arXiv:1810.01665v1 [cs.CV] 3 Oct 2018

A Robot Localization Framework Using CNNs for Object Detection
and Pose Estimation

Lukas Hoyer
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany
lukas.hoyer @st.ovgu.de

Abstract—External localization is an essential part for the
indoor operation of small or cost-efficient robots, as they are
used, for example, in swarm robotics. We introduce a two-stage
localization and instance identification framework for arbitrary
robots based on convolutional neural networks. Object detection
is performed on an external camera image of the operation zone
providing robot bounding boxes for an identification and orien-
tation estimation convolutional neural network. Additionally, we
propose a process to generate the necessary training data. The
framework was evaluated with 3 different robot types and various
identification patterns. We have analyzed the main framework
hyperparameters providing recommendations for the framework
operation settings. We achieved up to 98% mAP@IOU(.5 and
only 1.6° orientation error, running with a frame rate of 50 Hz
on a GPU.

I. INTRODUCTION

Indoor robotics represents a field with special properties
and challenges regarding locomotion. In contrast to outdoor
robotics, where the unknown structure and dynamics of the
environment are the largest problems for moving a robot from
point A to point B, indoor robotics mainly needs to overcome
the lack of reliable position estimation. This is caused by the
lack of GPS reception as well as the usually smaller error
margins enforced by the smaller size of the working area.
However, position alone is not enough to establish reliable
locomotion. Robots also need an estimate of their orientation
to enable predictable movements. The composition of these
two parameters is called pose and is the basis of all motion
planning.

This paper introduces a deep neural network based pose
estimation system for swarms of robots, enabling the detection
of position, orientation as well as type and instance identifica-
tion of each robot. It utilizes cameras mounted in the operation
environment of the robots. External localization is particularly
suitable for our scenario as swarm robots are usually too small
or too cost-efficiently built to provide sophisticated sensors for
self-localization. Even though multiple camera-based indoor
pose estimation systems already exist (see Section [M), the
proposed pose estimation framework provides some special
characteristics such as easy adaptivity to different types of
robots, identification properties and environments as well as
fast processing speed to provide update rates and latencies
similar to fast GPS devices. The versatility towards identifi-
cation markers enables the system to handle a wide range of

Christoph Steup
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany
steup@ovgu.de

Sanaz Mostaghim
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany
sanaz.mostaghim@ovgu.de

properties to separate robots of the same type such as: colors,
numbers, letters and LED patterns. Additionally, we provide a
process description to straightforwardly generate the necessary
training data. It includes automation and augmentation steps,
which are evaluated regarding their performance for a test
system of three different robot types with three different
marker types in an actual robotics lab. Especially, the ability
to easily change the used type of marker attached to the robot
is beneficial to real-world applications, as some marker types
may not be usable in certain scenarios, because of occlusion,
illumination or size of the robot.

The rest of the paper is structured as follows. Section
describes relevant existing approaches in the field of external
camera-based localization and pose estimation. Section [II|
presents the details of the proposed framework and the training
and adaptation process. The paper ends with an evaluation
of different configurations of the framework and of different
process steps to acquire training data in Section [[V]as well as
a conclusion including future work in Section

II. RELATED WORK

Currently, explicit systems for robot localization exist,
which provide high update rates and high precision, such as
WhyCon Krajnik et al. [9] and Vicon. However, those do not
provide flexibility in choosing the used identification marker
for the robots. Depending on the type of robot used, it may
be challenging or even impossible to attach the necessary
markers. Therefore, a flexible solution, handling arbitrary
identification properties, is beneficial for robotic labs.

Convolutional neural networks (CNN) may provide a viable
alternative if the pose of the robot can be detected. To this end,
pose estimation and its counterpart, viewport estimation, were
studied in the deep neural network community. The research
showed two different concepts, the separate and the simulta-
neous approach, which differ in the integration of the pose es-
timation step. Glasner et al. [S]], Tulsiani and Malik [24]], Tul-
siani, Carreira and Malik [23]], Redondo-Cabrera and Lépez-
Sastre [17] and Poirson et al. [16] provide examples of
the separated approach, where the pose estimation step is
executed separately after the object detection and classification
is done. The approaches of Pepik et al. [15], Xiang, Mot-
taghi and Savarese [25], Massa, Marlet and Aubry [12] and
Xiang et al. [26] are examples of the simultaneous approach,

Second Stage

P —

Y

ID

First Stage

Bounding Box ||l

Identification CNN

Object Detection

[—

Image {Scale

Robot Type

Orientation |||

Orientation CNN

Fig. 1: Architecture of the robot localization framework consisting of two stages. The first stage samples down the camera
frame and looks for robots. The detection results are processed by the second stage. For each robot, the frame is cropped
according to the bounding box and fed into a robot type specific identification and an orientation estimation CNN.

which embeds the pose estimation within the object detection
and classification network. Ofioro-Rubio et al. [13] created
a set of three approaches that represent similar systems fol-
lowing the separated, the simultaneous and a mixed strategy,
working out that a model with separated detection and orien-
tation estimation achieves a higher overall performance. Ad-
ditionally, some special solutions were created. Su et al. [20]]
proposed a system that only uses synthetic data to train the
network and provided comparable results to systems trained on
real-world data. SSD-6D of Kehl et al. [8] is a special system
that is able to integrate depth information in addition to pure
RGB data.

Most of the listed approaches are based on previous work
about object detection using CNNs. While [8], [[16] and [22]
utilize a single shot architecture as outlined in [11], the
approaches described in [12], [13] and [20] are built upon
R-CNN [4] and its successors.

Our approach uses a separated deep neural network ap-
proach, but with the aim of minimizing the effort for training
data generation and to reduce latency to build a system
customized for robotics. These goals are not the focus of the
present approaches. All existing concepts use generic bench-
mark datasets such as Pascal VOC [2] and MS COCO [10] to
test the algorithms. Therefore, they did not care to minimize
the effort for training data generation. Our approach, however,
particularly considers the whole process from training data
acquisition to training the two-stage network for detection and
pose estimation.

III. PROPOSED LOCALIZATION FRAMEWORK
A. Architecture

The localization framework is based on fixed RGB cameras
looking at the robot operation zone. On the recorded camera
frames, we perform a two-stage image processing, consisting
of an object detection localizing the robots within the scene
(first stage) and an instance classification as well as an
orientation estimation (second stage) as shown in figure [T}

The first stage performs a low-resolution robot detection.
It samples down the camera image and uses a CNN object
detection to estimate the type (e.g. quadcopter or wheeled
robot) and the bounding box of a robot. The results of the
first stage are used to feed the second stage. The original, high-
resolution camera image is cropped according to the estimated

bounding boxes. Depending on the predicted robot type, a
corresponding second stage neural network is selected. For
each robot type, there are a single instance identification and
orientation estimation CNN. In the end, the output of both
stages is merged resulting in a bounding box, the type, the
instance identification and the orientation of each robot.

The orientation estimation neural network supports, both,
continuous and discrete pose estimation. To provide a con-
tinuous orientation, a linear output activation function and
the mean squared error of the smallest angle difference are
used. For the discrete approach, the orientation angles are
separated into 360 bins resulting in a classification problem.
The performance of both approaches is compared in Section
v

As the cameras are fixed, their position relative to the
ground plane can be determined. For robots moving on the
floor, this information is sufficient to calculate the 3D position
and the projected 2D orientation. For flying robots such as
quadcopter, their height can be provided by an on-board
sensor. In the experiments, only one camera is used, but
multiple cameras can be supported by merging the output of
the framework after localization.

We have decided to use the two-stage approach, as it
provides several advantages over an integrated one-stage ap-
proach. Normally, robots represent only a small part of the
camera frame. Therefore, most of the pixels do not contain
relevant information. As comparably low-resolution features
are sufficient to recognize the robot itself, the first stage robot
detection provides a fast way to find relevant image sections.
This information can be utilized to provide high-resolution
image crops for identification and orientation estimation of
a detected robot, which depend on smaller features than the
detection of the whole robot. The speed increase due to the
first stage screening justifies the recalculation of convolutional
layers with a higher resolution in the second stage. Moreover,
this approach allows that the neural networks of first and
second stage can be developed and optimized independently.
Furthermore, due to the separation of identification and ori-
entation estimation for each robot type, the CNNs are more
specialized and can be chosen with less capacity as they handle
less features and classes.

To provide a fast inference speed, we use state-of-the-
art lightweight CNNs. The first stage is based on SSD [11]]

with MobileNet v2 [19] as feature extractor. This decision is
based on the comparison of different object detection meta-
architectures and their feature extractors in [7]]. The chosen ar-
chitecture/model is the fastest configuration in the Pareto front.
For the second stage, a MobileNet is used for the same reasons.
Moreover, the width of MobileNet can be easily adjusted by
one parameter, allowing speed/performance adjustments [6].
We have used the TensorFlow Object Detection API for the
implementation of the first stage and Keras to realize the
second stage as they provide implementations of the used
network architectures and pretrained network weights.

B. Training Data Acquisition Process

A crucial contribution to the performance of a neural
network is the amount and quality of its training data [21].
Usually, labeling enough images to train a CNN requires a
lot of effort, which is not reasonable for setting up a robot
localization framework. To avoid this problem, we synthe-
size training data by superimposing image crops, containing
robots, on background images. The necessary robot crops are
extracted from images of robots in the working area, which are
recorded with the localization camera during a setup phase.

1) Compositor: The compositor is an algorithm that super-
imposes robot crops on background images with random scale,
rotation and position. It is similar to the approach described
in [3], but with context-insensitive, random placement. The
compositor can generate a large amount of data with multiple
robots in one frame and arbitrary robot position, orientation,
size and occlusion. Its main advantage is the known ground
truth information of the synthesized data, which saves a lot of
time for labeling the images.

There are other methods to synthesize data such as rendering
training images, discussed in [14] or [18]. But they have the
disadvantage that it is quite difficult to find parameters to
match the lighting in the robot working zone and the camera
properties. Moreover, they require 3D models of all robots and
material models for photo-realistic rendering. Therefore, it is
easier to use real images of robots and to crop them.

Even though the amount of generated data is theoretically
unlimited, the diversity of the synthesized data is restricted
by the number of backgrounds and robot crops. Moreover, the
robot crop does not necessarily match with the background
like in a real image. This can affect lighting, blur/blending and
crop/compositing artifacts as well as contextual information,
which could influence the performance of the CNNs [3]. For
example, an occluded robot could be detected by its shadow
that isn’t generated by the compositor. However, these are only
minor problems that are worthwhile to minimize the effort of
labeling real images.

In order to minimize the bias induced by the class imbalance
of the training data [1]], the compositor balances all important
factors for the experiments such as background types, robot
types and identification patterns within one robot type. For
each generated frame, a random background is chosen on
which one to four randomly selected robot crops are compos-
ited with random scale, orientation and translation. The bounds

Fig. 2: Examples of each robot type with different identifi-
cation patterns. From left to right: quadcopter (marker B and
LED pattern blue-green), Sphero (LED black and LED bright
red) and YouBot (maker A and marker C). Notice that the
blue LED at the Spheros marks their rear and the marker is
attached at different position at the YouBot.

of the robot size depend on possible distances of the robot to
the camera. For each robot in a frame its type, identification,
bounding box and orientation are stored as ground truth for
the training.

2) Robot Crops: Robot crops are the essential factor for
the quality and the necessary setup effort generating the final
composited data. To extract them, a manual or an automatic
approach may be used.

For the manual robot crop, an image sequence of a non-
moving robot with a static or a changing identification pat-
tern (e.g. realized with LEDs) is captured. For each image
sequence, one single instance mask is manually created using
an image editing tool. Later, this mask is applied to all images
of the sequence.

The automatic robot crop is based on background subtrac-
tion. Firstly, an image of the background without robot is
captured. After that, the robot is placed in the scene and an
image sequence is recorded. Finally, the background image is
subtracted from the image sequence followed by thresholding
and morphological operations to generate an instance mask
for each frame. Although, using the automatic method, robots
could even move during the image sequence, only non-moving
robots were captured due to comparability between both
techniques.

To properly superimpose the robot crops on arbitrary back-
grounds, the crop itself should not contain any background of
the operation zone. Therefore, in both methods, the generated
masks are used as alpha channel for each image in the
sequence with the robot. The image is cropped using the
bounding box of the outer contour of the robot mask. It has
to be ensured that the robot crops are aligned in the same
direction. This can either be done before the recording or by
rotating the crops later. We recommend aligning the robot in
scene as it saves some time.

IV. EVALUATION

A. Evaluation Environment

We used three different robot types in our experiments:
quadcopters, Spheros and a Kuka YouBot (see Figure [2). The
quadcopters have 4 position LEDs (green and red) next to

their rotors as well as four RGB identification LEDs in the
center. The Spheros are spherical robots driven by a weight
moving inside their transparent hull. They provide one blue
position LED in the back and one RGB identification LED in
the center. The YouBot is a wheeled robot with a manipulation
arm in the front. The robot operation zone was recorded by
a Basler acA1600-60gc standard industry camera, which was
mounted on the ceiling.

As identification properties for our experiments, we used
15 different LED patterns as well as three letters (A,B,C) for
the quadcopter, eight different LED colors for the Sphero and
three letters for the YouBot. The identification markers of the
YouBot were attached either in the center or on top of a pole
at the back. Some example patterns are shown in Figure [2]

We have chosen these robot types and identification patterns
as they provide versatile challenges for the localization frame-
work to prove that it can be applied to a high variety of robots.
The Spheros are quite small (about 25x25 pixels in the camera
image) and don’t offer the possibility to attach an identification
marker due to their shape and locomotion. The quadcopters
have a medium, but varying size (depending on their altitude)
and provide many identification patterns, which are in some
cases difficult to distinguish due to overexposure, reflections,
spatial separation of the single LED color channels, blending
with the position LEDs and occlusion. Finally, the YouBot
provides an example for a bigger robot (about 200x120 pixels)
with many visual features. It has only static markers as the
standard YouBot does not provide RGB LEDs.

B. Training and Evaluation Dataset

For the training process, we have captured robot crops under
different lighting conditions (artificial lighting and natural
lighting), different locations of the robot in the operation
zone (each corner and in the middle) and different floor
colors (quadcopter yellow, Sphero yellow and green, YouBot
green). For the compositor, 1524 images of the operation
zone and 25,608 randomly sampled images from the 2017
training dataset of MS COCO [10] were used as backgrounds.
Which components should be used and how many training
images should be generated, is analyzed in the experiments
(see Section [[V-D).

Depending on the stage of the framework, the training
images are further processed. The first stage exploits random
horizontal and vertical flips and SSD random crop [11]] to
augment the dataset. The data for the second stage is cropped
using the ground truth boxes with a variance from -10%
(inwards) to +15% (outwards) and prepared according to the
second stage pipeline (see Section [IT-A).

The evaluation dataset for the first stage consists of 1400
images per robot type. The second stage evaluation set con-
tains 110 images per identification pattern of each robot.
Within both datasets, there is the same amount of frames
with natural/artificial lighting, floor colors (Sphero) and pattern
position (YouBot) for each robot type. The images of the
evaluation set were semi-automatically labeled and manually
corrected.

TABLE I: Default experiment configuration

l I

First Stage | Second Stage]

Batch size 16 32
Optimizer Imsprop adam
Learning rate 0.004/0.0004 (after 15k steps) 0.0004
Input size 400x300 128x128
Training data 5k images 2k crops per id
Repetitions 5 8
Evaluation period step 20k - 25k epoch 15 - 25

As the normal use case contains few objects in the robot
working zone, additional objects were added to mislead the
first stage and evaluate its specificity. We have chosen to use
synthetic objects, which were extracted from the eval2017
dataset of MS COCO [10], as they provide a good variety
of decoy objects. Three randomly chosen decoys were super-
imposed at a random position and rotation on each evaluation
image while it was ensured that they do not occlude the robot.

C. Experiment Setup

We have chosen the experiments, presented in this sec-
tion, to provide recommendations for a good configuration
of the localization framework. Therefore, we have evaluated
the main parameters of the compositor as well as important
hyperparameters of the two framework stages. For both stages,
a default/reference configuration was chosen as base level. It
is annotated with F/S 0. In all experiment abbreviations, F
means first stage and S stands for the second stage. Table [I|
lists all important default settings and Table|[[I)illustrates which
parameters were changed in each experiment configuration.

The first three experiment configurations (F/S 1 — F/S 3)
analyzed the behavior of both stages with respect to the
compositor settings. In F/S 1, the influence of the background
diversity of the generated images was researched. Therefore,
training data generated with backgrounds only of the robot
working zone (SwarmLab), only of MS COCO and both
combined was studied. We wanted to figure out whether a
background set with higher diversity (MS COCO) can improve
the learning process and if the framework has to be trained
with scenario-specific backgrounds. F/S 2 examined the effect
of the amount of composited images to analyze the number
of useful images when their impact on the performance is
limited by the diversity of crops and backgrounds. In the third
experiment (F/S 3), the influence of the crop method was
surveyed determining whether a more precise mask generated
by manual labeling justifies its additional cost or if the more
versatile automatic crops can even improve the performance
of the framework.

The subsequent experiments were conducted to analyze hy-
perparameters of the framework architecture. In F 4, the input
resolution of the first stage was studied to find a good speed-
accuracy trade-off. For the same reason, in S 4, the influence
of the MobileNet width multiplier o [6] of the second stage
was researched. Finally, S 5 evaluated the performance of
continuous and discrete pose estimation.

For the first stage, SSD with MobileNet v2, which was
pre-trained on MS COCO from [7]], was used. To adapt the

TABLE II: Experiment overview

[Experiment [[Description]

F/S 0 SwarmLab and COCO compositor backgrounds
F/S 1.1 only SwarmLab compositor backgrounds

F/S 1.2 only COCO compositor backgrounds

F/S 2.1 1/5 of the default image amount

FO default image amount (see Table E])

F/S 22 4 times of the default image amount
F/S 0 manual crop

F/S 3.1 automatic crop

F/S 3.2 automatic and manual crop

F4.1 first stage resolution of 200x150 pixels

FO first stage resolution of 400x300 pixels

F4.2 first stage resolution of 800x600 pixels

S 4.1 MobileNet width multiplier o« = 0.25

SO MobileNet width multiplier &« = 0.5

S 42 MobileNet width multiplier o = 0.75

S43 MobileNet width multiplier o« = 1.0

SO discrete orientation estimation (classification)
S5 continuous orientation estimation (regression)

pre-trained network to our problem, the number of neurons
of the classification output layer was adjusted to match the
number of robot types and the entire network was fine-tuned
with a low learning rate. The chosen hyperparameters for the
training can be seen in Table [l After 20,000 training steps
(one batch iteration) the network wasn’t improving anymore.
The evaluation data for the experiments was extracted from
step 20,000 to step 25,000 every 250 steps.

The second stage is based on network weights that were pre-
trained on ImageNet provided by Keras. As the network wasn’t
improving after 15 dataset iterations (epochs), the evaluation
was based on epoch 15 to 25. The MobileNet input size is
128 because bigger robot crops do not provide more necessary
details as the robots itself are usually smaller than 200x200
pixels.

The first stage detection performance was evaluated with
Pascal VOC 2010 mAP@0.5I0U [2] (mean average precision
for an intersection over union of at least 0.5) and for the second
stage the classification accuracy as well as the mean absolute
error of the smallest angle difference were used.

D. Results

1) First Stage: In this section, the performance of the first
stage is evaluated. With the best configuration, it reaches a
median mAP@(.5IOU of 99.8% (copter) / 79.5% (Sphero)
/ 99.4% (YouBot). Compared to the other robot types, the
detection rate of the Sphero is quite low. This has several
reasons. First of all, the Spheros are considerably smaller,
which means that more precise bounding boxes in relation
to the image size are necessary to achieve an intersection over
union of at least 50%. Moreover, the Spheros have only few
features and, in addition, there are some objects containing
similar features e.g. LEDs, light bulbs or light reflections. So
it is a quite challenging task to detect the Spheros among other
objects.

In the experiments, the first stage performance with respect
to different configurations was compared as can be seen in Fig-
ure [3} One important factor is the background set for the com-
positor. It was figured out that only MS COCO backgrounds

31 EM

4 18

) o %éé%é Lo

T T T T T
FO F1.1 Fl.2 F2.1 F2.2 F3.1 F3.2 F4.1 F4.2
Experiment

(1 - mAP@0.5I0U)} in %

(a) First stage detection mean average precision for quadcopters.

60
= 533
= 517
= 50
=
o
n
o -
g
o
<L 345
E 204 BN i
=} 28.3 276

237
20 4 05
FO FL1 FL2 F21 F22 F3.1 F32 F4l F42
Experiment

(b) First stage detection mean average precision for Spheros.

70 A %5& &
¢ 60
c
= 50 1
]
o
in 40 4
o
4
% 30 -
£
o 207

10 A

L %5 1
ol L3 . é =21 %3-7 E:—._—L|35 =23
T

T T T T T T
FO F1.1 F1.2 F2.1 F2.2 F3.1 F3.2 F4.1 F4.2
Experiment

(c) First stage detection mean average precision for YouBots.

Fig. 3: Performance comparison of the first stage.

(F1.2) work better (lower median and less variance) than only
SwarmLab backgrounds (F1.1), as the SwarmLab backgrounds
do not contain other decoys while COCO contains a variety of
different objects resulting in a better generalization. Another
important factor is the number of composited images (F2.1 /
FO / F2.2). Generally, the performance of the first stage was
increased by using more images as it is also suggested in [21].

As crop method, manual cropping (FO) was figured out to
achieve a lower median and variance in comparison to auto-
matic crop (F3.1) and both (F3.2). Nevertheless, the difference
is tolerable and, therefore, it is reasonable to use automatic

TABLE III: Benchmark of the first stage

[First stage resolution

Runtime on Xeon E3-1230 v3 (ms)
Runtime on GTX 1080 (ms)

[[200x150 | 400x300 | 800x600 |

27.36 76.35 322.11
10.27 12.26 22.89

crops to speed up the setup of the framework.

In the last experiment for the first stage, different input
resolutions were compared. The presumption that larger robots
need less resolution for detection was confirmed. Even with
200x150 pixels (F4.1), the YouBot achieved good results while
400x300 pixels (FO) provided the best mAP@0.510U for
copters. Small robots such as the Sphero need a high resolution
of 800x600 pixels (F4.2) to provide the best performance, as
more small features can be exploited by the CNN. However,
the input resolution substantially affects the inference speed of
the first stage as can be seen in Table Therefore, we have
chosen 400x300 pixels as default configuration to provide the
best speed/accuracy trade-off for the first stage. In that case,
the first stage takes 12 ms on a Nvidia GeForce GTX 1080 or
76 ms on an Intel Xeon E3-1230 v3 @ 3.30GHz.

All in all, we recommend to generate about 20,000 images
(depending on scenario, number of crops and backgrounds),
use a diverse background set (no specific backgrounds of robot
working zone are necessary), automatic crop and an input
resolution of 400x300 pixels for the first stage.

2) Second Stage: The second stage achieves good results
for its instance identification and orientation estimation. With
the best configuration, it reaches a median instance identifi-
cation accuracy of 98.9% (copter) / 96.4% (Sphero) / 98.8%
(YouBot) and a mean absolute orientation error of 1.6° (copter)
/ 11.2° (Sphero) / 2.3° (YouBot).

The comparably low instance identification and orientation
estimation results of the Sphero are probably caused by its
locomotion as the LED board is sometimes lopsided and
the identification LED is not properly visible. The same is
true for the position LED, which complicates the orientation
estimation. Moreover, the position LED is in some cases
outshone by a bright identification LED color.

In the experiments, it was found out that a higher amount
of composited images (S2.1 / SO / S2.2) significantly im-
proves the instance identification accuracy and the orientation
estimation for all robot types as shown in Figure [d] The
number of images is the most important factor influencing the
performance of the framework decreasing both the median and
the variance of the error. It should be noted that even the lowest
amount of generated images exceeds the number of crops by
far.

The second most important factor is the network size
researched in S4.1 / SO / S4.2 / S4.3. A network with more
feature maps improves the instance identification performance
especially for the YouBot a lot while it has less influence on
Spheros (see Figure fa] - [Ac). This could be caused by the
amount of visual features of the different robot types. There
are more features necessary to classify the letter markers of
the YouBot than the single RGB identification LED of the
Sphero. Therefore, more features must be learned by the neural

network, which requires a broader architecture with more
feature maps. For orientation estimation, a bigger network for
Spheros even deteriorates the performance (see Figure [e)),
probably as there are less features necessary for the orientation
estimation and larger networks tend to overfit the problem.

The influence of the background and the crop method are
less substantial. Using all available backgrounds (SO vs S1.1
and S1.2) improves the instance identification performance
slightly (see Figure {a] - as it adds variance to the training
dataset. For identification purpose, only manual crops (SO
vs S3.1 and S3.2) work slightly better. In experiment S5,
continuous and discrete pose estimation were compared. It
was found out that regression works significantly worse. This
tendency is also described in [13]], especially, when the amount
of training images is not large enough.

The inference time of the second stage is mainly affected
by the width multiplier & and the number of robots detected
by the first stage (see Figure [5)). For the default configuration
(o = 0.5) and an amount of 10 robots within the field of view
of the camera, the second stage consumes 6 ms on a Nvidia
GeForce GTX 1080. So both stages spend about 20 ms for
one camera frame allowing a frame rate of 50 Hz, which is
simliar to [[16]].

To put it in a nutshell, we recommend the following settings
to achieve a good second stage performance. Generating more
images can increase the performance a lot. The network size
should be adapted to the task complexity providing enough
feature maps to tackle the problem but not too much to prevent
overfitting. If possible, multiple background sources should be
used. The crop method does not influence the performance
significantly and can be chosen according to own preference.

3) Total Performance: Finally, we have chosen the best
performing configurations of the experiments of both stages
(see Section [TV-DI] and [TV-D2)) for an integrated performance
evaluation of the framework. For the first stage, the setting
of F1.2 (trained only on COCO backgrounds) and, for the
second stage, the setting of F2.2 (8,000 training images per
identification) was applied. The framework was evaluated
on complete video streams of the camera under application
conditions with 10 Hz frame rate.

In Table [V] the mAP@0.5IOU for the robot type and
instance detection of the whole framework as well as the mean
absolute error of the orientation for correctly detected robots
are shown. The good results of both stages are maintained in
the framework. Depending on robot type, it achieves 70% -
98% detection mAP@0.5I0U and 2° - 12° orientation error.

Moreover, the number of successive wrong detec-
tions/classifications in a row was evaluated. The results are
illustrated in Figure[6] It can be seen that the framework misses
the correct classification of a robot only a few frames in a row

TABLE 1V: Performance of the whole framework

[[[Copter [Sphero | YouBot |

mAP@0.510U 97.9% | 70.0% 96.6%
Orientation MAE 1.6° 11.9° 2.6°

14 4 C « 20.0
£
12 4 Y 17.5 A
3
® J
10 a":hJ 15.0
P o i
%“ 8- S 12.5
g 7.1 2 10.0 +
g6 < 8.8
£ £ 751
' =2 .
= 47 40 S 59
e r 3 5.0 1
N 23 22 24 <
2 o e r% 16 5 é 26 25 & élz 6 é
10 11 5 257 Hzaaa g2 -1 B2 22 F26 23 fea
0 L T T T T T T T T T T E T T T T T T T T T T T
SO S1.1 sSl2 S21 S22 S3.1 S3.2 S41 S42 S43 S0 S1.1 S1.2 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2 S43 S5
Experiment Experiment
(a) Second stage identification performance for quadcopters. (d) Second stage orientation estimation performance for quadcopters.
r o 40
c
12 =
g 37 34
5]
£ 104 v
= B8
>
g 8- < 25
g o8 < 20 19.7
B U i R
D " Hee 49 % 16916 0 L-4E17.0] 36
— .
=} 47 48 - | : 15.6
| Haz 25 a1 815 147 139
4 36 <
- - S 104 1.2
i
2 ‘ T ‘ T T T T T T T = ‘ T T ‘ T T ‘ T T T T
S0 S1.1 S1.2 S21 S22 S3.1 S3.2 S41 S42 S43 S0 S1.1 Sl.2 s21 S22 S3.1 S3.2 S4.1 542 S43 S5
Experiment Experiment
(b) Second stage identification performance for Spheros. (e) Second stage orientation estimation performance for Spheros.
o 20.0
40 =
Y 17.5
g
® 5 15.0
‘e 307 79 £
= 0 125
z @
€ 201 20.7 2 10.0
B 9 o
< 5 7.5
~ 10 4 = 5.9
z 10 7.6 68 8.2 3 5.0 7
5.5 - 6.1 s <
21 ~ Lao § 257 Hae é“ =6 -1c B2 D22 D20 Lho é“
0 - g .
T T T T T T ‘ T ‘ T ‘
0 511 S12 521 S22 S31 532 541 S42 543 SO S1.1 S1.2 S2.1 52.2 S3.1 S3.2 S41 S42 S43 S5
Experiment Experiment

Fig. 4: Performance comparison of the second stage for identification and orientation estimation with respect to Table

(c) Second stage identification performance for YouBots.

Intel Xeon E3-1230 v3 Nvidia GeForce GTX 1080

(f) Second stage orientation estimation performance for YouBots.

250 13 0.8
— a=0.25 : . 120 i N A [copter

200H == a=05 [1 : . youbot
“ . PO P RIS R
=S a=0.75 10 : o = 0.6 sphero
c - e et 2
o 150(| "7 =10 |- g
E) s
c T 0.4
2 v
E 2
% =
ot @ 0.2

@I & r—%.—; i 2/ P, ==

Number of input crops

0.0 A L T T
1 2 3 4 5 6 7 8

Number of Subsequent Wrong ID Classifications

Fig. 5: Runtime analysis of the second stage for different Mo-
bileNet width multipliers o and number of robots (100 runs;
standard deviation 45% on CPU and 24% on GPU).

Fig. 6: Distribution of successive wrong robot type/instance
detections.

(usually less than five), which can easily be post-processed e.g.
by an Extended Kalman filter to improve the performance even
further.

V. CONCLUSIONS AND FUTURE WORK

This paper shows our new adaptive robot tracking frame-
work. The architecture aims to enable an easy setup of a robot
tracking system for arbitrary robots using common camera
hardware by exploiting machine learning. The delegation of
the configuration of the system to machine learning with
CNNs majorly eases the setup. The user only needs to provide
appropriate training data in the form of video streams acquired
by the camera showing the robots to track as well as the current
orientation of the robots in the video stream. The system can
then automatically extract the necessary information and train
the robot tracking system. It was tested in a real laboratory
with three types of robots with different identification prop-
erties to show the adaptability. In general, the performance
of the system is very good and provides robot pose tracking
accuracy within a 0.5 intersection over union with less than 4%
of identification error and an orientation error lower than 3°
for two of three robot types. The higher orientation error of the
third robot type is caused by special physical properties of this
type of robot and is not induced by the system itself. The delay
created by the tracking system was approximately 140 ms
on typical PC hardware, but could be majorly decreased by
exploiting hardware acceleration through GPUs up to 20 ms.
This provides the tracked robots with localization information
better than GPS.

In our experiments, we have found out that the amount of
generated images is a major factor increasing the performance
of the system. Moreover, it can be trained using generic
background images without the need for scenario-specific
backgrounds.

The current approach was evaluated using a single camera,
but we aim to use multiple cameras in the future to extend
the detection area and avoid occlusion of robots. Additionally,
we want to evaluate different meta-architectures and CNNs for
the implementation of the first and second stage of the system
such as SSDLite to enhance the update rate.

We hope to minimize the effort for the user even further.
Currently, the system enforces the user to choose between
labeling effort and performance of the system. Even though
the difference is not big, we aim to improve the automatic
crop to provide at least the same output performance as the
manual one. Additionally, we want to evaluate the single stage
approach to see if we can minimize the latency of the detection
or provide better detection, identification and pose estimation
quality. Finally, we intend to extend our compositor to provide
better training data, especially regarding perspective-awareness
enabling more flexible camera positioning.

REFERENCES
[1] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior

of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20-29, 2004.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.

G. Georgakis, A. Mousavian, A. C. Berg, and J. Kosecka, “Synthesizing
training data for object detection in indoor scenes,” arXiv preprint
arXiv:1702.07836, 2017.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in IEEE CVPR, 2014, pp. 580-587.

D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich,
“Viewpoint-aware object detection and continuous pose estimation,”
Image and Vision Computing, vol. 30, no. 12, pp. 923-933, 2012.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in IEEE CVPR, 2017.

W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again,”
in I[EEE ICCV, 10 2017.

T. Krajnik, M. Nitsche, J. Faigl, P. Vanék, M. Saska, L. Preucil,
T. Duckett, and M. Mejail, “A practical multirobot localization system,”
Journal of Intelligent & Robotic Systems, vol. 76, no. 3-4, pp. 539-562,
2014.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV. Springer, 2014, pp. 740-755.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV. Springer,
2016, pp. 21-37.

F. Massa, R. Marlet, and M. Aubry, “Crafting a multi-task CNN for
viewpoint estimation,” in Proceedings of the British Machine Vision
Conference (BMVC). BMVA Press, 2016, pp. 91.1-91.12.

D. Oioro-Rubio, R. J. Lopez-Sastre, C. Redondo-Cabrera, and P. Gil-
Jiménez, “The challenge of simultaneous object detection and pose
estimation: a comparative study,” arXiv preprint arXiv:1801.08110,
2018.

X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors
from 3d models,” in JEEE ICCV. IEEE, 2015, pp. 1278-1286.

B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3d geometry
to deformable part models,” in /[EEE CVPR, 6 2012, pp. 3362-3369.
P. Poirson, P. Ammirato, C.-Y. Fu, W. Liu, J. Kosecka, and A. C.
Berg, “Fast single shot detection and pose estimation,” in International
Conference on 3D Vision (3DV), 10 2016, pp. 676-684.

C. Redondo-Cabrera and R. Lopez-Sastre, “Because better detections are
still possible: Multi-aspect object detection with boosted hough forest,”
in Proceedings of the British Machine Vision Conference (BMVC).
BMVA Press, 9 2015, pp. 63.1-63.12.

S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in ECCV. Springer, 2016, pp.
102-118.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in IEEE CVPR,
2018, pp. 4510-4520.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views,”
in IEEE ICCV, 2015, pp. 2686-2694.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in IEEE ICCV, 2017, pp.
843-852.

B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d
object pose prediction,” CoRR, vol. abs/1711.08848, 2017.

S. Tulsiani, J. Carreira, and J. Malik, “Pose induction for novel object
categories,” in IEEE ICCV, 12 2015, pp. 64-72.

S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in /EEE CVPR,
2015, pp. 1510-1519.

Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond pascal: A benchmark
for 3d object detection in the wild,” in IEEE Winter Conference on
Applications of Computer Vision, 3 2014, pp. 75-82.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
CoRR, vol. abs/1711.00199, 2017.

	I INTRODUCTION
	II RELATED WORK
	III PROPOSED LOCALIZATION FRAMEWORK
	III-A Architecture
	III-B Training Data Acquisition Process
	III-B1 Compositor
	III-B2 Robot Crops

	IV EVALUATION
	IV-A Evaluation Environment
	IV-B Training and Evaluation Dataset
	IV-C Experiment Setup
	IV-D Results
	IV-D1 First Stage
	IV-D2 Second Stage
	IV-D3 Total Performance

	V CONCLUSIONS AND FUTURE WORK
	References

