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Adèle Boche∗, Jean-Loup Farges∗ and Henry De Plinval∗
∗Onera - The French Aerospace Lab

Toulouse, France
Email: name.surname@onera.fr

Abstract—A novel approach for reconfigurable control systems
design against sensor and actuator faults is proposed. The
scheme is based on an estimation of the state and of the fault
parameters, and on a Partially Observable Markov Decision
Process (POMDP), used for the decision task of the feedback
controller. The following fault types are considered: locking and
loss of effectiveness of the device. The modelling framework
includes sensor and actuator faults, while the reconfiguration
logic is developed only for actuator faults. The effectiveness of
the proposed approach is demonstrated on an academic example.

I. INTRODUCTION

Over the last three decades, the growing demand for safety
and reliability in complex systems has drawn significant
research in Fault-Tolerant Control (FTC) [1]. Actuator and
sensor FTC is more and more discussed in the literature
and many effective methodologies and algorithms for FTC
have been developed. FTC is a control system that combines
diagnosis with control methods to handle faults in an in-
telligent way. It permits to maintain overall system stability
and acceptable performance in the event of component faults.
Generally, methods for FTC are classified into two types.
Passive FTC methods which are designed to be robust against
faults [2], and active FTC methods which react to the system
component faults actively by reconfiguring control actions.
A direct adaptive approach to achieve good reconfiguration
performance without system identification is possible and is
demonstrated for actuator faults [3]. However, most of the
time, the two steps of active FTC are considered separately.
The first step, the Fault Detection and Diagnosis (FDD)
has drawn significant work [4]. The second step, i.e. the
reconfiguration unit assumes that an FDD is available. This
paper addresses active FTC system against actuator and sensor
faults. Indeed, actuators and sensors are essential for safety
and reliability of complex systems. It has been shown that the
FDD problem for sensor and actuator faults can be treated in
two steps. First an approach for detecting and isolating sensor
faults is proposed, and in a second time the sensor and the
actuator faults are isolated and the loss of control effectiveness
and the magnitude of stuck actuator faults are estimated [5].
Differents reconfigurable controller design methods exist. A
method based on a two-stage adaptative Kalman filter for
the detection and identification of fault parameters, and on
eigenstructure assignment technique for computing on-line
new feedback and feedforward gains is demonstrated in [6].

However, this scheme only covers loss of effectiveness actua-
tor faults. Most of the time, the reconfiguration is performed
either by considering a bank of controllers associated to a bank
of models of the system in nominal and faulty conditions or
by adapting indirectly a controller to fault parameters [7].
Finally, another approach proposed an FTC method using
Linear Parameter Varying (LPV) virtual actuators and sensors
for non-linear systems [8]. This method masks the faults
adapting the virtual devices to the nominal LPV controller
instead of adapting the LPV controller.

This paper presents a novel approach which builds on the
advantages of discrete and continuous frameworks to enable
efficient reconfiguration in the case of faults. The approach
combines indirect adaptive methods, based on continuous
framework, and decision making methods, based on discrete
framework. It presents the following originalities with respect
to the literature:
• Indirect adaptation for a bank of controllers.
• No abrupt detection of faults but an update of a proba-

bility distribution over nominal and faulty modes.
• Selection of a controller in the bank taking into account

the expected performances given the probability distribu-
tion.

The paper is organized as follows. Section II describes
the modelling framework, first the continuous part of the
model, second the discrete part of it. Section III discusses the
proposed method for the reconfiguration problem. Section IV
describes the controllers used for the particular case of actuator
faults reconfiguration. Section V shows simulation results for
actuator faults obtained on an academic example.

II. MODELLING

The systems considered have several modes, between which
they may switch: a nominal mode, and degraded modes. A
degraded mode corresponds to the locking or loss of efficiency
of a given sensor or actuator. As a result, they exhibit two
types of behaviours: A/ a continuous behaviour, as long as the
mode and the controller do not change, which is defined by
differential equations; B/ a discrete behaviour, which consists
in the modes and controllers switchings.

A. Modelling of the continuous behaviour of the system in any
given mode

Fig. 1 depicts the general structure of the model.



In the figure, uk ∈ Rl is the desired control input, ek ∈ Rl

is the effective control, xk ∈ Rn is the system state, yk ∈ Rm

corresponds to the system outputs, zk ∈ Rm corresponds to
the measurement, wx

k is a zero-mean white Gaussian noise se-
quence with covariance Qx

k representing the modelling errors,
vk is a zero-mean white Gaussian measurement noise sequence
with covariance Rk, A, B, and C are known matrices, and F1

and F2 are functions. The function F1, respectively F2, permits
to model the actuator, respectively sensor, faults.
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Fig. 1. System modelling

The objective is to control the system in such a way that
the system state xk follows a reference input rk.
A cost:

∑k=K
k=0 ||rk − xk|| indicates the lack of ability of the

FTC to perform this tracking.
The modelling framework of F1 and F2 proposed in this

article is inspired by [3] and is as follow.
1) Actuator faults: An actuator fault is modelled using a

simple function of actuator command as shown in Fig. 2:

F1(uik) =
bi0k + (1− bi1k)uik

System
uik

ith control signal

eik

Fig. 2. Modelling of the ith actuator faults

eik = bi0k + (1− bi1k)uik (1)

The output ek corresponds to the physical motion performed
by the actuator, that is limited in its amplitude. Thus, ek, and
uk are bounded in [u,u].

Within this framework, several types of faults are modelled:
• If there is no fault, the nominal case corresponds to the

following setting: bi0k = 0 and bi1k = 0.
• For a locking case in which the effective control is fixed

at a certain value δ0, bi0k = δ0 and bi1k = 1.
• Consider a bias of a certain value δ0. This case can be

modelled as bi0k = δ0 and bi1k = 0.
• With this modelling, we can also represent the decreased

effectiveness case by setting bi0k = 0 and bi1k ∈]0, 1[

2) Sensor faults: Similarly, a sensor fault is modelled using
a simple function as shown in Fig. 3:

tik = ci0k + (1− ci1k)yik (2)

The outputs zk and yk are bounded in [z, z]. With this
modelling, the same types of faults may be represented:
locking, decreased effectiveness, and bias.

F2(yik) =
ci0k + (1− ci1k)yik

System
yik tik

ith measurement

Fig. 3. Modelling of the ith sensor faults

Starting from Fig. 1, the modelling of F1 (1) and the mod-
elling of F2 (2), the discretised equations of the continuous
system are modelled by the following equations:{

xk+1 = Axk +Buk +Bb0k +Dk(uk)b1k + wx
k

zk = Cxk + c0k + Ck(xk)c1k + vk
(3)

with Dk(uk) = B


−u1

k 0 · · · 0
0 −u2

k · · · 0
...

...
. . .

...
0 ... 0 −ulk


and Ck(xk) =

−C(1, :)x1
k · · · 0

...
. . .

...
0 ... −C(m, :)xmk


The values of the parameters b0, b1, c0, and c1 change in

the case of faults. From the estimation viewpoint, these values
and their behaviour are unknown. In the continuous part of the
model their behaviours are random walks:

b0k+1 = b0k + wb0
k

b1k+1 = b1k + wb1
k

c0k+1 = c0k + wc0
k

c1k+1 = c1k + wc1
k

(4)

B. Discrete modelling

The reconfiguration problem can be modelled as a Partially
Observable Markov Decision Process (POMDP) [9]. It is
classically defined as a 6-tuple {S,A, T,R,Ω, O} :
• S = {s0, ...s|S|−1} is a finite set of states,
• A = {a0, ...a|A|−1} is a finite set of actions,
• T : S × A× S → [0; 1] is a set of conditional transition

probabilities between states,
• R : S ×A× S → R is the cost function,
• Ω = {ω0...ω|Ω|−1} is a finite set of observations, and
• O : S × Ω → [0; 1] is a set of conditional observation

probabilities
These elements are defined as follow for the framework.
1) States: The proposed framework considers only single

faults. Let mactuator be the number of fault modes of an
actuator and msensor be the number of fault modes of a sensor.
Thus, we have at most a nominal mode, mactuator× l actuator
fault modes and msensor ×m sensor fault modes.
Each mode mi has an associated controller ki which has been
designed for this mode, so its performance is expected to be
better than that obtained with the other controllers. However,
at a given time step, it is possible that the system is in mode
mi and is controlled by another controller kj . Thus, a set S of
states si,j = (mi, kj) is defined with a mode and a controller.
S has at most (1 +mactuator × l +msensor ×m)2 states.



2) Actions: The action ai consists by definition in selecting
the controller ki for next time step. The system dynamics is
as shown in Fig. 4.
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Fig. 4. State update with the action

3) Conditional transition probabilities: The general form
of a transition probability is p(s′|s, a), however the problem
can be simplified. Indeed, on the one hand the dynamics of the
active controller: kk+1 = ak is deterministic, and on the other
hand the transitions between the modes are not dependant on
the controller.
The transition probabilities p(m′|m) between modes are sta-
tionary. To define a realistic model, these probabilities are con-
sidering the sensor/actuator documentation that may contain
key information such as the failure rate, and previous studies
addresing this topic [10].

Fig. 5 shows an example for a problem with three modes.
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Fig. 5. Directed probabilistic graph

4) Cost function: To find the best controller to choose,
different values of costs are imposed depending on the current
state sk, the next state sk+1, and the action ak. With this
method, penalties can be added to the event of changing of
controller, so that the potential performance loss triggered by
this switch may be taken into account. The costs and the
penalties can be calculated analytically or numerically.
In this article, the costs are calculated numerically with the
error between the state and the reference, assuming that the
future of the reference input rk is known, and depend on
the time. The penalties permit to avoid controller switching

without reason and add a conservatism reward.
The cost function is as follow:

R(sk, ak, sk+1) = E/sk+1
||rk+1 − xk+1||+ P (kk, ak) (5)

where E/sk+1
||rk+1−xk+1|| is an estimation of the elemen-

tary cost of the tracking error at time k + 1 of the controller
indicated in sk+1 for the mode of sk+1 and P (kk, ak) equal
to zero is kk = ak and to a given value otherwise. Note that,
unlike the classical POMDP framework, the cost function is
not stationary.

5) Observations: The classical POMDP framework re-
quires observations taking values in a discrete set; but, here,
the observation is based on the information of the contin-
uous processus provided by an estimation scheme: ω =
{b̂0k, b̂1k, ĉ0k, ĉ1k}.

6) Conditional observation probabilities: In this part, the
principle is only explained for an actuator which can be faulty.
Assuming that the estimation scheme offers a continuous out-
put, namely: ω = {b̂0, b̂1} and a probability density function;
that is even with respect to the errors between on the one
hand b0 and b̂0 and on the other hand b1 and b̂1, the role of
the parameters b0, b1 and the role of the estimates b̂0, b̂1, are
exchanged.

Thus, assuming p(b0, b1|ω) = p(ω|b0, b1), the observation
probability is given by integrating this quantity over the
domain corresponding to each mode, namely:

p(ω|m) =

∫ ∫
fm(b0, b1)p(ω|b0, b1)db0db1 (6)

where fm(b0, b1) depend on the mode. In order to design an
estimation scheme able to determine the most probable current
mode, several assumptions are made on the distribution of the
parameters b0 and b1, for each mode.
For example, in this paper, the hypothesis for the actuator fault
modes are the following:
• Nominal case:

fm(b0, b1) = δ(b0)δ(b1) (7)

• Locking case:

fm(b0, b1) =
1

u− u
H(b0 − u)H(u− b0)δ(b1) (8)

• Loss of effectiveness case:

fm(b0, b1) = H(b1)H(1− b1)δ(b0) (9)

III. RECONFIGURATION METHOD

A. Estimation

1) Filtering state and fault model parameters: In order to
estimate the current mode of the system, the proposed methods
consists in estimating the fault parameters bi0, bi1, ci0 and ci1,
which, in turn, necessitates to estimate also the state x of the
system. The fault parameters estimates will be exploited to
deduce the most probable current mode, which will be used
as the observation input for the POMDP.
To estimate the state and these parameters, several methods



exist. They are usually based on models, and this is the choice
made in this paper in the hope that using an accurate model
will lead to improved performances. For the estimation of
the actuator parameters, the following methods can be used:
observer method, Kalman filter or particle filter.
For the estimation of the sensor parameters, a non-linear
method is required. For example, the following methods can
be used: extended Kalman filter, unscented Kalman filter or
particle filer.
However, the random walks of equation (4) are not fully
consistent with an abrupt fault occurrence. Thus, the classical
filtering methods are modified in order to test the likelihood
of each zk and to flatten the probability density function of
bi0, bi1, ci0 and ci1 in case of an unlikely zk.

2) Estimating fault mode probabilities: At each time period
k, the system is in some state sk ∈ S. The FTC takes an
action ak ∈ A, which causes the system to transition to a
new state sk+1 ∈ S with probability T (sk+1|sk, ak). Then, an
observation ω ∈ Ω is computed from the probability density
function managed by the continuous filter. The FTC updates
a vector made of probabilities of the system being in each
discrete state, b(s). This vector, named belief state, is updated
using the Bayes rule. In general, the update ba,ω(s′) depends
on the action a, the observation ω, and is function of the
previous belief state (s′ = sk+1 follow the state s = sk)

ba,ω(s′) =
p(ω|s′)p(s′|b, a)

p(ω|b, a)
(10)

where :
{
p(s′|b, a) =

∑
s p(s

′|s, a)b(s)
p(ω|b, a) =

∑
s′ p(ω|s′)p(s′|b, a)

As explained previously, the transitions between the modes
are not dependant on the controller. Thus, the equation (10)
can be reduced as follows:

bω(m′) =
p(ω|m′)p(m′|b)

p(ω|b)
(11)

where :
{
p(m′|b) =

∑
m p(m′|m)b(m)

p(ω|b) =
∑

m′ p(ω|m′)p(m′|b)

and p(ω|m) is given by equation(6).

B. Switching Decision Optimization

1) Discretisation of the observation domain: In order to
use classical POMDP framework, one needs to discretise the
observation domain to recover a discrete observation.

This can be done mostly in two ways:
• by forcing an a priori discretisation on the observation

space,
• by finding a partition such that each different subdomain

leads to a change in the resulting policy [11].
Let {Ω1, ...,Ω|Ω|} a partition of the continuous space in

which the ω parameters evolves. Then, the probability to have
the parameters in a given set Ωi is given by:

p(Ωi|m) =

∫
ω∈Ωi

p(ω|m)dω (12)

Note that this is a multiple integral. For instance, for a single
actuator which can be faulty, it is a double integral with dω
standing for db̂0db̂1. Finally, to this p(Ωi|m) corresponds a
p(Ωi|s).

2) Dynamic Programming: In the previously defined
framework, the goal is to construct a policy π : ∆ → A (∆
the set of belief state) which minimize a criteria. The objective
is to minimize the cost R.

Equation 13 represents the problem to be solved:

Vk(b) = min
a∈A

[r(b, a) + γ

|Ω|∑
i=1

p(Ωi|b, a)Vk+1(ba,Ω
i

)] (13)

where γ ∈ [0, 1[ is a discount factor, and
r(b, a) =

∑
s

∑
s′ b(s)R(s, a, s′)p(s′|s, a)

p(Ωi|b, a) =
∑

s′ p(Ω
i|s′)p(s′|b, a)

ba,Ω
i

(s′) = p(Ωi|m′)p(m′|b)
p(Ωi|b)

This problem can be solved over a finite horizon from time
k to time k + H . The policy π specifies the action a which
maximizes the value function Vk(b)

Equation (13) is solved by:
1) expending from the current belief state the tree of

possible b values in function of all possible future actions
and discrete observations and,

2) computing backwards the value of V .
In order to compensate for a small value for H , the quantity:∑K
k′=k+H+1R(sk, k, sk+1) with a constant controller is used

for initializing Vk+H+1.

IV. CONTROLLERS FOR ACTUATOR FAULTS

As discussed previously, there are (1 + mactuator × l +
msensor × m) controllers k, one for each mode m. Each
controller sends different control signal, uk, in order the
effective control ek to be like:

ek = −K(x̂k − rk) (14)

The information of xk is not available, thus the state estimate
x̂k is used in the control law.

A. Adaptivity

The controllers for the faulty modes should be adaptive,
based on the estimation of the fault parameters b̂0k and b̂1k
as shown in Fig. 6.

With no fault, there is no need to have an adaptive controller
because b0 and b1 are null. Moreover, b̂0 and b̂1 are noisy
because they are estimates. So, in the nominal configuration,
a controller without the estimated parameters seem to be more
adapted than an adaptive controller which is noisy.

B. Nominal Controller k0

In the nominal case, all the actuators are nominal, i.e:

∀i,
{
bi0k = 0
bi1k = 0



Estimator

Controller ki

Controller k0

Controller k1

...

...

b̂0k, b̂1k

uk
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x̂k

Fig. 6. Adaptative Controller

Thus, ek = uk and so the nominal controller is as follows:

uk = −K(x̂k − rk) (15)

C. Controllers for locking modes

By definition, in the locking case, one actuator, the jth one,
is locked at some value δ0, while the others are nominal, i.e:

∀i 6= j,


bi0k = 0
bi1k = 0

bj0k = δ0 ∈ [u, u]

bj1k = 1

Thus, ek =
[
u1
k · · · uj−1

k δ0 uj+1
k · · · ulk

]T
.

To be able to compensate for the locked actuator, it is
assume that the action of this actuator is a linear combination
of other actuators, i.e. the jth column of B is a linear
combination of the other columns, i.e. B.j =

∑
i 6=j λiB.i,

with B = [B.1 · · ·B.i · · ·B.l].
On the one hand, the control implies:{

Bek = B.jδ0 +
∑

i 6=j B.iu
i
k

=
∑

i6=j B.i(λiδ0 + uik)
On the other hand, the requirement implies:{
Bek = −BK(x̂k − rk)

= −
∑

i6=j B.i(λiKj. +Ki.)(x̂k − rk)

with KT = [KT
1. · · ·KT

i. · · ·KT
l. ].

Identifying the terms in B.i gives:

uk =



−(λ1Kj. +K1.)(x̂k − rk)− λ1δ0
...
b̂0
...

−(λlKj. +Kl.)(x̂k − rk)− λlδ0

 (16)

However, with this controller, there is an observability
problem. If the jth actuator is no longer locked, the control
signal still send the value b̂0 and thus, the estimator do not
detect the restoration of the actuator. To solve this problem, an
input signal, such as a 3211 input signal [12], could be added
to b̂0 in order to make the system observable. This signal will
have no effect if the jth actuator is actually locked, and in the
opposite case, it can solve the problem of observability.

D. Controllers for loss of effectiveness modes

In the loss of effectiveness case, the jth actuator is reduced
by a factor γ1 and the others are nominal, i.e:

∀i 6= j,


bi0k = 0
bi1k = 0

bj0k = 0

bj1k = γ1 ∈]0, 1[

Thus,
ek =

[
u1
k · · · uj−1

k (1− γ1)ujk uj+1
k · · · ulk

]T
, and

so the associated controller is chosen as follow:

uk =



−K1.(x̂k − rk)
...

−Kj. (̂xk−rk)

1−b̂1
i

k

...
−Kl.(x̂k − rk)


(17)

V. ILLUSTRATIVE EXAMPLE

A. Model

An academic model is used to illustrate the proposed
reconfiguration framework. The state x is composed of the
position and the velocity of a mobile. Two actuators are used,
u =

[
u1 u2

]T
, such as the acceleration is equal to the sum of

effects of the actuators, e1 +e2. The control inputs u1, u2 and
e1, e2 are bounded to [−10, 10]. The system has two sensors,
one for the position and another for the speed. Using a one
second sampling time, the discretised model is the following:


xk+1 =

[
1 1
0 1

]
xk +

[
0.5 0.5
1 1

]
ek + wx

k

yk =

[
1 0
0 1

]
xk + vk

(18)

The reference signal to be followed by the mobile, r, for an
horizon of 100 seconds, is presented in the upper part of Fig.
8, for r1 and in the upper part of Fig. 9 for r2.

Only faults of the second actuator are considered:{
e1
k = u1

k

e2
k = b0k + (1− b1k)u2

k
(19)

Parameters used in the simulation are as follows. Qx
k =

diag{0.052, 0.052}, Qb
k = diag{0.0052, 0.0052}, and Rk =

diag{12, 0.12}.
In this example, there are three modes: nominal m0, locking

m1, and loss of effectiveness m2. Each mode will have an
associated controller ki. Thus, we have nine discrete states:
S = {s0, ...s8} = {{m0, k0}, {m0, k1}...{m2, k2}}. The
mode transition graph is the one of Fig. 5 with:
• p(m0|m0) = e−10−5

• p(m1|m0) = p(m2|m0) = (1− p(m0|m0))/2
• p(m0|m1) = p(m0|m2) = 10−4

• p(m1|m1) = p(m2|m2) = (1− 10−4)2

• p(m2|m1) = p(m1|m2) = 10−4(1− 10−4)



B. Controllers

Based on the IV. part, the three controllers are:
• the nominal one k0 associated to the nominal mode m0:[

u1
k

u2
k

]
=

[
−K(x̂k − rk)
−K(x̂k − rk)

]
(20)

• the controller k1 associated to the locking mode m1:[
u1
k

u2
k

]
=

[
−2K(x̂k − rk)− b̂0

b̂0

]
(21)

• the controller k2 associated to the loss of effectiveness
mode m2: [

u1
k

u2
k

]
=

[
−K(x̂k − rk)
−K (̂xk−rk)−b̂0

1−b̂1

]
(22)

with K =
[
0.9 0.8

]
.

C. Cost function

For this example, the cost is calculated as follow:

E/s||rk − xk|| = E/s

100∑
k′=k

|x1
k′ − r1

k′ |+ |x2
k′ − r2

k′ | (23)

where E/s indicates the expectation with respect to the
discrete state. For the nominal mode, the expectation is com-
puted by performing 100 runs with different values for noise
sequences and averaging the cost values. For non nominal
modes, the 100 runs are repeated 19 and 9 times, for respec-
tively the locking and the loss of effectiveness modes, varying
the fault parameter. The average is then computed considering
the 19 × 100 runs for variation of b0 and 9 × 100 runs for
variation of b1. Fig. 7 shows the evolution of the cost.
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Fig. 7. Cost

For the nominal case shown in the upper part of Fig. 7:
• The controller k0 and k2 are very close. Indeed, b0 and
b1 are null, thus k2 controls a loss of effectiveness close
to zero, which leads to a controller similar to k0. The
difference comes from the noise.

• The controller k1 is not good before 70s, but after the
three controllers have similar performance. The bad per-
formance of the controller k1 at the start of the simulation
comes from the saturation of the command.

For the locking case shown in the middle part of Fig. 7:
• The controllers k0 and k2 have the same performance.

Indeed, the first control is the same in the two controllers
and the second control is locked.

• The controller k1 has better performance all along the
horizon because the locked actuator is compensated by
the other.

For the loss of effectiveness case shown in the lower part
of Fig. 7:
• The controller k2 has the best performance result at the

start of the simulation.
• The controller k1 is not good before 70s because of the

saturation of the control. After the three controllers have
similar performance.

Arbitrary penalties, P (k0, a1) = P (k0, a2) = 1,
P (k1, a0) = P (k1, a2) = 12.5 and P (k2, a0) = P (k2, a1) =
4, are added in order to avoid sudden changes of controller at
the end of the simulation. Indeed, in Fig. 7, it is shown that
some costs are similars.

D. Estimation method

To estimate the state x and the parameters b0 and b1, an
augmented system is considered, which includes the system
“natural” state -position, velocity- with equations 18, together
with the fault parameters. Then a Kalman filter is applied to
the resulting augmented system, which may be described by:{

Xk+1 = AaugXk +Bauguk + Waug
k

yk = CaugXk + vk
(24)

with Aaug =

 A B.,2 Dk.,2(uk)
01,2 1 0
01,2 0 1

, Baug =

 B
01,2

01,2

,

Caug =
[
C 02,1 02,1

]
, and Waug

k =

wx
k

wb0
k

wb1
k


In the estimation algorithm, the covariance P (k + 1|k) is

reopened when the following test is not passed:
∀i ∈ [1,m],

(Ci.P (k + 1|k)CT
i. +Rii)

−1(yik+1 − Ci.X(k + 1|k))2 ≤ 52

(25)
The covariance is reopened as follows:

P (k + 1|k)reset =

P (k + 1|k)x 02,1 02,1

01,2 10 0
01,2 0 1/52

 (26)

E. Conditional Observation probabilities

Applying Equations 6 to 9 to the example leads to:

p(ω|m0) =
1

2π
√
|P |

e−
1
2 b̂

TP−1b̂ (27)



P (ω|m1) =
1

40π
√
|P |

∫ 10

−10

e
− 1

2 (

b0
1

−b̂)TP−1(

b0
1

−b̂)
db0

(28)

P (ω|m2) =
1

2π
√
|P |

∫ 1

0

e
− 1

2 (

 0
b1

−b̂)TP−1(

 0
b1

−b̂)
db1

(29)
with P the 2×2 matrix at the lower right part of P (k+1|k).

F. Partition of Ω and Dynamic Programming horizon

To avoid a long computational time, Ω is partitioned in four
areas, and the horizon is H = 5. Ω is partitioned as follows:
• b0 ∈ [−0.1, 0.1] and b1 ∈ [0, 0.1]
• b0 ∈ [−0.1, 0.1] and b1 ∈ [0.1, 0.9]
• b0 ∈ [−0.1, 0.1] and b1 ∈ [0.9, 1]
• b0 ∈ [−10,−0.1[∪]0.1, 10] and b1 ∈ [0.9, 1]

G. Fault scenario

To test the design, the scenario including a loss of effec-
tiveness case and a locking case, as shown in Table I.

Event time Event Type b0 b1
20s Loss of effectiveness 0 0.5
50s Restoration 0 0
70s Locking 5 1

TABLE I
FAULT SCENARIO

H. Results
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Fig. 8. Position

1) Estimation of state and fault parameters: The dashed
curves in lower parts of Fig. 8 and Fig. 9 presents the state
estimation error. These errors are small, with the exception of
a peak at time 70s. The locking event induces a temporary
error of about 3m/s for velocity and 1m for position.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Time (t)

(m
/
s)

Velocity

 

 

Velocity

Estimated Velocity

Reference Velocity

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time (t)

(m
/
s)

Error

 

 

Error between Velocity and Reference Velocity

Error between Velociy and Estimated Velocity

Fig. 9. Velocity
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Fig. 10. Fault parameters: upper part b0 and lower part b1

The values b0, b1 and their estimates are shown in Fig. 10.
The estimator detects the fault in less than 10s. For each

event, the covariance is reopened to detect the fault. For the
locking event, it is reopened twice, indicating an adaptation.
This is more difficult than for the other events.

2) Probabilities: The probabilities of the modes are shown
in Fig. 11. The probability of the most likely mode is close
to one, except for a short time during the transition.

3) Action: As shown in Fig. 12, the controller is changed
as follows:
• When the loss of effectiveness is detected, at 23s, the

controller is changed at the nest step, at 24s. Indeed the
effectiveness of the nominal controller k0 in the case
of loss of effectiveness is lower than the one of the
associated controller k2.

• When the effectiveness of the actuator is back, the con-
troller is not changed from k2 to k0 because the reward
is not large enough compared to the penalty associated
to any change of controller.
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• When the actuator is locked, at 72s, the controller is
changed at the next step, at 73s.

4) Control: Fig. 13 presents the control for the two actu-
ators. Between 20s and 50s, the actuator is reduced of 50%.
After 70s, it is locked to 5m/s2. The effective control e2 is
over estimated for a short time after the locking event.
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Fig. 13. Desired and effective control inputs

5) Tracking the reference: The plain curves in the lower
part of Fig. 8 and Fig. 9 present the tracking error for

respectively position and velocity. The errors are between −12
and +12 and are most of the time close to zero, indicating
that despite the presence of faults the system state follows the
reference leading to an acceptable performance.

Finally, with this FTC method, a gain of 25% on the sum
of tracking errors is obtained with respect to the use of only
the nominal controller.

VI. CONCLUSION

In this article, a modelling framework is defined for actuator
and sensor faults. This modelling combines discrete and con-
tinuous frameworks, allowing to take profit of the advantages
of discrete and continuous methods. A reconfiguration method
is developed for the actuator faults and is tested on an
academic example. This method has shown good results; in the
event of component faults, this method improves significantly
the performance with respect to the use of a single controller.
The framework proposed here can be the basis for additional
researches about:
• Addition of input signals to the controller for locking

modes in order to make the fault parameters observable.
• Reconfiguration for sensor faults.
• Computation time reduction for the choice of the action

by solving a simplified but still relevant discrete optimi-
sation problem.

• Empiric assessment on a large number of scenarios with
several devices, possibly faulty.
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