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Abstract—Evolution-In-Materio, an unconventional computing
paradigm exploiting physical properties of materials for achieving
computations, is addressed here as a system which exhibits
dynamical hierarchies. A description of computations is provided
to show that computations within Evolution-In-Materio systems
arise from the dynamics at different hierarchical levels. An
information theoretic approach to formalising the notion of
dynamical hierarchies is used. The approach is based on the
descriptions of the system at different hierarchical levels. The
concrete material addressed in this paper is a carbon nanotube
/ polymer nanocomposite. The choice of material is based on
previous work motivated by a number of experiments conducted
on such material samples. Presented findings are valuable for
several reasons: better understanding of computations within
Evolution-In-Materio systems, useful hints to modelling this
kind of unconventional computations, useful ideas for further
development of similar unconventional computing systems such
as using quantum properties of charge carriers within the
material and the magnetic field for guiding the search for the
solution of the computational problem at hand.

I. INTRODUCTION

The unconventional computing paradigm Evolution-In-
Materio (EIM) [1], [2] is based on several earlier attempts
to use physical properties of materials for computations [3],
[4]. Recently, it has been a subject of investigation under
the NASCENCE project (NAnoSCale Engineering for Novel
Computation using Evolution) [5], [6]. A number of computa-
tional tasks have been successfully solved [7]–[12], however,
more as a proof of principle. A wider use of EIM as a
potential replacement of classical digital computers based on
semiconductor electronics is still out of sight. This is mainly
due to the issues which are still to be addressed within the
field, such as repeatability and stability of solutions, the way
of interpretation of the material response, as well as the very
choice of the material which is used as a computing substrate.
We believe that better understanding of computations within
an EIM framework can lead not only to the solutions to the
existing challenges, it can also point towards further areas of
investigation which may bring in novel ways of using physical
properties of materials for useful computations.

This article is an endeavour in such direction. Based on
the ideas presented in [13], it further describes computations
within an EIM scenario. This is achieved by addressing
computations at different hierarchical levels which may be
recognised within the system. More precisely, the principles

of dynamical hierarchies [14] are addressed within the sougth
system. At this place, we provide a description of an EIM
system showing that it can be said to exhibit dynamical
hierarchies.

Dynamical hierarchies are one of the basic principles of
complex living matter [15]. Units at lower levels interact
and undergo some dynamics. As a result of the performed
dynamics, novelty can be recognised as arising at higher levels,
be it in a form of a novel structural entity, novel pattern
or novel behavioural trait observable at that level. Novelty
accounts for the fact that the whole is larger than the sum of
its parts, a well-known principle of emergence [16]. Another
property of this type of hierarchies is a loss of information
due to an abstraction of the lower level properties. A number
of approaches have been made to formalise this notion, in
particular within the ALife community [17]–[24]. However,
most of them show weaknesses and incompleteness at captur-
ing important (defining) aspects of dynamical hierarchies. An
information theoretic approach has been suggested as a way to
overcome some of the shortcomings met. Such an approach,
based on [24], is adopted and used here toward EIM systems.

Different levels of an EIM system need to be addressed
within such framework. Since the physics of the material
used for computations is the basis for achieving computations,
our analysis begins with it. In particular, we address the
material which has been used in the experiments within the
NASCENCE project – a nanocomposite made of Single-
Walled Carbon Nanotubes (SWCNT) and polymer molecules,
produced especially for EIM experiments within the project
[25]. Moreover, for the ease of understanding, we use a
concrete computational task – a Time Series Prediction (TSP)
of the financial data.

The organisation of the paper is as follows. Section II
presents principles of EIM systems and the recognised concep-
tual domains related to hierarchical levels within such systems.
Section III summarises principles of dynamical hierarchies
as expressed via entropies within an information theoretic
approach given in [24]. Section IV provides the description
of the system from the level of the material physics. Sections
V and VI provide descriptions of the system at the level of
measurements and in the domain of interpretations respec-
tively. They also relate provided descriptions to the lower level
description through entropic relations. Finally, Section VII



Fig. 1. Schematic view of the Evolution-in-Materio, adapted from [26].

provides some discussion on the description of computations
as presented in this article, the benefits it may have on
further research areas within EIM and wider unconventional
computing and, finally, concludes the paper with some ideas
for future research directions.

II. EVOLUTION-IN-MATERIO

EIM is an unconventional computing paradigm whereby
physical properties of materials are used for computations [1],
[2]. Material undergoes the changes, or reconfiguration, guided
by an evolutionary algorithm (EA), e.g., a genetic algorithm
(GA) [27] until desired computational task is solved. As a
GA is performed by a classical digital computer, we speak of
a computer controlled evolution (CCE) [28]. Namely, a digital
computer is in the loop where it assesses the response of the
material against some fitness function and, accordingly, sends
configuration signals to the material which configure it so as to
perform the computational task. This is schematically shown
in Figure 1. The material physics and the changes it undergoes
are of analogue nature. However, the GA is performed by a
digital computer so that a computational problem at hand is
translated and expressed in the digital world, i.e., the genome,
the response of the material and the fitness function are all in
the digital domain.

In [13] we have recognised different conceptual domains
within which EIM computations can be described. Figure 2
shows these domains alongside a schematic view of the EIM
scenario. It was postulated that computations emerge at higher
levels, which correspond to domains of measurements and
interpretations, as a result of the dynamics at the level of the
material physics. Therefore, the system may exhibit dynamical
hierarchies.

The conceptual domain of the material physics depends on
the concrete material which is used for computations. In the
experiments conducted within the NASCENCE, the physics of
the blobs, i.e., unstructured matter, of CNT composites were
used. The blob of material is treated as a black box which
means that the manipulation of its properties is not performed

Fig. 2. Conceptual domains of the EIM computing system, from [13].

in a top-down approach, it rather happens at the observation
level, domain of measurements, and is done in a bottom-up
fashion where evolutionary changes guide the transformations
at low level towards useful computations observed at higher
levels. The property used for computation is the conductivity
of the blob or, more precisely, the change of the material
conductivity due to the changes of the electric field in which
the material is placed. The changes of the field are achieved by
changing the voltages on the configuration (input) electrodes.
The conductivity of the blob is based on the conductivity of
SWCNTs which form a percolating network of conductive
paths dispersed among polymer molecules, the latter electri-
cally behaving as isolators. However, since CNTs naturally
form ropes due to the attractive Van der Vaals forces and
since they are randomly dispersed among polymer molecules
thereby stretching in all directions, it is not an easy task to
determine exact paths of current flow. It has been shown
[30] that the conductivity in CNT-polymer nanocomposites
depends on a number of factors - concentration of CNTs,
fabrication method, presence of surfactants etc. The production
of the samples used in our experiments is described in [25].
The samples show dependence of conductivity mainly based
on the concentration of CNTs since other parameters of
the production process remain the same. Figure 3(a) shows
micrographs of the samples for different CNT concentrations.
Figure 3(b) shows the material blob on the glass slide which is
used for connecting the material to the rest of the system. This
part belongs to the domain of material physics as illustrated
in Figure 2.

The slides carrying samples are attached to the edge con-
nector on the board which serves as an interface between the
material slide and the digital computer running the GA. Figure
3(c) shows the Mecobo board [29] specially developed for this
purpose within the NASCENCE project. The board receives
configuration and input signals from the digital computer,
performs D/A conversion and sends input signals further to
the material via input electrodes. It also reads the response
of the material through a set of output electrodes, performs
A/D conversion and further sends the material response in



(a) AFM (top) and optical microscope
(bottom) images of the SWCNT/PBMA
films.

(b) Glass slide with the material dis-
persed over gold electrodes (bottom:
close view).

(c) Mecobo and material slide [29].

Fig. 3. SWCNT-poly nanocomposites used in NASCENCE experiments, from NASCENCE documentation.

digital form to the computer to be processed by the GA. Which
electrodes are input / configuration or output is determined by
the genome and can be changed during an evolutionary run. In
this way its operation belongs to the domain of measurements
as shown in Figure 2.

The third domain, domain of interpretations, refers to the
problem definition regarding available resources, primarily
number of electrodes and types of signals used for compu-
tations. This domain is case-specific. For example, in [26],
a Travelling Salesman Problem is solved in-materio for a
9 city problem. The sample was used on a slide with 12
electrodes out of which 3 were used as configuration inputs.
Remaining 9 electrodes were assigned to the 9 cities, an
electrode per city, and a simple ordering of output voltages by
their values represents the result of the computation for the
given configuration. It is obvious then that further scaling of
the problem is limited by the number of available electrodes.
Further, when addressing this domain we shall use an example
of a Time Series Prediction (TSP) 1 solved in materio.

III. INFORMATION THEORETIC APPROACH TO
DYNAMICAL HIERARCHIES

The most complex systems created by nature exhibit hi-
erarchical organisation [15]. The hierarchies met in living
systems are of a specific kind - they arise from the constant
flow of the matter: molecules of cells are incessantly being
replaced as nutrients enter and the waste leaves them. The
dynamics supported by such a flow gives rise to interactions
between the cells which then give rise to formation of higher
levels of organisation, i.e., tissue, organs, organism as a whole.
Therefore, it is the dynamics undergone by the constituent
parts that builds the hierarchies and we rather speak of the
organisation of the matter in living systems than of some fixed

1Note that further references to TSP are for the Time Series Prediction, not
the Travelling Salesman Problem

and a once-for-all built hierarchical structure. Such form of
hierarchies is termed “dynamical hierarchies” [14], [21], [31].

Dynamical hierarchies have been studied within ALife with
the intention of providing formalism for their description and
definition. A number of approaches have been adopted from
simulation frameworks [17]–[19] to theoretical definitions of
related notions [20]–[24]. We focus on the information theo-
retic approach as presented in [24]. Such approach is not tied
to any specific framework, like in the example of [17], nor does
it lack specification of novelty at a higher level which arises
from the interactions at lower levels as in the example of [20].
For the sake of completeness, in this section we summarise
the main contributions made in [24] in order to make the rest
of the paper easier to follow.

For such hierarchical system it is needed that there exist
descriptions of the system at diferent hierarchical levels and
that the system so described is entropic. The descriptions are
given in a form of a state space description, i.e., as a set
of discrete states {si} and the transition function tf which
determines the transitions between the states. This can be
written as:

S = {si(t) : si(t)
tf−→ si(t+ 1); {p}} (1)

In Equation 1, t denotes a time instant in which the system is
in a given state si and p stands for a set of parameters since the
description of the state space is in general parameterised. For
example, for a physical system the parameters may be some
environmental influences like temperature or magnetic field.
Further, each state is assigned certain probability with which
the system is to be found in that particular state. Therefore, it
is possible to define entropy in the information theoretic sense
as [32]:

H[S] = −
∑
s

P (S = s) log(P (S = s)) (2)



Fig. 4. Two hyperdescriptions, S2 and S3 of the system S1, adapted from
[24].

and its conditional equivalent:

H[S|Q] = −
∑
q

∑
s

P (S = s|Q = q) log(P (S = s|Q = q))

(3)
where S and Q stand for the state space descriptions of the

system which are of a general form as given by Equation 1.
Entropy can also be understood as a measure of uncer-

tainty as when applied to communication channels within the
Shannon’s information theory [32]. In that sense, the larger
the entropy, the larger the uncertainty about the future of the
system. So, for a system with some units at the lowest level of
our observation, there exists a set of states, S = {sa} which
have associated probabilities P (sa) and the transition function
tfa for the transitions between the states. An example of one
such system description, S1, is given in Figure 4.

Further, let us assume that there exists another description of
the same system at a higher level, Sb = {{sb}, tfb}, such that
there exists a description function dba from the states {sa}
to the states {sb}. Then, we say that Sb hyperdescribes Sa

see [24]. What is important to note is that such description
has to be chosen carefully so as to capture the behaviour of
the system well and also well describe the dynamics of the
system. In the example given in [24] for the concrete system
shown in Figure 4, two higher level descriptions are given,
one which is not good at capturing the system description,
S3, and another which is, S2. For such hyperdescriptions, the
following values are defined:

r(S, t) = 1− H[s(t+ 1)|s(t)]
H[s(t+ 1)]

(4)

q(Sb, Sa, t) = 1− H[sb(t+ 1)|sb(t)]
H[sa(t+ 1)|sb(t)]

(5)

which are termed state dependence and distinctness respec-
tively. The closer to the value of 1 they are, the more prominent
the hierarchies are.

The state dependence as defined in Equation 4 means that
the higher level description contains some information about
the future states of the system: if we know the description
at this level, uncertainty about the future state of the system

is less than if this description is not known. This statement
captures the novelty brought in at a higher level: the higher
level description captures the novelty in its formulation.

The distinctness defined by Equation 5 means that knowing
the state of the system as described at a higher level, there is
less uncertainty about the future state the system will be in
as seen at this level than there is uncertainty about its state
as described at a lower level. This entropic relation captures
the loss of information when we move from the lower to the
higher level. For example, we say that some moving body has
certain acceleration without looking into forces which act on
its constitutive molecules which result in the acceleration of
the body as a whole. For the example given in Figures 4 it
would be a loss of information about the transitions between
the states b and c which pertain to the lower level description
but are lost at the higher level description although the system
behaviour is still correctly captured by this description.

Further, we provide descriptions of the system as given by
Equation 1 for the conceptual domains recognised within EIM
systems. In other words, for each of the domains, a description
is provided in a form of a set of discrete states each of which
with the assigned probability with which the system is to be
found in it. The superscripts 1, 2 and 3 denote descriptions
for particular domains: domain of material physics, domain
of measurements and domain of interpretation respectively.
Since each state in the system description is assigned certain
probability, the system is entropic and the entropies can
be established for conceptual domains mentioned. Also the
entropic relations given by Equations 4 and 5 are shown to
hold for identified conceptual domains.

IV. THE DOMAIN OF MATERIAL PHYSICS

At this place we address the basis of the CNT conductivity,
i.e., the electron transport in CNTs and the change of the
electromagnetic field at the accordingly scaled level. Both
electric and magnetic components of the field are addressed for
the sake of generality. This is needed in the approach herein
due to the voltage controlled current change in the CNT and
the possible formation of small magnetic fields.

A. A Brief Look at the Electromagnetic Reality

Electromagnetic reality can be described in several ways.
Since operations at the nanoscale level are addressed, the
description which is adopted accounts for quantum properties
of charge carriers and the relativistic nature of the phenomena
which are manifested as electromagnetic field. It can be shown
[33] that for such description these two equations suffice which
can replace Maxwell’s equations [34], i.e.:

k =
q0
h̄

A (6)

22A = −µ0J (7)

where k is a propagation vector of a charge carrier in a
four-vector notation, q0 elemental charge, h̄ reduced Planck
constant, A = [

−→
A , Vc ] electromagnetic four-potential which



Fig. 5. Unrolled honeycomb lattice of CNT, taken from [35], p.38.

accounts for both scalar (electrostatic) and vector potential, J
four-vector current density, µ0 the magnetic constant and 2 =
[∇,− 1

c
∂
∂t ] four-gradient operator. The changes observed in the

electromagnetic reality are the manifestation of the dynamics
of the collective electron system [33] so at the very bottom of
the observed phenomenon lies the dynamics of electrons.

B. Electron transport in CNTs

Electronic structure and the properties of electron transport
in CNTs are determined by the CNT geometry [35]–[37].
On one side, the fact that the length of a CNT is orders of
magnitude larger than its diameter - µm vs nm - makes them
behave electronically like quantum wires at low temperatures
[38]. On the other side, the geometry of the carbon atom lattice
which makes a CNT, primarily its chirality, further determines
electrical properties of CNTs. CNTs are obtained from the
graphene sheet by cutting and rolling it into a tube. Figure
5 shows geometrical properties of the carbon lattice which
are determined by the graphene sheet. Chirality is defined
by the chiral vector Ch see Figure 5 which determines the
direction along which a graphene sheet is cut. Dependent
on the chirality, CNTs can be electrically semiconducting or
metallic. Further, the energy gap in semiconducting CNTs is
inversely proportional to the tube diameter.

Apart from the tube geometry, its conductance is also
dependent on the electromagnetic field in which the tube
is placed – the phenomenon exploited in the NASCENCE
experiments. Moreover, conductance fluctuations due to the
changes in the magnetic field, known as universal conduc-
tance fluctuations, can change the character of the CNT. For
example, the magnetic field which is parallel to the CNT
axis can change the semiconducting character of the tube to
metallic [39]. The change happens due to the lowering of
the gap between valence and conduction energy bands. Such
remarkable properties are akin to the effects of the magnetic
field on the electrons which are also subject to the periodic
potential caused by the atoms in the crystal lattice as in [40].

For the descriptions of electrons at the quantum level, the
Schrödinger equation contains the needed information which
is, in general, of the form:

Hψ = ih̄
∂ψ

∂t
(8)

Fig. 6. Scanning Tunneling Microscopy (STM) atomically resolved image of
CNT - electron waves visible, taken from [42]

where ψ is the electron wave function and H the Hamilto-
nian, i.e., the operator corresponding to the total (kinetic and
potential) energy of the system. For the case when an electron
in a periodic potential V (r) of a crystal lattice is also exposed
to perturbing magnetic and electric fields, as is the case in our
experiments, Hamiltonian is of the form [40]:

H =
(p − e

−→
A
c )2

2m
+ V (r) + eϕ(r) (9)

where p stands for an electron momentum, e elemental
charge,

−→
A vector potential, i.e., magnetic field, and ϕ(r) a

perturbing electric field in general taken to be slowly varying
along the CNT in comparison with the periodic potential V (r)
of the lattice. All values are given for the position r within
the lattice. Electronic bands, i.e., allowed electronic states can
then be found as a solution of the equation of the form:

Hψ = Eψ (10)

in accordance with the so-called tight binding method [41].
Since electron transport occurs along the CNT where the
periodic potential V (r) caused by its lattice atoms is exhibited,
the wave function of the electron is of the following form, in
accordance with the Bloch theorem 2:

ψk = uk(r)exp(ik · r) (11)

where uk(r) has the period of the crystal lattice. It can
be shown that a wave vector is quantised in circumferential
direction, while it can be quantised for the wave vectors
corresponding to the direction of the CNT axis if the length
of the CNT is of the order of µm [42]. Figure 6 shows an
STM image of electron wave functions which clearly shows
quantised states of the electron waves in CNTs.

The character of electron transport in CNTs is dependent on
the conditions which make it exhibit its wave or particle nature.
Different transport regimes exist: ballistic, localised weak /
strong or classic [35]. They are dependent on the relations

2Bloch theorem states the solution of the Schrödinger equation for a
periodic potential



between three kinds of characteristic lengths attributed to
electrons at the mesoscopic level: the momentum length (or
mean free path), Lm, the Fermi wavelength, λF , and the
phase-relaxation length, Lϕ [35]. Further, we shall assume
ballistic transport at low temperatures so that scattering effects
can be neglected and the quantised electronic states assumed.

C. State Space Description for the Domain of Material
Physics

The wave function, such as the one given in Equation 11,
contains enough information about any measurable property
of the electron. The probability of the electron occupying a
concrete position in time-space, is then:

ps = ψ∗ψ (12)

Also, according to the Pauli exclusion principle, maximum
two electrons can occupy the same energy state provided they
are of opposite spins. From what has been said so far, the
description at the level of physics, S1 can be given by the state
s1(t) defined by the propagation vectors of all the electrons
which are moving along CNTs in the system and the transfer
function tf1 by the four-potential A since the changes of the
electron propagation vector happen due to the changes of the
electromagnetic field:

s(t) = s1(t) = {ki(t)}Ne
i=1 (13)

where Ne is the total number of electrons in the system.
The transfer function defined by the four-potential:

tf1 = f(A; {p}) (14)

where f(·) denotes some functional dependence on the
variables in parentheses. Parameter p refers to parameters
like temperature, irregularity of the carbon lattice, presence
of impurities etc.

V. DOMAIN OF MEASUREMENTS

Values measured in the EIM system are voltages on elec-
trodes which interface the material. Here the distinction must
be made between the actual analogue voltages which are on
the electrodes and their corresponding digital values which
are the result of the A/D conversion by the interface between
the analogue and digital domain (here the Mecobo interface
platform). The latter are further transmitted to the computer
to be processed by the EA. In providing the description of the
system for the domain of measurements, the analogue voltages
on the electrodes will be assumed. So, the description at this
level is somewhat straightforward - it is given by the set of
voltages on the electrodes. For the description in the form
given by Equation 1, it can be written:

s(t) = s2(t) = {Vi}Ni=1 (15)

where N is the number of electrodes used to interface the
material, and the transition function:

tf2 = f({Vj}; {p}) (16)

which consists of the changes of voltages on configuration
electrodes, i.e., the index j goes over the electrodes which are
used as configuration electrodes. Parameters are those which
may affect measured values of voltages, such as temperature,
measuring equipment etc.

In order to show that such description hyperdescribes the
description at the level of material physics, we need to show
that there exists a description function d21(s1(t)) which results
in discrete states s2(t) and that the state dependence and
distinctness hold for descriptions S1 and S2.

Description function
For each state from the description S1, there is a set of

electron propagation vectors {ki} for which Equations 6 and 7
hold. Since the voltage measured on the electrode corresponds
to the static potential of the material at the point in space where
the electrode is placed, it can be concluded that the scalar part
of the four vector potential A will suffice to provide the needed
voltage values. Therefore, the description function d21(s1(t))
exists.

State dependence
For the state dependence as defined by Equation 4 to be

less than 1, the following inequality needs to be satisfied:

H[s2(t+ 1)|s2(t)] < H[s2(t+ 1)] (17)

From the definitions of entropy and conditional entropy,
Equations 2 and 3, and since the factors of summation for the
entropy are of the form y = x log x, x = P (∗) and factor x
rises faster than log x, it follows that this inequality is satisfied
if:

Ns2∑
j=1

P (s2j (t+ 1)) >

Ns2∑
i=1

Ns2∑
j=1

P (s2j (t+ 1)|s2i (t)) (18)

where Ns2 is the total number of states pertaining to the
description S2. According to the Law of Total Probability for
each state s2j (t+ 1) in S2:

P (s2j (t+ 1)) =

Ns2∑
i=1

(P (s2j (t+ 1)|s2i (t)) · P (s2i (t))) (19)

Therefore, it follows that the inequality 18 will hold if there
exists at least one state in S2 which can’t be reached from all
the other states, i.e., if the transfer function is such that this
condition holds. This will be the case if the conduction paths
in the material are not formed between all the electrodes for
all configurations and if they are not of the same conductivity.
Such physical conditions are provided for lower concentrations
of CNTs.

Distinctness
The distinctness criterion as given by Equation 5 will

be satisfied for the level of measurements if the following
inequality holds:

H[s2(t+ 1)|s2(t)] < H[s1(t+ 1)|s2(t)] (20)



Fig. 7. Illustration of two propagation vectors resulting in the same electrode
potential.

From Equation 3, it follows that this condition will be
satisfied if:
Ns2∑
i=1

Ns2∑
j=1

P (s2j (t+1)|s2i (t)) >
Ns2∑
i=1

Ns1∑
k=1

P (s1k(t+1)|s2i (t)) (21)

To explain when such conditions will be met, let us refer
to Figure 7. The Figure shows a simple system consisting
of one electrode and two CNTs placed symmetrically to the
electrode axis. If there is only one electron wave in the system
which is described by the propagation vector ka and if at
some point in time t it corresponds to the dot marked as ka

in Figure 7, then the electrode will register some potential Vi.
The same potential could be registered on the electrode had
the electron wave been moving along the other CNT described
by the propagation vector kb. In other words, for the state
from the description S2, there can exist more corresponding
states from the description S1 which are hyperdescribed by
this state in S2. Therefore, for the state s2(t) in S2 there is
more uncertainty about the next state s1(t+1) which belongs
to the description S1 than there is uncertainty about the next
state s2(t+1) from the description S2 from which Equation 20
immediately follows. An exact proof would contain the proof
of Equation 21 which can be done easily by expressing the
conditional probability on the left hand side of the inequality
as a sum over the states in S1 for which transitions exist to
the specific state from S2. Because of the reasoning illustrated
in Figure 7, this sum is less or equal to the probability on the
right hand side. Again, the equality holds for the case when
all the states can be reached from one another and when the
paths are of the same conductivity leading to the probabilities
of the state transitions being the same.

VI. DOMAIN OF INTERPRETATION

The description of the system at the level of the problem
interpretation is tied to the particular problem at hand. It is
based on the measurements provided by the level of mea-
surements which are then interpreted for the target problem.
As problems to be solved vary so does the interpretation of
the voltages measured as the material response. Therefore, in
order to provide a description of the system at this level, we

Fig. 8. Illustration of the state space description for the exchange rate
prediction.

choose one particular problem to solve in-materio: a Time
Series Prediction, TSP.

TSP is a task where future values of some time series are
predicted based on its values in the past [43]. Typically, there
is a series in a form {x(t)} where x(t) denotes a value of
the signal at time t. Usually, these values are provided for
discrete time steps n · t. As the values further in the past have
less relevance, a time window is applied which selects only a
finite number of the time steps back in the time series history
for prediction of future value.

Let us assume that a time series represents a currency
exchange rate between two currencies and that the task to
solve is the direction of this change in the future, i.e., whether
the exchange rate will rise or fall. Further, let us assume
that the electrode array over which the material is placed
consists of altogether N electrodes where N is a finite integer
number. Let us choose the interpretation of the problem in
the following way. Two of the electrodes, outj and outk,
j ̸= k, 1 ≤ j, k ≤ N , will be used as output electrodes from
which the material response, Vj and Vk respectively, will be
read and interpreted as follows:

• if Vj < Vk, the exchange rate will rise
• if Vj ≥ Vk, the exchange rate will fall

This is illustrated in Figure 8. The rest of the electrodes are
used for configuration and for signal input where input refers
to the time series past values.

For such interpretation of the problem, a state space de-
scription of the system can be made as following:

s(t) = s3(t) = {s31(t), s32(t)} (22)

where s31(t) denotes the state where the currency exchange rate
will rise (Vj < Vk), s32(t) denotes the state that the rate will
fall (Vj ≥ Vk) and the transition function tf3 is determined by
the relation between the measured values Vj and Vk as stated
by the interpretation of the problem.

Description function
The description function from the level of measurements,

i.e., states defined by the set of voltages on all N electrodes



{Vi}Ni=1 to the level of interpretation can be defined as:

d32(s
2(t)) =

{
s31(t), if Vj < Vk

s32(t), if Vj ≥ Vk
(23)

State dependence
With such description, the state dependence, Equation 4,

will hold for:

H[s3(t+ 1)|s3(t)] < H[s3(t+ 1)] (24)

By definition:

H[s3(t+ 1)] = −
2∑

i=1

P (s3i (t+ 1)) log(P (s3i (t+ 1))) (25)

and

H[s3(t+ 1)|s3(t)] =

−
2∑

l=1

2∑
i=1

P (s3i (t+ 1)|s3l (t)) log(P (s3i (t+ 1)|s3l (t))) (26)

Further, from the Bayes’ theorem it follows:

P (s31(t)|s31(t+ 1)) =
P (s31(t+ 1)|s31(t))P (s31(t))

P (s3(t+ 1))
(27)

from which it follows that:

P (s31(t+ 1)) > P (s31(t+ 1)|s31(t)) (28)

since:

P (s31(t)) > P (s31(t)|s31(t+ 1)) (29)

Therefore, it can be written:

P (s31(t+ 1)) >

1

2
(P (s31(t+ 1)|s31(t)) + P (s31(t+ 1)|s32(t))) (30)

Equivalent inequality holds for the state s32 as well, or, in
general, for other states from the description S3. When this
inequality is accounted for in equations 25 and 26, it follows
that the state dependence criterion is satisfied as given in
Equation 24.

Distinctness
The distinctness relation will hold for:

H[s3(t+ 1)|s3(t)] < H[s2(t+ 1)|s3(t)] (31)

By definition of conditional entropy:

H[s2(t+ 1)|s3(t)] =

−
2∑

l=1

2∑
i=1

(P (s2i (t+ 1)|s3l (t)) · log(P (s2i (t+ 1)|s3l (t)))

(32)

Let us refer to the description of the system at the level
of interpretation given in the beginning of this section and
illustrated in the top of the Figure 9 as S3. The description

Fig. 9. Two disjoint subsets of S2 which are hyperdescribed by the states of
S3.

is such that all the states from the description at the level of
measurements can be partitioned into two disjoint subsets, S2′

and S2′′ where S2′ contains all the states s2 = s2
′
= {Vi}

from S2 for which it holds that Vj < Vk and S2′′ contains all
the states s2 = s2

′′
= {Vi} from S2 for which it holds that

Vj ≥ Vk as illustrated in Figure 9. Then it can be written:

P (s3n(t+ 1)|s31(t)) =
∑

m∈S2′

P (s2
′

m(t+ 1)|s31(t)) (33)

and

P (s3n(t+ 1)|s32(t)) =
∑

m∈S2′′

P (s2
′

m(t+ 1)|s32(t)) (34)

where n stands for index 1 or 2 for two possible states in
S3. From Equations 33 and 34, it follows that for a particular
state sm from the S2 description it can be written:

P (s3n(t+ 1)|s31(t)) < P (s2
′

m(t+ 1)|s31(t))
P (s3n(t+ 1)|s32(t)) < P (s2

′′

m (t+ 1)|s32(t)) (35)

From Equation 35 it follows that Equation 31 holds since,
as mentioned, the factors of summation for the entropy are
of the form y = x log x, x = P (∗) and factor x rises faster
than log x. Therefore, it can be concluded that the description
at the interpretation level for the problem of TSP as given at
the beginning of this section, hyperdescribes the description
of the system at the level of measurements.

Further it can be argued whether such statement holds
for other problems which are solved by EIM. Of course,
it is all dependent on the interpretation of the problem at
hand and how the solution of the problem is formulated.
However, all interpretations come down to a one-to-many
mappings between the level of measurements and the level
of interpretation so that the description at this level is a good
one in a sense explained in Section III, i.e., it captures well
the dynamics of the system.

Table I summarises hierarchies within an EIM system in a
concise manner.



TABLE I
OVERVIEW OF DYNAMICAL HIERARCHICAL LEVELS IN AN EIM SYSTEM

Domain State Transfer function Loss of information Novelty

Material physics s1 = {ki} change of N/A N/A
four vector potential, A

Measurements s2 = {Vi} change of analogue voltages number of states, voltage, currents
on input electrodes information on individual k (new qualitative description)

Representation s2
′
= {V

′
i } digitalised loss of information new representation

in a computer voltages on input electrodes due to A/D conversion in a form of genome
Interpretation, s3 = {si} GA outcome loss of meaning assigned
case-specific voltage values within a problem domain

(case-specific)

VII. DISCUSSION AND CONCLUSION

Hierarchies, somewhat intuitively understood within EIM
systems, have been revisited in this paper. An EIM system
is described from three hierarchical levels which correspond
to the conceptual domains previously identified for the EIM
computing scenario. Hierarchies are viewed as dynamical hi-
erarchies, i.e., rather as organisations rising from the dynamics
of units at lower levels than as firm structural hierarchies. In
order to formally show that an EIM system exhibits dynamical
hierarchies, an information theoretic approach was adopted.
The conditions are based on the state space descriptions at
different levels and entropic relations for such descriptions
named state dependence and distinctness.

The EIM system addressed in this paper is as general as
possible. Namely, some approximations were made and also
some assumptions about physical properties of the system
in order to make the presented reasoning easier to under-
stand. The material used for computations was assumed to
be a nanocomposite which consists of SWCNTs and polymer
molecules as this material has been used within the group and
the NASCENCE project in a number of experiments. Approxi-
mations were made as to the mechanisms of electron transport
in CNTs so that mainly ballistic transport was considered.
Other transport mechanisms were taken to be a consequence
of various parameters which were included as such in the
descriptions at different levels. Another approximation was
that the electron transport was considered for a single CNT,
while nanocomposites at hand contain bundled CNTs where
conduction is of a more complex nature. Moreover, a concrete
computational task was used, i.e., the TSP of the financial
data.

Applied information theoretic formalism led us to con-
clusion that the conditions for the existence of dynamical
hierarchies within EIM systems can exist. For the concrete
example of the CNT-polymer nanocomposite, lower concen-
trations of CNTs are more likely to exhibit such behaviour
since entropic relations between various level descriptions are
more pronounced for such cases as explained within Section
V. Findings regarding the state dependencies hold, however,
for the general case of any material used for computations.

The significance of these results lies in the fact that the
properties of hierachical systems found in nature, primarily
living systems, such as complexity of performed tasks and
adaptability to environmental changes, can be expected to be
possible in EIM systems as well. An open question is how to
make use of the material properties for achieving them.

Further, an insight into the material physics at the lowest
level has provided some guidelines for further research direc-
tions regarding the type of the material used for computations
and the way of its manipulation with respect to the qualitative
kind of signals and the method used for the search for the
solution. Electron transport in CNTs and the possibility of
using its quantum properties for computations is one of them.
Further, so far it has been electrical signals, i.e., the changes
of voltages which were used for manipulation of the material.
Our deeper look into the material physics has shown that other
kinds of material manipulation can also lead to the change of
CNT conductivity and therefore be used for EIM computing
systems. In the first place we think of the magnetic field which
can change the conductivity of CNTs and therefore be used for
the manipulation of a CNT-based material. Such novel ways of
EIM manipulation also open new research directions towards
search methods for the solution of computational problems,
perhaps beyond EAs. Current work conducted within the group
is directed towards attempts to demonstrate this in simulation.

Finally, the findings from this paper can be useful for
modelling computations in EIM systems. So far, computations
within EIM systems have been modelled without much con-
sideration of the material physics although it is the physics
of the material which is the basis of computations, i.e., it
was modelled by artificial neural networks, cellular automata,
resistor networks. Hierarchical approach with the material
physics at its basis may prove a well fitting model which
allows for the representation and simulation of the effects of
different material properties on the results of computations.

In conclusion, we find this article valuable not only for de-
scribing EIM computations from the perspective of dynamical
hierarchies but also for the number of new research directions
it has pointed towards.
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