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Abstract— An approach merging the Hotelling 72 control
scheme with weighted random forest classifier is proposed and
used in the context of detecting land cover changes via remote
sensing and radiometric measurements. Hotelling 72 procedure
is introduced to identify features corresponding to changed
areas. However, 77 scheme is not able to separate real from
false changes. To tackle this limitation, the weighted random
forest algorithm, which is an efficient classification technique
for unbalanced problems, has been successfully applied on
features of the detected pixels to recognize the type of change.
The performance of the algorithm is evaluated using SZTAKI
AirChange benchmark data, results show that the proposed
detection scheme succeeds to appropriately identify changes to
land cover. Also, we compared the proposed approach to that
of the conventional algorithms (i.e., neural network, random
forest, support vector machine and k-nearest neighbors) and
found improved performance.

Index Terms—Land cover change detection, multi-spectral
sensors, multi-date measurements; remote sensing, multivariate
statistical approach, Random Forest classification.

I. INTRODUCTION

With its development over few years, remote sensing is
increasingly used for environmental protection, monitoring,
security and soil mapping. Compared to conventional mapping
techniques, like photo-interpretation, spatial remote sensing
(passive/ active) has incontestable advantages in terms of
cost, speed, and the covered area [1], [2]. In addition to
soil mapping, land cover change detection (LCCD) allows an
automatic measure of change variations in a specific region. In
fact, LCCD can be used for various purposes including mon-
itoring and management of pollution [3], desertification [4],
and deforestation [5]. Recently, several LCCD techniques have
been proposed in the literature [6]-[9]. In [6], Zhu et al.
proposed a change detection and classification algorithm based
on threshold derived from all spectral bands of the Landsat
data. In such approach, pixels are assigned to the changed
class when the difference between observed and predicted
images exceeds a threshold value. Fu et al. proposed a change
detection system for urban growing monitoring using thermal

infrared data on board Landsat sensors [7]. In [8], Mayes et
al. introduced a linear spectral mixture analysis approach with
Landsat data applied for forest changes assessment. In [9],
Espinoza-Molina et al. used local features extracted from
spectral indices using a clustering algorithm. The LCCD is
then performed by counting the frequency of the assignments
of a changed pixel to a specific class along the time series.
It is worth understanding that numerous change detection
systems have been proposed in the literature. However, several
proposed systems in the literature recognize false changes as
changed regions. Indeed, many phenomena such as weather
and vegetation growth can lead to results with false changes.
Furthermore, many proposed systems do not consider that
change detection is an imbalanced problem, where changed
class constitutes only a reduced number of samples compared
to unchanged class

An effective methodology to monitor land cover changes
using radiometric features is presented. The intensity of radio-
metric data is obtained from passive sensors (images acquired
in visible wavelength). It should be noticed that LCCD based
on remote sensing data remains a challenging problematic
where there are different phenomena like shadows of clouds
which can change values of radiometric data and consequently
deliver poor or misleading results. Therefore, it is crucial to
design an effective approach to appropriately identify land-
cover changes. Towards this end, we propose a framework
merging the benefits of the Hotelling 72 monitoring test
and those of the weighted random forest algorithm (WRF)
classifier to suitably detect and identify land cover changes.
The advantage of the T2 scheme is its ability to monitor
multivariate data simultaneously and its implementation is
an easy task [10]. Unfortunately, real and false (reversible)
changes are not separable by using the T2 scheme. This means
that these two types of changes may have relatively similar
features when the T2 is used. WRF algorithm, which is an
efficient classifier to deal with imbalanced data classification,
is used to discover the dissimilarity between real changes and



false changes. Specifically, only features of selected pixels
during detection phase via T2 scheme are used by WRF. In
other words, the role of detection phase is to remove features
without change, hence the size of the training dataset in WRF
is reduced. Data from SZTAKI Air Change benchmark is used
to evaluate the proposed strategy. The results indicate that the
integrated T2-WREF strategy is found to be suitable in detecting
real changes with a reduced error rate. Section II presents
radiometric feature extraction. 72-based LCCD and WREF clas-
sification are described in Sections III and IV respectively. In
Section V we assess the efficiency of the developed approach,
and conclusions are presented in Section VI.

II. FEATURES EXTRACTION FOR LCCD

Extracting relevant features from aerial or remote sensing
images is not an obvious task due to the presence of regional
characteristics like build regions and large areas with veg-
etation. In traditional change detection technologies, feature
generation is accomplished via a software, like ENVI1 or
eCongnition2. The key idea behind the use of radiometric
values as an indicator to identify changed regions is to
associate to the same pixel at two time instants 1 and ¢2 a
sequence of radiometric values (extracted from three spectral
bands).

With the presence of potential changes in remote sensing
measurements, the main target is to classify real and false
changes. To do that, we propose the use of two stages
procedure namely detection and classification of changes. On
one hand, the detection phase consists of the application of
the T2 technique on radiometric values to separate unchanged
from changed regions. On the other hand, the WRF-based
classification focuses only on pixels previously detected by 7'
to separate real changes from false changes. The main advan-
tage of using two-stages-based approach (detection followed
by classification) is to reduce the number of training samples
used by the WRF algorithm compared to classification without
a detection phase. Unchanged pixels, which are identified by
the 72 scheme, have been excluded from the classification
stage.

ITI. HOTELLING 7% MONITORING SCHEME

Consider a data matrix X € R™*™ with n measurements

and m process variables, X = [x{,...,xL]. Assume x;, t =
1,2,...,n is normally distributed with mean p and covariance

matrix 3. A multivariate Shewhart chart, also known as a 72
chart or a x? chart [11], [12], to monitor the process mean is
based on the decision statistic:

T2 = | (i — )= (%0 — ) 1)
where x; is a vector of m variables, p is a vector of in-control
means of each variable, and X is the covariance matrix of X.
This chart is the most common multivariate process monitoring
technique used to monitor the mean of a normally distributed
process. The upper limit for this control chart is: UCL =
Xa.m- We claim that the process is abnormal when the T7
overpass the threshold value, Xi,m [13].

IV. LAND-COVER CLASSIFICATION PHASE VIA WRF

Land-cover classification aims at separating real from false
(reversible) changes for the detected pixels. The use of the
detection phase permits to reduce the number of pixels to
be classified, where unchanged pixels are excluded from the
classification phase. The key concept in classification is to
define the model’s parameters in the training phase. After the
model is determined, then it will be employed to classify new
data. Here, we choose the weighted random forest procedure
as classifier because of its capability to operate efficiently
with large and imbalanced datasets. Furthermore, it can handle
an important number of features without overfitting (by its
capacity to manage an important number of trees).

Compared to the classical random forest algorithm which
tends to be biased towards the majority class (unchanged
pixels), WRF algorithm attributes a weight to each class
individually, with the minority class given larger weight (i.e.,
higher misclassification cost for changed pixels).

It should be pointed out that Random forest classier can
reach a high accuracy than many conventional classification
algorithms, where it minimizes the overall classification error
rate and has the capacity to merge many classifiers [14].
However, in the presence of imbalanced data RF ability is
slightly weakened, it is because that each classifier has the
same weight before combination (voting phase) [15]. Hence, to
address this problem, a methodology of merging classification
algorithm with different weights has been developed. In WRF
approach, each individual classifier is pondered by a weight
(representing the individual confidence of its decisions). Class
weights are used to permit a robust separation between the
majority and the minority classes.

The key concept of the WRF classifier is to compute
misclassification rate for each tree Out-Of-Bag (OOB), and
the class prediction for WRF is then given by combining the
weighted vote from each individual tree. Instead algorithms
based on error minimization like Support Vector Machine or
neural network, Random Forest has an effective methodology
for estimating classes when proportion of the data is missing
(unbalanced problems).

Figure 1 illustrates the main principles of the weighted
random forest. Initially, the algorithm assigns a weight to each
class, where the minority class attributed higher weight. The
class weights, CW (j), are introduced in two places of the
algorithm namely (i) in the tree induction procedure to find
tree’s splits, (ii) and in the terminal nodes, F'n(i), of each tree
whose impact the guidance of the voting process.

Initially, a set of new training subsets S(i) are generated
randomly from original training set using bootstrap sampling
technique. The same strategy is applied to each subset (boost-
raping), where only v/M features are picked from the extracted
features (M represents the total number of features). The new
generated features are then predicted separately using different
trees for each subsample. The remaining samples after each
boostrap sampling are used for tree’s evaluation procedure.
Only tree corresponding to the best accuracy is selected. In
fact, the class weights are considered in the tree selection
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Fig. 1. A diagrammatic representation of the WREF classifier.

during separate prediction phase. The next step consists of
aggregating the results of all the trees. This procedure is based
on weighted voting procedure V' (j) instead of the majority
voting to allow an adequate separation between the majority
and the minority classes.

Algorithm 1: Pseudo-Code of WRF algorithm

Input: X Original data (feature vector)
e Initializing class weights CW (j), j € [1...K]; where K=Number of classes
Fori € [1...N], where N is the number of trees
e Boostrap sample S(i) from original data
e Construct tree Tr(i) for S(1)
e Assign class weight CW (k) to Fn(i) if Y(i) =k and k €[1..K]
where Y (i) is the predicted class label by the tree T (i)

End for
Forj€[l..K]
. Fn(i . .
. V()= Zi"q—z;(: l"c(‘z(k) ifY() = k
End for

®  Yfinal = Argmaxj(V(j))
Output: Yg,.1 (Class label)

V. RESULTS AND DISCUSSION
A. Data collection

This part is dedicated to an evaluation of the T2-WRF
approach in detecting LCCs by using real multi-date-images.
Data from SZTAKI AirChange Benchmark set [16] has been
used to investigate the capacity of the proposed approach.
This dataset is gathered by the Hungarian Institute of Geodesy
Cartography and Remote Sensing (HIGCRS), and consisting
of several optic aerial image pairs with a resolution of 1.5
meters of 952 x 640 pixels [16]. The multi-date images are
associated with the ground of truth masks. They are acquired

with different time intervals to include different changes
such as deforestation assessment and urban growing planning.
Figure 2(a-c) depicts an example of the image pairs at two time
instant (t1 and ¢2) the corresponding binary mask, highlighting
changed areas with white dots.

Fig. 2. Sample of an image at {1 (a), same image at ¢t2 (b), and the ground
truth image (c).

SZTAKI AirChange Benchmark, which is rich data, covers
the whole thematic classes and contains different regional
physiognomies like vegetation (agricultural areas known by
homogenous regions) urban (generally cities and towns known
by heterogeneous areas). This variety of data makes change
detection a challenging task, in particular in the ground truth,
reversible changes are labeled as unchanged pixels. To address
this difficulty, three main categories of pixels are considered
here: unchanged, real changes and false changes. The first
class presents irreversible changes like desertification and
natural phenomena (e.g., forest fires). The unchanged class
contains pixels that keep the same thematic classes across the
time interval, such as water areas. The third class, false change
is for pixels that have undergone a change in radiometric
values but not in the thematic classes such as variation in



the degree of greenery for grass areas or snowfall. This type
of change is not labeled as changed because it is seasonal.

B. Evaluating LCCD Results

To evaluate the performance of T2 monitoring scheme,
we first used change-free data to compute the T2 decision
threshold. The training data consists of the variation between
radiometric values in different bands collected at two different
instants. The data consist of three columns corresponding to
the number of bands and 500 rows (representing the number
of pixels). Based on the training data, the threshold is set to be
UCL = 21.03 with the predefined probability of false alarm
of 5%. Here, the training data has been chosen from different
areas including bare soil, vegetation, and urban regions, to
consider the variety of land cover. To illustrate the detection
capability of the T2 approach, we used testing data of 500
pixels comprising real changes. Results of the T2 approach
is presented in Figure 3(a), which indicates the presence of
possible LCC. T2 approach based on testing data with false
changes is displayed in Figure 3(b). We conclude that this
multivariate approach is able to detect changes but it cannot
differentiate between true and false changes.
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Fig. 3. T2 approach: (a) real and (b) false changes.

The WRF classifier is used to separate real from false
changes. The WRF is applied only to the features of the
flagged pixels by T2 approach. The proposed T2-WRF
strategy is compared with some common machine learning
schemes namely neural network, Random Forest, K-NN, and
SVM without a detection step.

The parameters of each algorithm, which provide the highest
accuracy, have been determined in the training stage. The NN
classifier with one hidden layer and nine neurons has been
selected. The number of neighbors in KNN is set to at 3.
In SVM, radial basis function (RBF) kernel with the width
of the Gaussian kernel o = 0.125, and the parameter for
the soft margin cost function C' = 128, is used. For WRF

classifier, after testing different parameter settings, we fix
the number of trees in the forest to 10 and weights to 15.
Since change detection presents a case of imbalanced data,
so, to accord more interest to the rare class (changed) two
accuracies corresponding to changed and unchanged classes
are separately computed for different algorithms.

TABLE I
COMPARISON OF THE T'2-WRF PROCEDURE WITH CONVENTIONAL
MACHINE LEARNING APPROACHES.

Accuracy of | Accuracy of Kappa
changed class | unchanged class
Neural Network | 66.53 90.92 0.76
KNN 41.21 86.66 0.72
SVM 69.59 91.05 0.76
RF 51.20 93.18 0.78
WRF 85.30 95.20 0.87

Table I presents the classification accuracy of the T2-WRF
strategy and the conventional procedures when applied to
Sztaki Airchange dataset. Results in Table I point out that the
proposed approach is found to be better (highest accuracy) in
identifying LCCs in comparison to the conventional learning
algorithm. It can be concluded that the LCC detection is im-
proved by integrating T2 -based detection approach with WRF
classification. Also, the conventional procedures (i.e., NN, k-
NN, and SVM) resulted in many misclassifications (Table I).
This is because pixels with false changes are misclassified
as “changed”. Furthermore, some algorithms such as Support
Vector Machine or neural network where classification is based
on overall error minimizations (well classifying majority class
and completely misclassifying the minority class) which are
not suitable in such situations (imbalanced data). Another rea-
son that the T2-WRF approach surpassed the other algorithms
is that weighted random forest provides high accuracy over
the minority class while keeping acceptable accuracy for the
majority class.

VI. CONCLUSION

In this paper, we introduced an effective land-cover change
detection (LCCD) technique that utilizes variation in radiomet-
ric values of aerial images. In this approach, 72 monitoring
scheme has been utilized for LCCD and the WREF classifier has
been applied to distinguish the type of change. Using SZTAKI
Air Change benchmark dataset, we show the efficiency of 7°2-
WREF in detection land-cover changes. The results indicate
that the integrated T2-WRF is found to be better in LCCD
in comparison to other commonly used algorithms.
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