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Abstract—Bio-Inspired Flapping Wing Micro Air Vehicles
(BIFW MAVs) are highly nonlinear and overactuated system.
Besides, they may suffer from various uncertainties and per-
turbations like wind gust, sensor error etc. Modelling of such
complex nonlinear system by considering the uncertainties is very
difficult for the conventional first principle methods. However,
numerous advantages of BIFW MAVs such as vertical take-off
and landing, hovering, quick turn, and enhanced manoeuvrability
attract researchers to develop their accurate modelling, and to
do so Evolving Intelligent Systems (EISs) is an appropriate
candidate since they do not need any information about the
system dynamics. In this work, an advanced EIS called Generic
Evolving Neuro-Fuzzy Inference System (GENEFIS) is employed
to identify a four-wing BIFW MAV Multi Input Multi Output
nonlinear model on the fly from the data stream, where an effi-
cient online identification of the BIFW MAV model is observed.

I. INTRODUCTION

Micro Aerial Vehicles (MAV) is a miniature of autonomous

Unmanned Aerial Vehicles (UAVs), which is also known

as μUAV. Usually, the MAVs have a maximum dimension

of 6 inches with a gross take-off weight of nearly 200 g.

They are similar to a small bird or insect with a flight

velocity ranging between 10 ms−1 and 20 ms−1. MAVs
are classified into three subdivisions, namely fixed wing,

rotary wing and flapping wing MAVs. Recently, MAVs are

becoming more practical and affordable due to developments

in batteries, microelectronics and sensor technology, and

advancement in micro-electromechanical arrangements and

micro-manufacturing techniques. Among various MAVs, bio-

inspired flapping wing (BIFW) MAVs are becoming popular

among researchers due to their capability to perform at lower

Reynolds numbers compare to their fixed wings, and rotary

wings counterpart. The BIFW MAVs are able to facilitate

critical manoeuvres like vertical take-off and landing, gliding,

roll banking, backward and sideways flying, which are not

possible for similar sized fixed or rotary wing MAVs. Fur-

thermore, BIFW MAVs can generate rapid acceleration during

manoeuvres. The biggest challenges, benefits and feasibility

of utilizing BIFW as MAV are described in [1], [2]. These

huge benefits of BIFW MAVs make worthy to investigate the

flight dynamics of various flapping wing creatures of natural

world. The investigations on their flight dynamics of last two

decades are discussed in [3]–[5]. From their investigation it is

observed that Hummingbirds and dragonflies are able to hover

and dart deftly and quickly, and bumblebees can fly without

any lift coefficient, which are some highly attractive features

for BIFW MAVs. Based on the source of mimicking, BIFW

MAVs can be divided into two classes, such as 1) Ornithopters

(bird-like), and 2) Entemopters (insect-like). Between this two

categories, Entemopters are more appropriate as FW MAV due

to their hovering and manoeuvring capability in tight space.

Besides, some of the insects can create an asymmetric flapping

angle and flapping frequencies or can tilt the stroke planes to

generate controlled forces and moments [6].

The advantages of various flapping wing creatures described

in the previous paragraph inspire researchers to develop appro-

priate BIFW MAV model and their efficient control methods.

Nguyen et al. [7] fabricated an Entemopter with two fixed

and two flapping wings. Their Entemopter has the capability of

producing a vertical thrust to lift-off a weight of approximately

14 grams at 10 Hz frequency. Their Entemopter demonstrated

a successful free flight with an excellent control accuracy. Du

et al. [8] developed a first principle FW MAV model, where

they have evaluated their model by attaching with a Linear

Quadratic Regulator (LQR) mechanism based light controller.

Their FW MAV model is linearised to fit with the LQR flight

controller. Besides, an iterative learning based tuner to tune the

input weighting matrix of their LQR is used to deal with un-

modelled parameters. Inspired by the unique feature of wing

actuation system and flapping profile of dragonflies, a self-

learning wing actuation system around a bearing mechanism

for a Dragonfly-inspired MAV (DI-MAV) is fabricated in

[9]. All the techniques of modelling the FW MAV discussed

in this paragraph based on first principle technique, where

the precise mathematical model is compulsory. However, the
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BIFW MAVs are highly nonlinear and over-actuated system.

Therefore, they express a complex mathematical model, where

the incorporation of various uncertainties is very difficult. An

alternative solution to the problem is the utilization of model-

free knowledge-based or data-driven techniques.

A. Related work

Fuzzy logic and Neural networks are the two popular data-

driven or knowledge-based techniques employed in modelling

various MAVs [10], [11]. A fuzzy neural network system is

developed in [12] to achieve a stable hovering of an insect-

like FW MAV. Stable flight test with high manoeuvrability

is observed from their simulation results. Nonetheless, their

controller is not implemented in hardware yet. To deal with

the uncertainties exists in the nonlinear complex FW MAV

model a radial basis function neural network (RBFNN) is

utilized in [13]. The stability of their closed loop control

system is verified through Lyapunov stability theorem. By

selecting the appropriate control variables, a good trajectory

tracking performance is observed from their simulation results.

However, their control technique is not tested experimentally

yet. A fuzzy controller namely hybrid adaptive fuzzy controller

(HAFC) is developed in [14] to control a dragonfly-like FW

MAV. Their HAFC can tune its parameters by using the hybrid

adaptive law to minimize the tracking error. The simulation

results of the HAFC are compared with a direct adaptive

(DA) method based fuzzy controller (DAFC). Better tracking

performance is observed from the HAFC than the DAFC.

However, the controller is not tested experimentally yet. All

the fuzzy and neural network techniques discussed until now

are based on batch learning process, therefore static in nature.

Some of them are adaptive due to their capability of tuning

parameters. However, they cannot evolve their structure by

adding, or deleting rules or neurons. Therefore, they cannot

cope with the sudden changes in FW MAV’s flight test. A

solution to the problem is the utilization of the evolving

intelligent system in fuzzy and neural network techniques.

Recently researchers are trying to employ evolving fuzzy and

neural networks in FW MAVs. An evolutionary algorithm

called ModNet encoding is implemented in a recurrent neural

network in [15] to evolve both the structure and weights of

the neural network. Their evolutionary neuro controller can

adjust the dihedral, the twist and the sweep of the wings

at every moment to balance the FW MAV body. A Spiking

Neural Network (SNN) based controller is developed for an

FW MAV called RoboBee in [16], where they have utilized

a reward-modulated Hebbian plasticity mechanism to adopt a

leaky integrate-and-fire spiking neural network in flight.

To identify a highly nonlinear overactuated system like FW

MAV, EIS is an appropriate candidate since they learn from

scratch with no base knowledge and change their structure

by adding or deleting rules to cope with changing system

dynamics [17]. EIS fully work in a single-pass learning

scenario which is scalable for online real-time requirement

under limited computational resources such as MAVs platform.

The EIS research area grows rapidly after seminal work by

Angelov, namely eTS [18], eTS+ [19], Simpl eTS [20], AnYa

[21], [22], [23]. Inspired by various evolving fuzzy and neuro-

fuzzy approaches, an advanced EIS based technique called

Generic Evolving Neuro-Fuzzy Inference System (GENEFIS)

proposed in [24], [25] is employed in our work for online

identification of a four wings BIFW MAV. GENEFIS consists

of some unique features such as: 1) the utilization of the Datum

Significance plus (DS+) method as a rule growing mechanism

minimizes the inconsistency problem of Datum Significance

(DS) method; 2) integration of the Generalized Adaptive

Resonance Theory+ (GART+) with an aim to upgrade the

premise parameters with respect to input data distributions;

3) amalgamation of the fuzzily weighted generalized recursive

least square (FWGRLS) method to tune the output parameters;

4) application of a fast kernel-based metric approach to capture

fuzzy set and rule level redundancy; 5) casting of a new online

feature selection technique, which has the ability to handle

the curse of dimensionality; and 6) utilization of multivariate

Gaussian function. These special characteristics of GENEFIS

make it an appropriate candidate to identify a highly non-linear

overactuated four-winged BIFW MAV with uncertainties.

II. BIFW MAV PLATFORM

The FW MAV used in our work is a bio-inspired four

wings Entemopter. The determination process of the BIFW

MAV system dynamics is explained in [26], where they have

developed an MAV flight simulator since flight simulators are

often utilized due to the high cost and time consumption to

develop the set-up for experimental flight test. From this flight

simulator various manoeuvrability such as take-off, rolling,

pitching, and yawing of an FW MAV is analysed. The flapping

angle (φ) in the flapping profile of the BIFWMAV is presented

as:

φ(t) = φacos(πft) (1)

where φa is the flapping amplitude in radian, f is the flapping
frequency in Hz, t is the time is second. The angle of attack
(αaoa) can be expressed as:

αaoa = αmn − αpsin(ωdt+Ψ) (2)

where αmn is mean angle of attack in radian, αp is amplitude

of pitching oscillation in radian, dt is time step in seconds, and
Ψ is the phase difference between the pitching and plunging

motion. All the four wings of the FW MAV follows the same

flapping profile.

In the simulator, each wing is controlled by an actuator.

Body coordination of a four wings FW MAV is displayed

in Fig. 1. Each actuator is controlled by eight (8) flapping

parameters. A parametric analysis is accomplished to find the

dominant flapping parameters. After a complete parametric

analysis, it is found that the flapping amplitude is the dominant

one among the eight parameters to control the FW MAV.

By tuning the flapping amplitude, the take-off, rolling, and

pitching motion is observed. Only for the yawing motion

flapping phase needs to be tuned. Tuning of these parameters

2841



Fig. 1: Body coordination of an FW MAV. Numbers indicate

the actuator number

TABLE I: Effects of flapping parameters in different ma-

noeuvring of FW MAV (φ0: Flapping amplitude(degree); Ψ:
Phase(degree))

Actuators with corresponding Flapping parameter Action
Actuator: 1, 2, 3, 4; φ0: 90 Take-off

Actuator: 1, 2; φ0: 90 and Actuator: 3, 4; φ0: 60 Roll-right

Actuator: 1, 2; φ0: 60 and Actuator: 3, 4; φ0: 90 Roll-left

Actuator: 1, 3; φ0: 90 and Actuator: 2, 4; φ0: 60 Pitch-up

Actuator: 1, 3; φ0: 60 and Actuator: 2, 4; φ0: 90 Pitch-down

Actuator: 1, 4; Ψ: 90 and Actuator: 2, 3; Ψ: 60 Yaw-right

Actuator: 1, 4; Ψ: 60 and Actuator: 2, 3; Ψ: 90 Yaw-left

and their effect on various manoeuvring is summarized in in

TABLE I .

From the FW MAV flight simulator the input output data

is collected to develop the data-driven model, where the four

input datasets are the four flapping amplitudes applied to four

actuators. The rotational velocities (ωbx, ωby , and ωbz) and

translational velocities (vbx,vby , and vbz) of the FWMAV body

in three dimensional plane are six output datasets. From four

inputs and six outputs, a Multi-Input Multi-output (MIMO)

nonlinear FW MAV model is identified online using the

GENEFIS. The online learning policy of the GENEFIS is

descried in the next section.

III. ONLINE LEARNING MECHANISM OF GENEFIS

An advanced evolving fuzzy system called Generic Evolv-

ing Neuro-Fuzzy Inference System (GENEFIS) [24] is em-

ployed in this work to identify the BIFW MAV. GENEFIS

is a TS fuzzy system that consists of multidimensional mem-

bership functions in the input space with ellipsoid contours

in arbitrary positions. All the estimated one dimensional

membership functions represent a portion in the input space

partition by assigning the Gaussian functions own center and

width. Thereby, generating 1st order first-order polynomials

as consequent parts of the fuzzy rules. In GENEFIS, a typical

fuzzy rule can be expressed as follows:

IF Z is Ri, then ηi = b0i + b1iζ1 + b2iζ2 + ...+ bkiζk (3)

where Ri represents the degree of membership of the i − th
rule constructed from a concatenation of fuzzy sets, k denotes
the dimension of input feature, Z is an input vector of interest,

bi is the consequent parameter, ζk is the k− th input feature.

The predicted output of the model can be expressed as:

η̂ =

j∑
i=1

Ψ(ζ)ηi(ζ) =

j∑
i=1

Riηi

j∑
i=1

Ri

=

∑j
i=1 exp(−(Z −Θi)Σ

−1
i (Z −Θi)

T )ηi∑j
i=1 exp(−(Z −Θi)Σ

−1
i (Z −Θi)T )

(4)

where Θi is the centroid of the i− th fuzzy rule Θi ∈ �1×j ,

Σi is a non-diagonal covariance matrix Σi ∈ �k×k, and k is

the number of fuzzy rules.

A. Rule growing and pruning mechanism

The DS method developed in [27] is utilized in GENEFIS

as a rule growing mechanism. The DS method is geared into

the multivariate Gaussian membership function and first order

consequent of GENEFIS. In this work DS method can be

expressed as follows:

Dsgn = |err|
det(Σj+1)

k

∑j+1
i=1 det(Σi)k

(5)

where Dsgn denotes the the significance of the n− th datum,
system error |err| = |trn − ηn|, trn is the target and ηn
is perdicted output from GENEFIS at n − th episode. To

reduce sensitivity to underfitting or overfitting effect, err can
be replaced by the global mean and standard deviation of err
as outlined in the original GENEFIS paper [24]. The condition

in expanding the rule base utilizing (5) is Dsg ≥ δ, where δ is
a predefined threshold. On the other hand, the Extended Rule

significance (ERS) method is employed in GENEFIS to prune

rules. A numerous modifications are made in ERS theory to fit

them with GENEFIS. The ERS theory employed in GENEFIS

can be expressed as:

E iinf =
j+1∑
i=1

ηi
det(Σi)

k

∑j
i=1 det(Σi)k

(6)

where E iinf ≤ ke, ke orchestrating a plausible tradeoff between
compactness and simplicity of the rule base. In this work, the

allocated value for δ is δ = [0.0001, 1], and ke = 10% of δ.

B. Generalized Adaptive Resonance Theory+ (GART+)

Generalized Adaptive Resonance Theory (GART) [28] is

used in GENEFIS as another technique of granulating input

features and adapting premise parameters. It is observed that

GART and its successor improved GART (IGART) suffers

from a category growing problem. In GRAT the compatibility

measure is done utilizing the maximal membership degree

of a new datum to all available rules. In first round if the

selected category expresses a higher membership degree than

a predefined threshold σa, then the match tracking mechanism
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is committed. However, the first round winning category fails

to beat the match tracking threshold σb, which deactivates

that category and increases the value of threshold σa to find

a better candidate. A larger width is required in the next

selected category to cope with the increased value of σa,
otherwise it fabricates a new category. Nonetheless, a category

with a larger radii may contain more than one distinguishable

data clouds and thereby marginalizing the other clusters in

every training episode. In incremental learning environment

this effect is known as cluster delamination. To relieve from
the cluster delamination effect, in GENEFIS the size of fuzzy
rule are constrained, which allows a limited grow or shrink of

a category.

1) Category Choice: In GART+ [29], Bayess decision

theory is utilized to determine the most compatible or winning

category. The Bayesian concept not only consider the matching

factor of a category to an injected datum, but also consider

the population of the category through the category prior

probability. A posterior probability of the i− th category can

be expressed as:

P̂r(Ψi|Z) = p̂r(Z|Ψi)P̂r(Ψi)∑j
i=1 p̂r(Z|Ψi)P̂r(Ψi)

(7)

where p̂r(Ψi|Z) and P̂r(Ψi) represents the likelihood and the
prior probability correspondingly, which ca also be expressed

as:

P̂r(Z|Ψi) =
1

(2πVHi)1/2
exp(−(Z−Θi)Σ

−1
i (Z−Θi)

T ) (8)

P̂r(Ψi) =
Ni∑j
i=1Ni

(9)

whereNi denotes the number of times that i−th category wins
the competition. VHi determines the estimated hyper-volume

of feature space covered by the i− th category, which can be
expressed as:

VHi = det(Σi) (10)

In short, when a category satisfy the condition win =
arg max(P̂r(Ψi|Z)), then the category is a candidate to un-

dergo a resonance.

2) Vigilance Test: There are two goals to perform the vig-

ilance test. The first goal concerns about the capability of the

winning category to accommodate a new datum. The second

goal is to reduce the size of the category, where a rule is not

allowed to have a volume higher than the threshold VHmax,

that is calculated from VHmax ≡ σb
∑j

i=1 VHi. However, the

conditions for attaining these two goals is presented below:

Case I: φwin ≥ σa, VHwin ≤ VHmax (11)

where φwin is the membership degree of the winning rule

to seize the latest datum. More importantly, the condition

in (11) is indicating the capability of the selected category

to accommodate the newest datum and emphasizing on the

limited size of a category. σa is usually set close to 1.

Contrarily, the value of σb is set as [0.0001, 0.1]. Then the

adaptation mechanism of focal point Θi, and the dispersion

matrix Σi is generated by the equations as follows:

Θnew
win =

Nold
win

Nold
win + 1

Θold
win +

(Z −Θold
win)

Nold
win + 1

(12)

Σwin(new)
−1 =

Σwin(old)
−1

1− α
+

α

1− α
(Σwin(old)

−1(Z −Θnew
win ))(Σwin(old)

−1(Z −Θnew
win ))

T

1 + α(Z −Θold
win)Σwin(old)−1(Z −Θold

win)
T

(13)

Nnew
win = Nold

win + 1 (14)

where α = 1/(Nold
win+1), N

old
win denotes the number of training

samples populating the winning cluster. Besides, (13) is able

to prompt the training process since a direct adjustment of

the dispersion matrix is occurring without the necessity to re-

inverse the dispersion matrix. With respect to the conditions in

(11), some pertinent likelihoods may emerge in the rehearsal

process and they are outlined as follows:
Case II: φwin < σa, VHwin > VHmax

In this circumstance, the injected training sample cannot be

touched by any rules of GENEFIS. The statistical contribution

of the datum needs to be calculated by using (5). When

both conditions are satisfied, a new rule is generated and it

parameters are assigned as follows:

Θj+1 = Z (15)

diag

(
Σj+1

)
=
max((Θi −Θi−1), (Θi −Θi+1))√

1
In(ε)

(16)

where the value of ε is 0.5. Equation (16) ensures a a sufficient
coverage of the newly added rule, which is proved in [30]. It

helps GENEFIS to explore untouched regions in the feature

space fitting a superfluous cluster at whatever point a relatively

unexploited region or knowledge is fed, which is a mandatory

element to confronting possible non-stationary and evolving

qualities of the system being modelled. Note that proper

initialization of inverse covariance matrix plays crucial role

to the success of multivariate Gaussian fuzzy rule. Although

it meets the e-completeness criterion, Equation (16) requires

re-inversion phase which sometime leads to instability when

the covariance matrix is not full-rank. As an alternative, the

inverse covariance matrix can be initialized as:

Σ−1 = kfsI (17)

where kfs is a user-defined parameter.
Case III: φwin ≥ σa, VHwin > VHmax

This situation is indicating the capability of existing rule

base to cover the current data easily. However, the width of the

chosen cluster is oversized. This datum creates a redundancy

when added to the rule base. To mitigate the adverse impact,

one of the solutions is to replace the selected cluster merely

by this datum. Then the fuzzy region is eased as follows:

Θwin = Z (18)

Σwin(new)
−1 =

1

kwin
Σwin(old)

−1 (19)
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where kwin is a constant with a value of 1.1, and the width of

the cluster is reduced until a desirable fuzzy region is obtained

while satisfying VHwin ≤ VHmax.

Case IV: φwin < σa, VHwin ≤ VHmax

The same action is taken as in Case I, i.e. the adjustment

process is executed to stimulate the category to move towards

this training example.

C. Mechanism of Merging Rules

Redundancy of fuzzy rules is a major obstacle in the

evolving neuro-fuzzy system. It occurs when new data samples

fill up the gap between two different clusters, and they become

overlapping, sometimes even indistinguishable. In such condi-

tion, a similarity measure is needed to quantify the similarity

level of those clusters. The clusters are set to move together

when they are deemed identical.

The kernel-based metric is a well-known feasible method to

deal with the redundancy of fuzzy rules on the fly. In GENE-

FIS the kernel based metric method is not only refurbished

to deal with redundancy of the fuzzy sets, but also to delve

cues of fuzzy clusters redundancy. For example, the similarity

or level of interaction between two Gaussian membership

functions A and B can be obtained by comparing centroids

and widths of two fuzzy sets in one joint formula [31].

Skerr = e−|ΘA−ΘB |−|ρA−ρB | (20)

Equation (20) has the following interesting property:

Skerr(A,B) = 1⇔ |ΘA −ΘB |+ |ρA − ρB | = 0
⇔ ΘA = ΘB ∧ ρA = ρB (21)

Skerr(A,B) < ε⇔ |ΘA −ΘB | > g ∨ |ρA − ρB | > g (22)

where g is a positive constant. The first condition is the case
of perfect match, when the similarity measure between two

fuzzy sets has a maximal degree, which is one. In the second

condition it is observed that an embedded set is not coupled

with a set covering it having a significantly larger width. It

may result in an inaccurate exhibition of the data in one local

region. Therefore, two clusters are merged together, only when

the similarity of them is higher than the threshold Skerr ≥
ε. In this work the threshold value of ε is set to 0.8. The

merging between two similar fuzzy sets is occurred by using

the following equation:

Θnew = (max(U) +min(U))/2 (23)

ρnew = (max(U)−min(U))/2 (24)

where U = {ΘA±ρA, ThetaB±ρB}. Eigenvalue, eigenvector
of the non-diagonal covariance matrix, or the distance from

the centre to cutting point of ellipsoid is used to extract the

radii of multivariate Gaussian function. The essence of the

first method benefits from the eigenvalue and eigenvector of

the non-diagonal covariance matrix and a specific α-cut value.
Here the chosen value of α-cut is e−1/2 ≈ 0.6. In this work
the fuzzy set is built as follows:

νi = Θi (25)

ρi = max
k=1,...u

(
r√
λk

cos(ϕ(ek, bi))

)
(26)

where λk denotes the eigenvalue for kth dimension, ek repre-
sents eigenvector with respect to kth dimension, νi labels the
modal value of the fuzzy sets which is usually centre, ρi stands
for the spread of the set., bi denotes the vector expressing ith
axis bi = (0, 0, ..., 1, ..., 0), where the value of 1 indicates the
ith position. ϕ shows the angle spanned between bi and ek.

ϕ(ek, bi) = arccos

(∣∣∣∣
eTj bi

|ej ||bi|
∣∣∣∣
)

(27)

The first method incurs an accurate approximation of the fuzzy

set of multivariate Gaussian kernel. However, it suffers from

huge computational efforts due to quantifying eigenvalue and

eigenvector in every training episode. Thereby, the importance

of another method is that the radii of the fuzzy sets can be

bestowed by the distance from the center to the cutting point

or the axis-parallel intersection with the ellipsoid which is

expressed as:

ρi =
r√
Σii

(28)

where Σii is the diagonal elements of the inverse covariance

matrix. Though the second method is less accurate than

the first method, it is computationally faster than the first

one.The fuzzy set merging scenario is not a part of the main

training process. It is executed after the training process when

showing the fuzzy rules to the operator to improve fuzzy rule

transparency. To reduce the model’s complexity, the fuzzy rule

merging strategy is carried out. The similarity of each fuzzy

set is encapsulated and blended to a single value by using

minimum operator as follows:

Srule(A,B) = min
h=1,...k

(Skerr(Ah, Bh)) (29)

If Srule > ε1, where ε1 is a tolerable similarity degree whose
default value is 0.8, the two rules A and B can be merged.

The more superfluous rule can be evicted and consequently

alleviate rule-base burden. By applying a weighted average of

two rules, following rule merging formulas are achieved:

Θnew
dm =

Θold
dmN

old
dm +Θi+1Ndm+1

Nold
dm +Nold

dm+1

(30)

Σdm(new)
−1 =

Σdm(old)
−1Nold

dm +Σdm+1(old)
−1Nold

dm+1

Nold
dm +Nold

dm+1

(31)

Nnew
dm = Nold

dm +Nold
dm+1 (32)

where the rule dm is a more dominant rule surrounded by

more data points than the rule dm + 1, i.e. Ndm > Ndm+1.

In a TS fuzzy model dissimilar consequent parameters of two

fuzzy rules may observed despite of conceiving similarity in

the premise part. It may create an inconsistency weakening

interpretability of explanatory module. As a solution the

consequent parameters of the two fuzzy rules can be merged.
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This merging is done according to a combination rule, which

has some synergies to the notion of participatory learning [32]:

ωnew
dm = ωold

dm + γg(ωold
dm − ωold

dm+1) (33)

γ =
Nold

dm

Nold
dm +Nold

dm+1

(34)

where

g =

⎧⎨
⎩
1 if Srule ≤ Sout

0 if Srule > Sout

(35)

labels a degree of consistency, Sout represents the similarity

of the output parameters. When the consequent parameters

are more similar than the antecedents, g becomes 1, and

consequent merging are occurred. A feasible way to predict

the similarity between two local sub-models is by means of

the angle formed between them as expressed below:

ϕ = arccos

(∣∣∣∣
ωT
i ωi+1

|ωi||ωi+1|
∣∣∣∣
)

(36)

where the range of ϕ is [0, π], wi = [b1i, b2i, ..., bk,i], and
wi+1 = [b1,i+1, b2,i+1, ..., bk,i+1]. Now the similarity between

two hyperplanes is defined in [31] as follows:

Sout(ηi, ηi+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− 2

π
ϕ where ϕ ∈

[
0,
π

2

]

2

π

(
ϕ− π

2

)
where ϕ ∈

[
π

2
, π

] (37)

The dynamic adaptation of the premise parameters of fuzzy

rules are considered as the major reason of redundancy prob-

lem. There is no necessity to execute the similarity check in

every training observation as it retards the training process.

Thereby, in GENEFIS the rule merging procedure is carried

out only when the resonance is carried out to minimize the

complexity.

D. Mechanism of Online Feature Selection

A mechanism which enables a device to select the most

informative input attributes on the fly is known as online

feature selection mechanism, which is missing in majority

of the evolving neuro-fuzzy systems since they utilize a

standalone mechanism. To achieve this online mechanism in

GENEFIS, an input selection algorithm called Input Selection

(IS) method is utilized which has the capability to pinpoint

the most important input features in online during the training

process. The IS is embedded in GENEFIS’s learning machine

to switch off input features those are inactive in their lifespan.

How a input variable in the nth training episode is contributing
is determined by the significance of the input and output

parameters of the fuzzy system as follows:

ISh = τhIh (38)

where τ denotes the sensitivity of the output parameters or

local subsystems of hth input feature, whereas Ih stands for

the sensitivity of the input parameters of the hth attribute. The

final expression of τh, Ih, and eventually ISh is epitomized

in (39), (40), and (41) respectively as follows:

τh =

∑j
i=1 Ωhi∑k

h=1

∑j
i=1 Ωhi

(39)

Ih =
det(Σh)

j

∑k
h=1 det(Σh)j

(40)

With the incorporation of both the input and output parts, the

IS method can finally be expressed as follows:

ISh =
det(Σh)

j

∑k
h=1 det(Σh)j

∗
∑j

i=1 Ωhi∑k
h=1

∑j
i=1 Ωhi

(41)

where Ωhi = [bh1, bh2, ..., bhj ] is a composition of the hth
input parameters in every rule. If Ih ≤ kin, where kin is a

threshold regulating deleting frequency of the inconsequential

input features, and kin = 0.0001, the observed input attributes
are superfluous during the training process. They can be

dispossessed by sustaining the accuracy the model, on the

other hand they may be maintained for next training episodes.

Because GENEFIS starts its learning process from scratch, the

online feature selection scenario is only after observing several

training samples to prevent the input attributes to be deleted

too early during the training phase.

E. Mechanism of Adapting Consequent Parameters

For adapting the rule consequent the Fuzzily Weighted

Generalised Recursive Least Square (FWGRLS) method [29]

is used in GENEFIS, which can be expressed as follows:

Kl(n) = Pi(n− 1)ζen( 1

∧i(n)
+ ζenPi(n− 1)ζen)−1 (42)

Pi(n) = Pi(n− 1)−Kl(n)ζenPi(n− 1) (43)

ηi(n) = ηi(n− 1)− αPi(n)
Ψ(ηi(n− 1))
+Kl(n)(tr(n)− ζenηi(n)) (44)

where Kl(n) is the Kalman gain, and Pi(n) is the covariance
matrix, ζen = [ζn1 , ζ

n
2 , ..., ζ

n
k ]

T is the extended input vector,

ηi(n) is the local subsystem of the ith rule, α is the regular-

ization parameter, which is set close to zero α ≈ 10−7. In
GENEFIS, the quadratic weight decay function is utilized and

can be expressed as follows:

Ψ(ηi(n− 1)) = 1

2
(ηi(n− 1))2 (45)

Its gradient can be obtained as follows:


Ψ(ηi(n− 1)) = ηi(n− 1) (46)

The function aims to trigger the weight being adjusted to

reduce by a factor proportional to its current value. As a

consequence, a small fluctuation is observed in the magnitude

of the output parameters which intensifies the generalization

capability. In the Bayesian viewpoint, a decay term in the cost

function features a prior distribution of the local sub-model.

In the case of quadratic decay function, the prior distribution

of output parameters is Gaussian which renders the output
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Fig. 2: Input: Flapping amplitude

TABLE II: RMSE in BIFW MAV Online Identification

BIFW MAV properties RMSE
(training)

RMSE (valida-
tion)

vbx 0.00193 0.00107

vby 0.00191 0.00327

vbz 0.00174 0.00038

ωby 0.00268 0.00738

ωbz 0.00307 0.00060

parameters to be cautiously distributed [33]. This method can

be seen as a derivation of the fuzzily weighted generalized

recursive least square (FWGRLS) method [18].

IV. ONLINE IDENTIFICATION RESULTS OF BIFW MAV

SYSTEM

The data used for the MIMO nonlinear BIFW MAV online

identification is based on a 100 sec simulation in Simulink with

a time step of 0.1 sec. In a physical BIFW MAV model, they

can change their flapping amplitude within a range of −90◦
and 90◦. Therefore, a sinusoidal flapping amplitude varying

between −90◦ and 90◦ is applied to all four actuators of the
four wings of BIFW MAV as shown in Fig. 2, which helps

the GENEFIS in the online identification of BIFW MAV since

the input datasets are obtained within the maximum possible

range. Besides, they are smooth in the way of changing, which

can easily be identified by GENEFIS. In GENEFIS, only one

multivariate Gaussian membership function is utilized. From

Fig. 3 and Fig. 4 it is clearly observed that all the translation

velocities (vbx,vby , and vbz), and the rotational velocities (ωby ,

and ωbz) are identified precisely. In our identification 60%

samples are used for training and remaining 40% samples are

for validation. The root mean square error (RMSE) is calcu-

lated in both training and validation period and summarized

in TABLE II. From all these results it is observed that the

highly nonlinear and overactuated BIFW MAV is identified

effectively on the fly using GENEFIS.

V. CONCLUSION

In this work, a data-driven model free identification of a

BIFW MAV model on the fly is witnessed through GENEFIS.

The amalgamation of Datum Significance plus (DS+) method
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Fig. 3: Identification of FW MAVs translational velocity

(vbx, vby, vbz)

as a rule growing mechanism, integration of the Generalized

Adaptive Resonance Theory+ (GART+), integration of the

FWGRLS method to tune the output parameters, and applica-

tion of a new online feature selection technique in GENEFIS

make it an appropriate candidate to model a highly nonlinear

MIMO BIFW MAV in online. The accurate identification

of the translational and rotational body motion of BIFW

MAV with a maximum RMSE of only 0.007 evaluates its

performance. In future, GENEFIS based flexible controller

will be developed for FW MAVS.
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