
using temporal robustness functions which are based on the
overloads for each station and production plan. Concretely
in this work we apply the original and adaptive IDEA to
the r-TSALBP-m/A model which optimizes m (the number
of stations) and A (the area of the stations) when having
production plans with different operation times for the tasks
of the assembly line.

The experimentation comprises the performance evaluation
of both IDEAs in a set of seven instances generated by the
NTIGen software [11]. These instances belong to a diverse set
of r-TSALBP-m/A instances that incorporates the real data and
industrial features of the Nissan industry plant of Barcelona.
Both methods are compared to analyze the effect of including
the robustness computation during the search process and how
the adaptive variant performs. The analysis employs commonly
used multiobjective performance indicators and robustness
graphical representations of the non-dominated solutions.

In Section II we discuss the introduction of robustness
in multiobjective optimization and production problems. Our
adaptive IDEA proposal is given in Section III. The utility and
mathematical description of the r-TSALBP-m/A is detailed in
Section IV. The specific design of both IDEAs for solving the
r-TSALBP-m/A is presented in Section V and the analysis of
results in Section VI. Finally, the conclusions of the study and
some future works are discussed in Section VII.978-1-4799-7560-0/15/$31 c©2015 IEEE



II. ROBUST OPTIMIZATION IN EMO AND ASSEMBLY LINE

BALANCING

Finding the most robust solutions for operation research
problems is a very active research field where we can find
optimization algorithms that consider robustness such as those
for portfolio planning [12], vehicle routing problem [13],
and product design problems [14]. The search for optimal
robust designs often appears as a multi-criteria decision mak-
ing (MCDM) problem optimizing conditional expectation and
variance. For example, one of the proposals in this line was
the multiobjective six sigma of [15].

The work of [16] was the first and one of the most impor-
tant contributions in introducing robustness in EMO. Authors
defined a robust solution as one which is less sensitive to
the perturbation of the decision variables in its neighborhood.
In MOO problems, this insensitivity must be shown for the
non-dominated solutions with respect to all the objectives and
must be checked for all the Pareto-optimal solutions. Using
this concept, [16] suggested two types of multiobjective robust
solutions: type I and type II. These two types can be seen as
the two major approaches when dealing with robustness [17]:
a) expectation measure, where the original objective function
is replaced by a metric of expectation and performance of
the vicinity, and b) variance measure, where an additional
criterion is appended to the objective function to account for
the deviation of the latter around the vicinity of the design
point.

There are also works in production and design problems
where some of the parameters of the problem are uncertain
or depend on future actions [18], [19], [20]. An example of a
robust optimization model for a multi-site production planning
problem was developed in [21]. In this work, authors assumed
a future economic scenario with an associated probability. An
optimal production plan less sensitive to the change in the
noisy and uncertain data was returned by using a stochastic
non-linear programming model.

Specifically for ALB we can find the work of [22] where
authors proposed novel robustness functions and a graphical
representation to respectively measure and represent how ro-
bust the assembly line configuration is. The values of these
functions were computed once a multiobjective optimization
method obtained a non-dominated solutions set. Other ways
of considering uncertainty in ALB were by assuming that task
times are uncertain and not deterministic [23], [24].

[25] proposed an ALB model with uncertain operation
execution times. Operation execution times were uncertain in
the sense that their sets belonged to a given set of scenarios.
Following this research line, [26] recently presented two robust
SALBP-2 models having interval uncertainty for operation
time.

III. ADAPTIVE IDEA

IDEA [6] is a multiobjective evolutionary algorithm for
dealing with constrained optimization problems. In [27] we
considered the use of IDEA to solve the conventional TSALBP.
However, in this work we propose a novel approach based on
the IDEA but to be adaptive and to use robustness measures
as additional constraints. The goal of the new adaptive design

of IDEA is to be able to distinguish between robust and non-
robust solutions during the search.

The design of the original IDEA emphasizes the search for
optimal solutions near the constraint boundaries by maintain-
ing and evolving a small proportion of unfeasible solutions [6].
One of the strengths of this algorithm is to divide solutions
(parent and offspring populations) into feasible and unfeasible
sets (robust and non-robust sets). The non-dominated sorting
and crowding distance methods rank these sets independently.
Then, the algorithm selects the solutions for the next generation
from both feasible and unfeasible sets to maintain a pre-
specified number of unfeasible solutions.

To do this, the algorithm uses a predefined parameter αI

to get the unfeasible solutions as a fraction of the size of the
population. The effect of this αI parameter is sensitive and
this fact was considered in the seminal paper where authors
claimed that the performance of IDEA is consistent over a
wide range of αI . However, we can achieve a higher or lower
convergence to the optimal Pareto front depending on the αI

value.

Our adaptive IDEA incorporates a novel mechanism to tune
the latter fraction value by calculating the global robustness
of the non-dominated solutions. It consists of modifying the
αI parameter through the algorithm run depending on the
robustness of the solutions of the Pareto set approximation
obtained until that moment. First, we define the robustness of
the Pareto set approximation P as the ratio of solutions that are
robust according to the problem specific measure m(z) where
z is a non-dominated solution. Then, for a given a Pareto set
P we can calculate its robustness ratio r(P ) as in Equation 1:

r(P ) =
1

|P |

∑

∀z∈P

(m(z) = 0). (1)

Initially, the adaptive IDEA sets αI to its starting value.
Then, each time the algorithm modifies the solutions of the
Pareto archive the adaptive process computes r(P ) and adjusts
the αI parameter in consequence. The goal of the adaptive
process is to balance the importance of the non-robust so-
lutions of the population. If all the solutions of the Pareto
set approximation are robust (r(P ) = 1) the algorithm will
increase the number of allowed non-robust solutions of the
population. When the number of non-robust solutions of the
Pareto set approximation increases, the adaptive process will
shrink the available space for non-robust solutions. Finally, the
adaptive IDEA uses the process defined by Equation 2 to adapt
the αI parameter at iteration t within the merge process of the
robust and non-robust (feasible and unfeasible) solutions.

αt
I =

{

αt−1

I −∆αα
t−1

I , if r(P t) ≤ τr,

αt−1

I +∆αα
t−1

I , if r(P t) > τr,
(2)

where τr ∈ [0, 1] is a threshold for deciding whether the Pareto
set approximation is robust to increase or decrease αI and ∆α

is the step value for modifying αI at each generation. Note
that if ∆α equals to 0 the adaptive IDEA will turn into the
original one.

After IDEA computes the new αt
I the population is filled

with the required number of robust and non-robust individuals



as usual and the flow of the algorithm continues as in the
original version of the IDEA.

IV. DESCRIPTION OF THE R-TSALBP-M/A

In this section we introduce the ALB problem and the r-
TSALBP formulation. Then, in Sections IV-A and IV-B we
briefly describe the mathematical formulation and robustness
measures of the problem to be tackled by our algorithms.

The manufacturing of a production item is divided into a
set J of n tasks. Each task j requires an operation time for
its execution tj > 0 that is determined as a function of the
manufacturing technologies and the employed resources. Each
station k (k = 1, 2, ...,m) is assigned to a subset of tasks Sk

(Sk ⊆ J) which is called workload of the station. Besides,
each station k has a workload time t(Sk) which is equal to
the sum of the processing times of its assigned tasks (workload
of the station).

Each task j can only be assigned to a single station k
and has a set of direct “preceding tasks” Pj which must
be accomplished before j is started. These constraints are
normally represented by means of an acyclic precedence graph.
The vertexes of the graph represent the tasks where a directed
arc (i, j) indicates that, on the production line, task i must
finish before the start of task j. Then, task j cannot be assigned
to a station that is ordered before the one where task i was
assigned. k.

TSALBP [28], [29] is a family of problems that focuses
on grouping tasks in workstations by an efficient way and
introduces spatial features. It means that a required area
aj is associated to each task j and an available area Ak

to each station k; identical for every station and equal to
A = maxk=1,2,...,mAk. Each station k has then an available
station area a(Sk) which is equal to the sum of areas required
by the tasks assigned to the station k. TSALBP states that, for
a set of n tasks with their temporal tj and spatial aj attributes
(1 ≤ j ≤ n) and a precedence graph, each task must be
assigned to a single station such that: (i) every precedence
constraint is satisfied, (ii) no station workload time (t(Sk)) is
greater than the cycle time (c), and (iii) no area required by
any station (a(Sk)) is greater than the available area per station
(A).

All the latter models assume the balance of the assembly
lines when producing mixed products. Nevertheless, product
demands are not usually fixed and certain. If the demand
changes, the operation time also changes and the line con-
figuration may need a re-balancing. This re-balancing may
cause production losses because those workers assigned to
workstations will have to comply with new tasks and increase
their learning curve to work in the line. The r-TSALBP-m/A is
an ALB model that integrates the concept of robust solutions
by defining a set of production plans (scenarios) by minimizing
m and A (see Figure 1 for a graph defining r-TSALBP).

A. r-TSALBP-m/A mathematical formulation

In r-TSALBP-m/A we define i ∈ I as the set of product
types to be assembled and E as the set of realistic production
plans to model the demand variation of the mix of products
to be assembled. One of the plans of E is called the reference
production plan, ε0, and ψ0 is its reference line configuration.

Fig. 1. Graphical representation of a r-TSALBP example. The optimization
problem must configure a robust tasks-stations assignment when having
different production plans.

Given a production plan ε ∈ E, defined by a demand

vector
−→
d ε = (d1ε, d2ε, ..., d|I|ε), we can determine the average

processing time of task j ∈ J for this plan ε by Equation 31:

tjε =
1

Dε

|I|
∑

i=1

tjidiε, (3)

where Dε is the global demand of plan ε given by Dε =
∑|I|

i=1
diε.

The used variables of the r-TSALBP-m/A model belong to
the set of parameters (Table I) and variables (Table II) of the
r-TSALBP model specification. Table III shows the associated
restrictions.

TABLE I. PARAMETERS OF THE R-TSALBP-M/A MODEL

J Set of all the elementary processing tasks of the line (j =
1, .., |J |)

n Number of tasks of the line: n = |J |
K Set of workstations (k = 1, .., |K|)
c Cycle time (it can also be a variable)
E Set of demand production plans (ε = 1, .., |E|)
tjε Average processing time of the elementary task j ∈ J (measured

at normal work pace) in production plan ε ∈ E
aj Linear area (length) required to perform task j ∈ J
Pj Set of immediate “preceding tasks” which must be accomplished

before j is started
UBm Upper bound of the number of stations. It is equal to the number

of tasks
γc Flexibility control parameters for exceeding cycle time and linear

area
∆c Maximum exceeding time for all the stations k ∈ K at normal

work pace. ∆c = γcc

Equations 10 to 11 define the main objective functions of
the r-TSALBP-m/A model. The first equation represents the
number of stations of the line configuration and the third one

1We assume the required area of all the tasks j ∈ J remain constant for
all the plans ∈ E



TABLE II. VARIABLES OF THE R-TSALBP-M/A MODEL

xjk Binary variable being 1 if task j ∈ J is assigned to station k ∈ K.
Otherwise its value is 0

Sk Subset of tasks assigned to each station k ∈ K : Sk = {j ∈ J :
xjk = 1} (referred as the workload of the station)

yc
kε

Binary variable being 1 if the processing time required in station
k ∈ K for the production plan ε ∈ E (

∑
j∈Sk

tjε) exceeds the
cycle time c. Otherwise, 0

TABLE III. RESTRICTIONS OF THE R-TSALBP-M/A MODEL

Binary condition of the station-task assignment variable:

xjk ∈ {0, 1}, (j = 1, .., |J |; k = 1, .., |K|) (4)

Binary conditions to denote variables exceeding time and/or linear area,
respectively:

yckε ∈ {0, 1}, y
A
kε ∈ {0, 1} (k = 1, .., |K|; ε = 1, .., |E|) (5)

Every task must be assigned to just one single station:

|K|∑

k=1

xjk = 1, (j = 1, .., |J |) (6)

Every station must contain at least one task:

|J|∑

j=1

xjk ≥ 1, (k = 1, .., |K|) (7)

The assignment cannot violate the immediate precedence relations:

|K|∑

k=1

k(xik − xjk) ≤ 0, (i ∈ Pj , j = 1, .., |J |) (8)

The station workload time cannot exceed the maximum cycle time (in-
cluding the defined allowance):

|J|∑

j=1

tjεxjk ≤ (c+∆cyckε), (k = 1, .., |K|; ε = 1, .., |E|) (9)

the available linear area of the stations of the line. The second
equation are calculated using the reference production plan ε0.

f1(x) = m =

UBm
∑

k=1

max
j∈J

{xjk}, (10)

f2(x) = A = max
k∈K

{

|J|
∑

j=1

ajxjk}. (11)

B. Temporal robustness functions

Furthermore, the r-TSALBP-m/A formulation adds tempo-
ral functions, normalized to [0, 1]. The three functions are the
following:

• Rate of overloaded production plans with respect to
the allowed workload time (Equation 12).

g1c =
1

|E|

|E|
∑

ε=1

max
k∈K

yckε. (12)

• Rate of overloaded stations with respect to the allowed
workload time (Equation 13).

g2c =
1

m

|K|
∑

k=1

max
ε∈E

yckε. (13)

• Exceeding processing time of the stations in all the
plans with respect to the maximum exceeding time
and the number of overloaded stations (Equation 14).

g3c = g3c (x) =
1

∆c
∑|E|

ε=1

∑|K|
k=1

yckε
|E|
∑

ε=1

|K|
∑

k=1

(max{0,

|J|
∑

j=1

tjεxjk − c}). (14)

The robustness measures with respect to the processing
times of the stations and the productions plans are defined by
Equation 15 as they limit the values of the latter r-TSALBP-
m/A temporal functions of the model (Equations 12 to 14).

g1c ≤ g̃1c ; g
2

c ≤ g̃2c ; g
3

c ≤ g̃3c , (15)

where {g̃1c , g̃
2

c , g̃
3

c} are parameters defined in [0, 1] that restrict
the temporal functions (gc). For instance, g̃

1

c = 0.4 means that
a solution is robust in 60% of the production plans (according
to the workload of the stations). Normally, a decision maker
can use minimum temporal robustness parameters given by
g̃1c = 1 − r̃1c , g̃

2

c = 1 − r̃2c , and g̃
3

c = 1 − r̃3c . These measures
can also be put together by a single value using combination
weights as defined by Equation 16.

Gc(x) =

3
∑

i=1

(µi
c max{0, gic − g̃

i
c}), (16)

V. ADAPTATION OF THE IDEAS FOR SOLVING THE

R-TSALBP-M/A

In this section we define the design of the original and
adaptive IDEA for solving the r-TSALBP-m/A. Both IDEAs
have the same representation (Section V-A) and genetic
operators (Sections V-B and V-C) for solving the problem
(see [29] for more details) but they differ in the adaptive
mechanism, only present in the proposed adaptive IDEA.

A. Representation scheme

The scheme is an order-based representation that explicitly
considers task-station assignments regardless the cycle time of
the assembly line. By introducing separators (they are dummy
genes) we allocate the tasks to the different stations. Separators
do not represent any specific task and are inserted into the
chromosome defining groups of tasks that are assigned to a
specific station. The maximum possible number of separators
is n − 1 (with n being the number of tasks) as it would
correspond to an assembly line configuration with n stations of



Fig. 2. Variable coding scheme of the chromosome for an eight-task example. Colored genes denote separators which always have integer values greater than
the total number of tasks.

Fig. 3. Variable-length crossover of the robust IDEA. Separators are the colored genes.

one single task. Tasks take value in {1, . . . , n} while separators
do in {n+ 1, . . . , 2 · n− 1}.

The number of separators included in the genotype is
variable and it depends on the number of existing stations in
the current solution. Therefore, the algorithm works with a
variable-length coding scheme, although its order-based repre-
sentation nature avoids the need of any additional mechanism
to deal with this issue. The maximum size of the chromosome
is 2 · n − 1 to allow the presence of separators for the
maximum number of possible stations. On the other hand,
the representation scheme ensures the encoded solutions are
feasible with respect to the precedence relations constraints.
See Figure 2 for the representation of the chromosome using
separators.

B. Crossover operator

The crossover operator is based on a classical order-based
one: the PMX [30]. PMX generates two offspring from two
parents by means of the following procedure: a) selection of
two random cut points, b) for the first offspring, copy of the
genes outside the random points directly from the first parent,
and c) copy of the genes inside the two cut points but in the
order they appear in the second parent. The algorithm follows
the same mechanism with the second offspring but with the
opposite parents.

The feasibility of the offspring with respect to precedence
relations is assured. However, since information about the
tasks-stations assignment is encoded inside the chromosome,
it is compulsory to assure that: a) there is not any station
exceeding the fixed cycle time limit, and b) there is not any
empty station in the configuration of the assembly line. There-
fore, a repair operator must be applied for each offspring after
crossover. Figure 3 shows a graph to illustrate the crossover
process

C. Mutation operators

In addition, we specifically design two mutation operators.
The first one, the scramble operator, reorders a part of the
sequence of tasks and reassigns them to stations. The second

mutation operator, the divider operator, additionally increase
the diversity of the search to obtain better distributed Pareto
front approximations by randomly selecting one station with
more than one task and placing a separator, at a random
position, to split up the station into two new stations.

VI. EXPERIMENTS

In this section we analyze the results obtained by both
IDEA variants when solving the r-TSALBP-m/A. First, we
give the details of the experimentation (Section VI-A) and
then, we compare the behavior of the novel adaptive IDEA
with respect to the original version of the algorithm (Sec-
tion VI-B).

A. Experimental setup

The experimentation uses a set of seven real-like TSALBP
instances and we run each algorithm 10 times with different
random seeds setting the run time as the stopping criterion.
This run time is set to 300 seconds and all the algorithms were
launched in the same computer: Intel XeonTM E5530 with
two CPUs at 2.40GHz, 3.7 Gbytes of memory, and Scientific
Linux 6.4 as operating system. We use the same framework
and programming language (C++) for the development of the
algorithms. Table IV shows the parameter values of the model
and IDEAs.

We consider two well-known multiobjective performance
indicators [31], [32]: a) the unary hyper-volume ratio
(HV R) [33] which measures the quality of a non-dominated
solution set approximation returned by an algorithm; and b) the
multiplicative Iǫ indicator [34], a binary performance indicator
that compares two different multiobjective algorithms. Box-
plots will help to represent, for each pair of algorithms, the
Iǫ values of their approximation sets in the 10 runs performed
during the experimentation. For a more detailed explanation
on the indicators and use of box-plots for representing them
please refer to [35].

Additionally, we also use the robustness visualization
model proposed in [22] for answering the question about how
robust a Pareto front is. This model associates a diameter and



TABLE IV. PARAMETER VALUES FOR THE R-TSALBP-M/A AND

IDEAS.

Parameter Value

IDEAs

Population size 100
Crossover probability 0.8
Mutation probability 0.1
Unfeasibility ratio (αI ) 0.2

Adaptive IDEA

∆α (step value for αI ) 0.01
robustness ratio threshold (τr) 0.5

r-TSALBP-m/A model

Minimum robustness {0.75, 0.9, 0.95}
{r̃1c , r̃

2
c , r̃

3
c}

γc for allowed exceeding time 0.05
Combination weights {0.2, 0.4, 0.4}
{µ1

c , µ
2
c , µ

3
c}

an intensity color value to each non-dominated solution which
are proportional to the given robustness value (big circles and
light color: robust solutions; small circles and intense color:
non-robust solutions).

B. Analysis of the results

The robustness plot of Figure 4 collects the robustness
values of the non-dominated solutions for P7 instance. The
solutions were generated by both algorithms, the original
IDEA and our adaptive version. These robustness values are
those defined in the r-TSALBP model. For example, value
0 means that the solution is enough robust according to the
required user values (r1min(T ), r

2

min(T ) and r3min(T )). The
robustness achieved by both algorithms in the instance of the
Figure 4 is high although the original IDEA obtains some non-
dominated solutions that are less robust. The same occurs for
the rest of the instances.

It is also important to analyze the convergence performance
of the two algorithms. To do this, Table V shows the HV R
values and Figure 7 contains the Iǫ box-plots comparing both
algorithms. We can see that the adaptive IDEA converges better
to the pseudo-optimal Pareto front as it gets higher HV R
values in all the instances but P4. The conclusions from the
analysis of the Iǫ box-plots are similar. The non-dominated
solutions of the adaptive IDEA dominate those generated by
the original one in the majority of the instances. The original
IDEA is slightly better in instance P4 although the median
values (thick lines) are similar.

Last but not least, Figure 5 shows the attainment surfaces
of both algorithms when tackling instance P6. Figure 6 does
the same but for instance P4. As previously commented with
respect to the analysis of the performance indicators, the
adaptive IDEA converges better than the original algorithm.
The difference is important in the top-left and bottom-right
areas of the Pareto front (extreme solutions of the Pareto front).
The worst performing instance for the adaptive IDEA, instance
P4, is shown in Figure 6. In this case, the original version
presents a higher convergence in the central area of the Pareto
front.

Fig. 4. Robustness visualization plots for P7 instance when comparing both
IDEA versions. Bigger circles and less intense colors stand for more robust
solutions.

Fig. 5. Attainment surface plots for the original and adaptive variants of the
IDEA for solving instance P6.

VII. CONCLUDING REMARKS

Introducing robustness in the MCDM process is very valu-
able for decision makers since they are provided with solutions
that are flexible when the initial conditions of the problem
change. In the case of the tackled r-TSALBP-m/A problem,
these changing initial conditions are the future demand plans
of the products to be assembled in an assembly line.

In our study, we propose a novel adaptive variant of an



Fig. 6. Attainment surface plots for the original and adaptive variants of the
IDEA for solving instance P4.

TABLE V. MEAN AND STANDARD DEVIATION X̄(σ) OF THE HV R
VALUES FOR THE ORIGINAL AND ADAPTIVE IDEA. HIGHER VALUES

INDICATE BETTER PERFORMANCE. BOLD VALUES CORRESPOND TO THE

BEST RESULTS FOR INSTANCE.

IDEA Adaptive IDEA

x̄ σ x̄ σ

P1 0.9071 0.2882 0.9202 0.0403
P2 0.918 0.2877 0.9464 0.0404
P3 0.9106 0.2857 0.9451 0.0494
P4 0.9617 0.2936 0.9571 0.0329
P5 0.8835 0.2783 0.9183 0.0577
P6 0.8644 0.2643 0.8996 0.0746
P7 0.8512 0.255 0.8623 0.0735

existing evolutionary multiobjective optimization algorithm,
IDEA. We apply it for solving the r-TSALBP-m/A model
which takes into account the exceeding processing time of the
stations of the configuration line for all the available production
plans of the industry plant. r-TSALBP adds temporal functions
and limitations for them to be considered as the robustness of
the configuration line with respect to a reference plan.

Our adaptive IDEA manages robustness as a restriction and
improves the original IDEA for solving the industrial problem
both in robustness and optimization performance. Therefore,
its convergence is shown to be better than the original version
in the majority of the studied problem instances. We also
observed that the adaptive IDEA, which includes robustness
in the search process, adds more diversity and thus, obtains
better and wider Pareto fronts. Therefore, the main conclusion
is that the best way to solve the r-TSALBP-m/A is by using
the adaptive IDEA, both in robustness and convergence.

Future works may focus on: a) studying how well adaptive
IDEA behaves when solving other logistic and scheduling
problems such as car sequencing problem and b), enriching the

r-TSALBP model with some more realistic industrial features
such as ergonomic factors.
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