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Abstract—A well-defined agent-based model able to match the
widely observed properties of financial assets is valuable for
testing the implications of various empirically observed heuristics
associated with investors behaviour. In this paper, we extend one
of the most successful models in capturing the observed behaviour
of traders, and present a new behavioural asset pricing model
with heterogeneous agents. Specifically, we introduce a new be-
havioural bias in the model, loss aversion, and show that it causes
a major difference in the agents interactions. As we demonstrate,
the resulting dynamics achieve one of the major objectives of the
field, replicating a rich set of the stylized facts of financial data.
In particular, for the first time our model enables us to match
the following empirically observed properties: conditional heavy
tails of returns, gains/loss asymmetry, volume power-law and long
memory and volume-volatility relations.

I. INTRODUCTION

One of the most influential theories in modern financial
markets is the Efficient Market Hypothesis (EMH) [1]. It
postulates that prices fully reflect all available information,
meaning that they should adjust immediately and correctly
to incorporate new information. Consequently, a market with
this information efficiency leads to a random sequence of
price changes, mathematically known as a martingale, which
cannot be predicted. However, many theoretical and empirical
implications of the EMH have been tested over the years and
the debates regarding market efficiency are still unresolved.

In particular, the rationality levels required by the EMH
become impossible in a heterogeneous world, where some
agents may be able to solve larger problems quicker than
others. To this end, in the last two decades a rich literature on
agent-based financial models has developed, considering the
markets as populations of different groups of trading agents,
thus providing an alternative to the rational expectations
framework where all agents have full, unbounded rationality.
Generally speaking, agent-based models (ABM) are systems
in which a number of heterogeneous agents interact with each
other and their environment [2], [3]. These models can provide
useful insight on the behaviour of individual agents and also
on the effects that emerge from their interaction, making the
financial markets a very appealing application for agent-based
modelling.

Nowadays, researchers do not only try to illustrate the basic
mechanisms of the models, but also quantitatively recreate the
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statistical properties of financial markets. These characteris-
tics, so robust across different financial instruments and time
periods, are known as stylized facts [4]. They target a wide
range of aspects in the market and cannot be explained by the
EMH. Therefore, the agent-based models attempt to explain
these statistical properties endogenously, by considering the
interaction of market participants [5], [6]. However, due to
the wide variety of trading strategies, motives and rationality
in the real financial markets, it is hard to find the origins of
particularly interesting events. This has led to the development
of various models that aim to understand the links between
empirical regularities of the markets and the complexities of
the entire economic system.

Interestingly, models that rely on simple trading agents
have proven themselves very efficient in generating important
dynamics of real financial markets. Specifically, the fundamen-
talists vs. chartists setting (to be defined), also known as the 2-
type design [5], incorporates all the important mechanisms of
financial markets, is capable of recreating their key properties
and is simple enough for analysis and computation [7], [8].
In these models, fundamentalists act as a stabilizing force in
the market. They believe in the existence of a fundamental
price and invest relatively to its value. In contrast, chartists
(ak.a. technical analysts), forecast the future prices entirely
by modelling historical data. That is, they do not take into
consideration the market fundamentals and base their trading
strategies and decisions on observed historical patterns in past
prices.

One of the central objectives of ABM is to define models
able to generate the properties of real-life financial data and
then use them to test various behavioural and economic
theories. To this end, we built on the widely-used structural
stochastic volatility model of [9] (FW) to test the implications
of loss aversion, one of the most researched behavioural
heuristics observed in real life investors. Loss aversion offers
an explanation to investors’ unwillingness to realise and cut
their losses. In other words, losses loom larger than gains [10].
Indeed, since agent-based models aim to represent real life
traders we contend they must capture their behavioural biases.
We are particularly interested in loss aversion, since it was
shown to effectively explain a number of financial properties
such as high mean and volatility of stock returns [11].



In more detail, we present a new behavioural agent-based
model that, incorporates the loss aversion in traders behaviour.
In doing so, we illustrate one of the essential objectives of a
well defined agent-based financial model, that it can be used to
test real life behaviour and policies. This new setting produces
several interesting results, for the first time seen in an agent-
based setting.

Starting with the FW model, we observe that the price series
it generates violates one of the core properties of financial time
series — its non-stationarity. This is equivalent to having a price
distribution with a mean and variance that do not change over
time and strongly contradicts the well-known fact that financial
price series are non-stationary [12]. We overcome this problem
by extending the original model and changing the motion of
the fundamental value over time. As a result, we drastically
reduce the non-stationarity of the price series generated.

Furthermore, introducing the new behavioural bias into
the model not only preserves all the stylized facts presented
in [13] but also extends the empirically observed properties
matched by agent-based financial models [5]. To the best
of our knowledge, the conditional heavy tails in returns are
matched for the first time by an ABM and, for the first time in a
2-type design model, we match the volume-volatility relations,
gain-loss asymmetry, power-law behaviour and long memory
of volume.

The remainder of the paper is organised as follows. We
formally define the agent-based model in Sections II-A and
II-B, followed by its key implications in Sections II-C and
II-D. In Section III, we present our results. We give a thorough
econometric analysis of the price series generated by the agent-
based model, integrating a wide range of tests and evidence
that demonstrate the presence of new stylized facts. Section IV
concludes.

II. A BEHAVIOURAL MODEL WITH LOSS AVERSION
A. Price adjustments

The asset price changes are determined by excess demand,
as in the FW model, following some of the most prominent
examples in the literature [14]. Here, by excess demand we
mean the precise positive or negative orders per trading period.
The specific demand of each trader type is kept as simple
as possible, in the form of the demand per average trader.
For fundamentalists, the demand is inversely related to the
difference between the current price and the fundamental
value. That is, at time ¢ their core demand D‘tf is proportional
to the gap (p{ — pt), where p; is the log price of the asset
at time t, while the p{ is the fundamental log value at time
t. Similarly, the core demand of the chartists’ group, Df, is
proportional to the latest price changes they have observed,
(pt — pi—1), where p; and p;_; are the log prices at time ¢
and t — 1, respectively.

The wide variety of within-group specifications are captured
by noise terms added to each of the core demands. These
terms encapsulate the within-group heterogeneity and scale
with the current size of the group. Specifically, the noise is
represented by two normally distributed random variables ef

and €7 for fundamentalists and chartists, respectively. Each of
the two terms are sampled at every iteration and added to the
deterministic part of the demand, leading to the total demand
per agent within the corresponding group.

Thus, the net demand of each group for the asset in period
t is given by:

th:¢(ptf—pt)+etf efw./\/'((),a]%) ¢ >0, er >0,
(1)
D = x(pe—pi—1)+e; € ~N(0,07)  x20, 620,
(2)

where ¢ and y are constants denoting the aggressiveness of
traders’ demand and UZ and of are noise variances.

The agents are allowed to switch strategies at each iteration,
so their market fractions fluctuate over time. For simplicity,
we fix the agents’ population size at 2N. Let n{ and ng
be the number of fundamentalists and chartists in the market
at time ¢, respectively. We define the majority index of the
fundamentalists as:

zy = (nf —n$)/2N, (3)

with z; € [—1, 1]. Thus, a value of x; = —1 (+1) corresponds
to a market where all traders are chartists (fundamentalists).
The (scaled) total demand Dy, given by the equation:

Dy =ni{ DI +n$D¢ = (1 +2,)Df /2 + (1 —2,)D§ /2 (4)

will generally be in disequilibrium. That is, the total demand of
the agents will not add up to zero and we will have an excess of
either supply or demand. Following the early examples in the
literature [14], a market maker is assumed to absorb the excess
supply and provide any excess demand. The market maker sets
the price by supplying stock out of its inventory and raising the
price if there is excess demand, while accumulating stock and
lowering the price when there is excess supply. Specifically,
the market maker reacts to the imbalance between demand and
supply by proportionally adjusting the price with a constant
factor p > 0.

Accordingly, the equation determining the price for the next
period ¢ + 1 results from Equations 1-4 as:

Pi+1 = pt+g[(1+$t)¢(27{*Pt)Jr(l*xt)X(pt —pi—1)+edl,

&)

e ~ N(0,02), o =[1+ xt)QJJ% + (1 —x;)0?]/2. (6)

The combined variance o; depends on the variations of
the market fractions of the fundamentalists and chartists. This
random time-varying variance is a key feature of the model,
being termed the structural stochastic volatility of returns
(defined as the log differences in prices) in [9].

B. Evolution of the market shares

To complete the model, it remains to set up the motions
of the market fractions nf and ng. They are predetermined
within each period and change only from one period to
the next one. In this section, we modify the setting pre-
sented in the FW model to accommodate for our newly
introduced behavioural factors. Following the discrete choice



approach (DCA) introduced by [15], the two market shares
ni,, (s = f,c) can be determined using the multinomial
logit model. In the basic setting, some payoff indices uf
and uf are considered, usually derived from past gains of
the two groups. The market fractions can be expressed as
niy, = exp(Bus)/[exp(Bul) + exp(Buf)], where S is the
intensity of choice. Dividing both numerator and denominator
by exp(ﬁu{ ), the market fraction of fundamentalists is given
by nf,, = 1/{1 + exp[-Buf —uf)]}.

Note that the difference in any utility variables, (u{ —uf),
can be viewed as a measure of relative attractiveness of
fundamentalist trading. Hence, changing the notation, we make
use of the attractiveness level, a;, defined as the difference

(u{ — uf). The discrete choice approach is then given by:

1
) = T+ exp(—Bag)’ nipg =1-nf,. (7

We normalize all the demand terms in the price Equation 6
by using a market impact ¢ = 0.01 and fix the intensity
of choice § = 1. Of course, setting these values is a
matter of scaling the market impact on prices and the relative
attractiveness level a; of fundamentalism, respectively.

Note that the market fractions are directly influenced by
the attractiveness level. An increase in the index a; leads to
an increase in the market share of the fundamentalists. For this
reason, it is extremely important to define the exact mechanism
of the attractiveness level and all of its components.

The concept of loss aversion is linked to a level of wealth,
from which we can derive the domains of gains and losses
[16]. In this context, the first principle that influences the
agents’ choice of strategies is based on differential profits,
incorporating some inertia. In detail, with respect to strategy
s = f,c, let g; be the short term capital gains that an average
agent in this group could realise at time ¢. This is obtained
from the demand formulated at time ¢ — 2 and executed at the
price p;—1 of the next day. In general, a utility v; obtained
from these gains is defined as vy = g; + nv;_;, where 7 is
a memory coefficient between 0 and 1. Following the same
idea, we consider a weighted average of ¢g; and v;_; [9] such
that:

g9; = lexp(pt) — exp(pe—1)]D;j_,,
w; =nwi_y + (1 =n)g;-
Note that we replaced the utility symbol v with w to ac-
commodate our interpretation. Furthermore, w; represents the
accumulated profits, discounted by the coefficient 7 < 1, that
would have been earned by an agent who had consistently
followed strategy s on a daily basis. In other words, w? is the
accumulated wealth attributed to strategy s.

However, according to prospect theory investors are often
risk-averse in the domain of gains but risk-seeking when the
changes in wealth are perceived as losses [16]. Similarly, loss
aversion influences the agents’ overall risk attitude, making
them more risk-seeking in the domain of losses. Our imple-
mentation of loss aversion is slightly different from prospect
theory in the sense that agents are considering a form of
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Fig. 1. Simulation results for the network.

accumulated wealth instead of just the latest changes. In order
to introduce loss aversion, we modify the agents’ wealth
function such as:

—Awy
where )\ is the loss aversion coefficient, s = f, c. Following
prospect theory findings, we fix the loss averse coefficient
A = 2.25 [16]. This means that technical analysts weight
losses 2.25 more than gains of same magnitude. Therefore,
we introduce the first term in the attractiveness level a® as
being proportional to the difference in accumulated wealth,
(w] —w§).

The second principle considered is based on one of the most
empirically observed social factors in behavioural literature,
known as herding. This is the investors’ tendency to follow
the strategies of other traders. It is one of the essential
irreducible elements that an agent-based model of financial
markets should posses [17]. The basic idea of herding is that
joining a group becomes more attractive the more adherents
it already has. In our model, this principle will be represented
by a term proportional to the most recent difference between
market fractions, (n{ — ng).

The last term of the attractiveness level is based on a
predisposition towards one of the two strategies. This is simply
expressed by a constant factor, o, which is positive (negative)
if there is a priori preference toward fundamentalism (char-
tism). These three elements combined form the attractiveness
level, formally defined as:

if w >0

9
if wy <0, ©)

f

ar = ag + an(nf —nf) + ap(wf —wf),  (10)

where «g is the predisposition parameter, o, > 0 captures
the herding parameter and «,, > 0 measures the influence of
accumulated wealth.

C. Motion of the fundamental value

Financial time series are characterised by the lack of pre-
dictability, mathematically known as the martingale property.
A similar, very common property of financial time series data



TABLE I
BEHAVIOURAL MODEL PARAMETERS ESTIMATED BY MSM
X of Oc agp [o7% Qi n Pp op
099 0928 0.737 1.736 2.103 1.278 26863 0.987 0.014 0.17

is its non-stationarity. In particular, a non-stationary process
is a stochastic process whose joint probability distribution
changes when shifted in time. Consequently, its mean and
variance change over time. It is commonly assumed that non-
stationary data is unpredictable and cannot be forecasted.

Associated with non-stationarity, the unit root states that
one is not able to reject the hypothesis that the time series
follows a random walk. One of the widely used tests of non-
stationarity is the Augmented Dickey Fuller (ADF) unit root
test. Following this approach, we apply the classical ADF test
(allowing for a constant and trend order) to the FW model,
where the fundamental value is kept constant, pf = 0. In
10000 simulations, the unit root test was rejected 2736 times
with the p-value being less than the critical value at 10%.
Moreover the test was rejected 1637 times with the p-value
less than the critical value at 5%.

The failure to pass the unit root test is mainly due to
the unrealistic assumption of a constant fundamental value.
As a solution, we extended the FW model by allowing the
fundamental value ptf to change over time. Specifically, we set
p{ to follow a geometric Brownian motion. This is the most
widely used model of describing stock price behaviour [18]
and is usually applied in quantitative finance. Mathematically,
the fundamental price is given by dp,{c = uppf dt + appf AWy,
where W; is a Weirner process, ji,, is the percentage drift and
oy is the percentage volatility. The exact values of the drift and
volatility will be estimated together with all the other model’s
parameters (Table I) using the Method of Simulated Moments
(see [13] for more details).

With this change in the model, we run the ADF test
once again over 10000 different simulations. Now, the test is
rejected only 823 times with the p-value less than the critical
value at 10% and 418 times with the p-value less than the
critical value at 5%. Thus, we can say that the price series
generated by the new behavioural model are non-stationary
in more than 93% of the simulations (with 95% confidence
interval). In Figure 1 we plot the percentage of the non-
stationary price series generated as we increase the number
of simulations. The red and blue lines represent the initial and
our modified model, respectively. The hard (dotted) lines are
the computed ADF results at 10% (5%) critical values. We
can observe how the number of non-stationary price series is
drastically reduced, from 27% with the initial model (at 10%
critical size) to 4% in our modified model (at 5% critical size).

Therefore, we can say that the new model produces more
realistic price series, since in real financial markets the prices
follow martingales where knowledge of past events does not
help predict the mean of the future changes. Unlike the
original (FW) model, our improved setting better reflects such
fundamental properties of real financial time series as non-

stationarity and unpredictability (our first contribution).

D. Behavioural implications

We now explore the inner workings of the behavioural model
and the impact of the loss aversion on the interaction between
agents and price changes. First of all, we present a simple run
of the behavioural model. Figure 2a illustrates the simulated
(log) prices p; generated by the model, together with the
fundamental values p{ . There are considerable swings in
the price series, similar to the ones we observe in real life
price data. The second panel of Figure 2b plots the evolution
of the majority index, x;, over the simulation period. Note
how the fraction of fundamentalists and technical analysts
changes continuously, varying from periods of fundamentalists
dominance to periods of chartists domination. The agents’
fractions are usually large and stay at the ends of the interval
[—1,1], mostly having periods when the index is bigger than
0.9 or smaller than —0.9. This means that an overwhelming
majority of agents are either fundamentalists or chartists at
different points in time.

In addition, Figure 2c plots the accumulated wealth, wy,
of the two classes of traders. We can observe that when
the actual price comes closer to the fundamental value the
fundamentalists are more profitable, while the chartists make
bigger profits when prices move away from the perceived
fundamental value. The volatility or swings in chartists’ wealth
is expected to be higher than for fundamentalist, since they
have a greater variability in demand, o, > 0.

Finally, Figure 2d demonstrates the implications of the irreg-
ular switches in the agents’ strategies on returns, specified as
percentage points. Since the chartists have a greater variability
in demand, by comparing Figures 2b and 2d we observe that
the level of returns during a chartism domination exceeds its
level in a fundamentalism regime. Therefore, it appears that
normal sequences of returns are interrupted by outbursts of
increased volatility, when the majority of agents are chartists.

In order to assess the impact of the loss aversion to the
interaction between agents, we perform a more in-depth anal-
ysis of the market fractions. For an accurate comparison, we
consider two models that differ just in this respect. Namely, we
compare our previously described behavioural model with loss
aversion with the same model but without the loss aversion
for chartists. In particular, we look at the market factions
of chartists for two behavioural models, both having the
switching mechanism dependent on wealth (W), herding (H)
and a priori predisposition towards one of the two strategies
(P). The only difference is that one of the models has the
behavioural presence of loss aversion (WHP-LA) for chartists
and the other doesn’t (WHP).

For a more robust comparison we perform 1000 simulation
runs of both WHP and WHP-LA models and look at the
median results, plotted in Figure 3. As we have discussed
earlier, the fractions stay at the ends of the interval, with the
market being dominated by either chartists or fundamentalists.
For the WHP model, we have 0.1 < ny < 0.9 in 9%
of the simulations, while for WHP-LA it is in 7.65% of
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the simulations. Furthermore, for both models, the market is
heavily dominated by fundamentalists (n s median = 0.99) with
sudden disruptions of chartism, ny < 0.01 in 20% of the
simulations. Overall, the fractions appear to be similar for the
two models, WHP and WHP-LA.

However, when we look at the ends of the intervals we see
major differences between the two settings. While fundamen-
talists never disappear from the market (ny > 0), we notice
that for the WHP-LA model, the chartists are driven out of
the market. In particular, the fundamentalists occupy 100% of
the market (ny = 1) in quite a few cases. In addition, over a
median simulation of 7" = 6867 time periods, the market is
fully occupied by fundamentalists 12% of the time. In contrast,
for the WHP model, the chartists almost never fully disappear
from the market (we obtained n;y = 1 in less than 0.2% of
the simulations). Since the only difference between the two
settings is the loss aversion for chartists, we conclude that
it is this behavioural bias that pushes these agents entirely
out of the market. This is a significant result since even zero-
intelligence strategies, where agents buy or sell randomly, have
been proven to survive the competition in agent-based settings
[19].

Generally speaking, loss aversion makes the chartist weight
their losses more than the gains. Hence, when the price is

going toward the fundamental value but fluctuates around,
without following any trend, the chartists suffer heavy losses.
In the presence of loss aversion, they overweight their losses
and make chartism rapidly unattractive. Because of this sig-
nificant difference in wealth, the switching mechanism then
pushes more and more agents to fundamentalism. Moreover,
if the prices stay around their fundamental values long enough,
the herding mechanism accentuates the movement. This results
in the complete disappearance of chartism.

So far, we have defined a new behavioural model with loss
aversion and discussed its inner workings. As we have seen,
the introduction of loss aversion for one type of the traders
determines their disappearance from the market during the
simulation period. This is the first time this phenomenon has
been observed in an agent-based model of financial markets
(our second contribution). In other ABMs, the agents interact
with each other and their market fractions are continuously
changing but even the most simple strategies survive the
competition. However, by introducing a behavioural heuristic
to technical analysts, we observe how it leads to their complete
extinction from the market. Therefore, in the complex setting
of financial markets, where strategies compete with each other,
a behavioural bias can be powerful enough to push the agents
out from the market. Similarly, behavioural finance literature
and psychological experiments argue that people’s beliefs lead
to instabilities in the market and systematic errors which can
be exploited, leading to deviations from market efficiency [20].

III. STYLIZED FACTS

In this section, we explore the statistical properties gener-
ated by our model. We show that it matches a rich set of
empirically observed stylized facts, demonstrating one of the
main objectives of ABM. An in-depth analysis of the time
series generated by the model will be performed. First, we
demonstrate the existence of the most discussed properties,
namely the absence of autocorrelations, heavy tails, volatility
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clustering and long memory. Moreover, our model is able to
match the extensive list of stylized facts discussed in an earlier
version of our work [13], but will not be presented for brevity.
Next, for the first time in an agent-based model we show
the existence of conditional heavy tails in returns. Moreover,
we match the gain-loss asymmetry, volume-volatility relations,
power-law behaviour and long memory of volume, for the first
time with a 2-type design (our third contribution).

A. Absence of autocorrelations, volatility clustering, long
memory, heavy tails and conditional heavy tails

One of the most well-known properties of financial data state
that price movements do not exhibit any significant autocor-
relation. The prices autocorrelation function (ACF) decays
very sharply and is usually close to zero [4]. This absence of
autocorrelations can be easily observed by plotting the ACF
of raw returns at lags from 1 to 100 in Figure 4a, clearly
demonstrating that price changes are not autocorrelated.

However, the absence of autocorrelation does not rule out
the possibility of non-linear dependencies of returns, since
absence of serial correlation does not imply independence.
In financial time series, volatility measured as non-linear
representations of returns exhibit a much higher positive
autocorrelation that persists over time. This phenomenon is
a quantitative signature of volatility clustering: large price
variations are more likely to be followed by large price
variations, as observed in Figure 2d. A common way of
confirming the presence of volatility clustering is by con-
sidering its autocorrelation function. Even though there are
different ways of measuring volatility, the most commonly
used ones are the absolute returns [5]. In the ACF of volatility
measured as absolute returns (Figure 4a), we observe a positive
autocorrelation that persists over time, doubled by its slow
decay. This is a clear presence of volatility clustering.

A property closely related to volatility clustering is the de-
cay of the ACF. The long memory effect specifically addresses
this decay. Usually, if the decay is slow, similar to a hyperbolic
function, we can say that the corresponding process exhibits
long memory. One way of observing the decay in the ACF of
returns is by fitting a power law of the form A/r®. We notice
that a close fit of the ACF can be obtained, with an exponent
B = 0.48 (Figure 4a), in line with empirical studies [4].

Next, we consider the distribution of returns, another chal-
lenging topic in the econometrics literature. In Figure 4b we
plot the distribution of returns and immediately observe the
deviations from Gaussianity. Our simulated returns, similarly
to the ones of many financial assets, are bell shaped but contain
more mass in the peak and the tail than normal. Specifically, an
excess kurtosis of 2.34 implies a peakiness bigger than normal
and a slow asymptotic decay of the probability distribution
function. This non-normal decay is the so-called heavy (or fat)
tail [21]. Furthermore, we analyse the distribution of absolute
returns by computing the well-known Hill index. We obtain
a Hill tail index, similar to empirical findings, most studies
reporting a tail index higher than two and less than five [4].

Finally, for the first time in an agent-based setting, we
discuss a further property observed empirically in financial
markets, the so-called conditional heavy tails of returns. It
states that even after correcting returns for volatility clustering
(e.g. via GARCH-type models [22]), the residual time series
still has heavy tails [4]. However, the tails are less heavy
than the unconditional distribution. A clear representation
of this property can be observed in Figure 4c, where we
plot the distribution of the residual returns after correcting
for volatility clustering via a GARCH(1,1) model. Compared
with the normal distribution superimposed on it, we see that
the residuals of returns have a higher peak and longer tails,
confirmed by an excess kurtosis of 0.91 and a Hill index of
4.2. In the same time, the tail is less heavy than the one of
raw returns.

B. Gain-loss asymmetry

In order to obtain a deeper understanding of the fluctuations of
prices and returns, [23] proposed a different kind of approach
involving inverse statistics. In the analysis of financial data,
the inverse question can be written as: For a given return
on an investment, what is the typical time span needed to
obtain this return? This question has been investigated in a
series of papers [23], [24], leading to an additional feature of
returns. Specifically, the gain/loss asymmetry of returns states
that while the maximum of inverse statistics for a positive level
of returns occurs at a specific time, the maximum for the same
negative level of returns appears earlier. For the first time in
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agent-based modelling, we will match this stylized fact with
a 2-type design model.

In more detail, the level of return £p, where the positive or
negative sign corresponds to a gain, or a loss respectively, is
kept fixed and one looks for the shortest waiting time after ¢,
T+,(t), for which the returns is above or below the predefined
=£p. The distribution of waiting times for gains 7 ,, and loses
T_, is denoted p(7+,) and corresponds to a fixed return level
p. Therefore, the maximum of this distribution, T;‘ is the most
probable time of production a return p, known as the optimal
investment horizon.

In Figure 5a we plot the probability distribution function,
p(T+,) of waiting times 7.,, with a return level p = 5%.
We can observe the asymmetry between simulated investment
horizon distributions. In particular, for a negative level of re-
turn, there is a higher probability to short investment horizons,
as compared to what is observed for the positive one. On
average, while the optimal investment time for a negative
return is 20 days, for the same level of positive returns we
obtain an optimal investment time of 23 days.

Similarly, a relevant property for an investor would be the
dependence of the optimal horizon 7, on the return level p.
Empirically, the increase of the optimal horizon was found to
occur in a systematic fashion, 7; o p7, with v ~ 1.8. In Figure
5b, we plot the optimal investment horizon 7, as a function of
p. We find a power v = 1.69 for negative returns and v = 1.75

for positive returns, in line with empirical findings [23].

C. Volume power-law, long memory and volume-volatility
relations

We now turn our attention to volume, another highly discussed
financial topic. Some of the empirical quantitative properties
related to volume include a power-law behaviour, long mem-
ory and correlation to volatility. We will demonstrate all these
stylized facts with our behavioural model, being for the first
time matched by a 2-type model.

We define the volume at time ¢ as the total absolute demand
at t of both fundamentalists and chartists. In Figure S5c we
can see that the volume distribution has a bigger decay than
the exponential distribution superimposed on it, indicating a
power-law behaviour. Moreover, an excess kurtosis of 5.47 and
a skewness of 1.96 reinforces this behaviour. A Hill index of
3.6 was found.

In Figure 5d we plot the autocorrelation function of volume.
We observe a power-law decay with an exponent 0.585. The
slow decay is a clear presence of long-memory of volume.
Another widely used method for testing the long memory
effect is by using the Hurst exponent. Computing the Hurst
exponent of the simulated distribution of volume, we obtain
the value of 0.68. Most empirical studies report a Hurst
exponent in the interval [0.5,1] for long memory processes.



Therefore, the presence of long memory in volume is clearly
demonstrated.

Finally, the dependence between volatility and volume
traded has been noticed and documented across different
financial instruments at different time scales. Specifically,
the relationship between the two market descriptors can be
observed via the cross correlation function. In Figure Se
we observe a significantly positive cross correlation between
volatility and volumes. This means that a small (large) trading
volume is accompanied by a small (large) change in volatility.
It is important to note that all measures of volatility are
positively correlated with volume and that the dependence
remains significant as we increase the time lag.

IV. CONCLUSIONS

Heterogeneous agent-based models that rely on simple auto-
mated trading agents have proven themselves very efficient
in generating important dynamics of real financial markets.
Moreover, a well-defined agent-based model able to match
the financial markets’ common properties is an important tool
for testing various behavioural and economical theories and
understanding how they influence the interactions between
agents and prices.

In this paper, we extended one of the most recent and
successful models in capturing real-life market dynamics.
Motivated by the violation of a central property of real
financial price series, their non-stationarity, we propose a
change in the motion of the fundamental value and overcome
it. Next, we presented a new behavioural model of asset
pricing where the agents are loss averse. In the new setting,
we observed a major difference in the movements of the
agents’ market fractions. Specifically, the loss averse chartists
were driven out of the market at different points in time.
Since even the simplest strategies have been proven to survive
the competition in an agent-based setting, we can link our
finding with the behavioural finance literature, which states
that investors’ systematic biases lead to unexpected market
behaviour. Finally, we provided an in-depth analysis of the
time series generated by the model and showed that for the
first time it is able to match the empirically observed properties
of conditional heavy tails, gain loss asymmetry, volume power
law, long memory and volume-volatility relations.

For future work, we will use the model to investigate how
other behavioural factors such as gossip or waves of optimism
and pessimism influence the way agents interact with each
other and test their impact on the market. In this way, we
can detect the biases and heuristics that make the prices
display some of the anomalies which cannot be explained by
traditional financial theory.
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