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Abstract—In this paper a neuro-robotics model capable of
counting using gestures is introduced. The contribution of ges-
tures to learning to count is tested with various model and
training conditions. Two studies were presented in this article. In
the first, we combine different modalities of the robot’s neural
network, in the second, a novel training procedure for it is
proposed. The model is trained with pointing data from an iCub
robot simulator. The behaviour of the model is in line with that
of human children in terms of performance change depending
on gesture production.

Index Terms—counting, embodied cognition, gestures, neural
network, numbers, pointing, recurrent, robot

I. INTRODUCTION

The ability to perceive and process quantity is undoubtedly
one of the crucial skills for both humans and animals.

There are many suggestions that there is a common mecha-
nism for representing approximate numerosity in animals and
humans [1]. However, human quantification skills are much
more advanced than those of animals. We not only estimate
and perceive numerosity but we can count, i.e. enumerate
objects by tagging them by numbers’ names [2], [3].

The ability to count itself is not simply the recitation of
numbers. Researchers found that children, although familiar
with the numbers’ names and their order, are not able to
count objects [3]–[5]. There have been two tests introduced to
investigate the development of number cognition: HM (How
many) and GM (give me a number). The understanding of
numbers is difficult to define; It has been assumed that, the
child understands the meaning of the number when she passes
a GM test [3], [5] and so provides number of objects that was
asked for.

A significant influence of gestures in the learning process
of counting has been demonstrated in [2], [6], [7]. There is
evidence that pointing and touching gestures facilitate counting
accuracy in children and non-human primates [2]. They are not
only used for keeping track of counted objects, but may also
help with the implementation of one-to-one correspondence by
contributing to the individuation of items, and thereby to the
segmentation of the counting task into smaller units [2]. Such a
behaviour might also provide support for working memory in
the one-to-one correspondence task [2]. Furthermore, finger
counting is considered to be an essential stage in number

cognition [8]–[10]. Thus, there is strong evidence that em-
bodiment has an influence on cognition, including for abstract
concepts such as numbers. More about developmental robotics
and embodied cognition can be found in [11].

In the field of connectionist modelling of the enumerating
process, one of the first models was created by Amit in 1988
[12]. It consisted of a neural network capable of counting clock
chimes. The model shows that Elman network can develop
the ability to count four symbols using supervised learning
with backpropagation through time. In 1999 Rodriguez et al.
[13] presented a recurrent neural network that was capable
of counting letters. Another important model can be found
in [14] and [15]. The main focus in this model is on the
distinction between sequential enumeration and subitizing (i.e.
the immediate apprehension of small numerosity).

Although there have been several models of the enumeration
process, not many of them have been implemented on a
robot platform or robot simulator. In this field Ruciński et al.
[16], using the iCub humanoid robot [17], developed a model
capable of number comparison and parity judgement that took
into account the SNARC (spatial-numerical association of
response codes) effect. In another work [18] they constructed
a recurrent neural network that is first taught to recite the
numbers in the counting order and then to count the presented
objects with or without proprioceptive gesture input from iCub
robot.

Finally, the influence of finger counting on number word
grounding has been documented in [8], [19]–[23]. In these
studies, the iCub platform (and its simulator) was used to
provide embodied conditions as well. The results support the
hypothesis that learning the number words in sequence along
with finger configurations helps the fast building of the initial
representation of number in the robot [20].

To increase embodiment, Ruciński’s model of learning to
count [18], [24] has been modified and extended in the work
presented here. This makes the simulations more comparable
with those obtained by psychologists (e.g. [2]). In Ruciński’s
work, a cognitive model of learning to count uses a recurrent
artificial neural network which has as input visual stimuli and
proprioceptive gesture information. The network is first pre-
trained to recite numbers from 1 to 10. After achieving this
skill, the network learns to stop counting when the number
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of elements from the visual input is reached. In this way,
the neural network (NN) is counting the elements from the
visual stimuli. In his work, the behaviour and results of the
training of the network were compared with respect to the
proprioceptive gesture information. The results showed that
the learning of counting procedure is better when the gesture
input is included.

In the model presented in this paper, the gestures are
produced by the network as an output, or there is an output-
input feedback loop covering the produced gestures. Such
a set-up corresponds more closely to the experiments with
children in which active gestures were investigated.

The paper is organised as follows. First, the model with its
architecture and evaluation is presented. Then, the first study
presenting a variety of experimental conditions is described.
This study will help us understand the dependencies in the
model and how the model internal connections influence its
performance. The second study describes multi-stage training
where the network was separately pre-trained to produce the
sequence of words and a pointing signal. The article finishes
with conclusions and discussion of future work.

II. MODEL DESCRIPTION

Similarly to [18], [24] a recurrent neural network model
based on Elman architecture [25] was used to model the
process of acquisition of the counting skills. Different struc-
tures of the neural network architecture were considered in
order to compare their performance, and to make the training
more similar to experiments with children. The most complex
structure can be found in Fig. 2 where all the possible layers
and connections between them are shown.

The environment that was used for creating the network
is the Tensorflow library and Python. As for the robotic
platform, the iCub humanoid robot and its simulator was
used. The iCub is an open source humanoid robot designed
to support cognitive developmental robotics research [17]. In
the current state the platform is a child-like robot with 53
degrees of freedom and is 1.05 m tall. The iCub simulator
has been designed to reproduce the physics and the dynamics
of the physical platform. It permits the creation of realistic
physical scenarios in which the robot interacts with a virtual
environment [20].

A. Counting task
The main task of the model is to produce a correct sequence

of number words and pointing gestures. These output words
(described in section II-B2) correspond to the numbers from
1 to 10. The expected result is that the NN will produce the
sequence of number words and stop when it reaches the last
object. For example, for four objects it should produce se-
quence of four words corresponding to: “one”, “two”, “three”,
“four”. The model was trained and tested for number of objects
ranging from 0 to 10.

B. Model Architecture
The inputs and outputs of the network are organized in

several blocks. Inputs: Visual and Trigger. Outputs: Gestures

Fig. 1. The iCub simulator. Robot performing pointing.

Fig. 2. Model architecture. Gray polygons represent all-to-all connections
between the layers of neurons. Numbers in the rectangles corresponds to the
number of neurons, “nh” represents the variable number of hidden units

and Numbers (see Fig. 2). The blocks: Gestures-1 and Context
are not considered as model inputs as they are part of the
recurrent loops (they are not provided externally to the model).
However, in some architectures (described in section III-A) the
gestures are not produced by the model but only provided to
it externally. In these cases, the gesture input will have the
same structure as the one described in the section with model
outputs (II-B2).

The network has two recurrent loops: Elman recurrent loop
where the hidden units from previous time step are copied to
the input units; and Jordan recurrent loop where the network
copies the output block [25]. The architecture of the network
is very similar to the one described in [18] with the difference
of the additional output and second recurrent loop.

1) Model inputs:

• Trigger: This is a single unit input; its role is to indicate
when the counting process should start. The network is
supposed to produce zeros at the output whenever the
trigger unit is off. The desired counting is produced
when the trigger is set to one. The trigger input value
remains constant throughout the whole time sequence in
the training and testing data sets.

• Visual: This is a 1-dimensional vector (saliency map),
which can be considered a simple model of retina (same
as in [18]). This input consists of 20 units corresponding



to 20 spacial locations. Depending on the presence of an
object in a given location, each unit of the visual input
will be activated or not. The maximal number of objects
assumed in presented experiments is 10, their locations
are chosen randomly. The visual input is normalized to
1 in order to eliminate possibility of discrimination of
cardinality based on summed activation of that input.

2) Model outputs:
• Numbers: This is a 1-dimensional vector with 10 units.

For simplification and to facilitate the output and perfor-
mance analysis, the one-hot coding has been used. This
type of coding helps to calculate the percent accuracy of
the network. It is, however, different from phonetic words
representing the numbers, which are non-orthogonal.

• Gestures: The values of proprioceptive signal were col-
lected using the iCub humanoid robot simulator. The
robot was made to point to 20 locations in front of it,
corresponding to 20 locations in the visual input. These
locations were uniformly distributed in a line placed 15
cm above its hip and 30 cm in front of it. The length of
the line was 30 cm. The right arm Cartesian controller
was used to move the arm. The controlled kinematic chain
consists of 6 degrees of freedom: torso yaw and pitch and
the first 4 joints of the robot arm (shoulder and elbow).
The torso roll angle was disabled to avoid unnatural
postures. The joint angles were stored. Additionally, the
arm base position (where the iCub arm is down aside
its body) was also included. The Principle Component
Analysis has been applied on the data and the first 3
principal components were selected. This reduced the
dimensionality of the original signal from 6 to 3. These
3 components carry more than 97% of the total statistical
information of the original data.

C. Evaluation of the results

Similar to [18], the intention in the model design was to
perform experiments inspired by those with child participants.
More precisely, the study presented in [2] - where the function
of gestures in learning to count was investigated - was used
to build this model and counting task. In this text we present
the training for a variety of network configurations and we
discuss whether it can be compared to human learning.

To obtain the results presented in this article for each type of
configuration, at first a hyperparameter search was performed
to chose the learning rate value and hidden layer size. It has
been observed that very often the size of a hidden layer in
some range did not influence the result much. Thus, the final
choice of the learning rate and hidden layer size was made in
such a way that those parameters where the same over different
experimental conditions. The reason for this was to make the
results comparable. Their values will be presented separately
for each study (see sections III-B and IV-B)

After these parameters where chosen, the model was trained
in 15 independent repetitions in order to verify the robustness
of the results and obtain reliable standard deviation and mean
value of them. For each of these 15 training runs, the network

has been tested with 50 different test sets to obtain the mean
value of the results for each of the training processes. The
values of the training data and test data were generated as
separate sets. A random generator has been used to obtain
them: the training order of numbers was randomised (from 1 to
10) and the spacial locations of the objects, out of 20 possible
positions (note that possible arrangement of the objects grows
exponentially with their number up to 6.7E11 for 10 objects).

III. STUDY 1: COMBINATION OF MODALITIES

The intention of this study is to investigate a variety of the
training configurations that can be obtain by the model. This
will help to comprehend the dependencies in the model and
what kind of inputs and outputs have significant influence to
the model performance.

A. Experimental Conditions
All possible combinations of inputs and outputs together

with their correlations with human trials are presented below.
Several configurations were omitted as they had no psycholog-
ical reference e.g. training with only gestures as an input and
as output. The results for listed conditions will be presented
in Table I.

Some of these experimental conditions are similar to those
presented in [18]. There are however, some differences in the
training procedure as described in section III-B. All of the
presented configurations used trigger input.

1) Input: Visual; Output: Numbers: Similar to the training
shown in [18]. This configuration corresponds to the condi-
tion when a child is only counting the objects since is not
allowed to point to them. This experimental condition could
be obtained by the network as shown in Fig. 2, where Gestures
output and input blocks (together with output-input feedback
loop between them) were removed.

2) Input: Visual; Output: Gestures: The purpose of this
condition was to check the hypothesis that gesture propriocep-
tive signals might be easier to learn in a separate dedicated
training, when no counting is performed. This configuration
corresponds to the situation when a child is asked to point
to all objects from left to right. The network structure is
very similar to the previous experimental condition with the
only difference that the numbers’ output is replaced by the
gestures’ one. Although training seems to be similar, there
is a direct correlation between visual input and gestures
(gesture signal exactly corresponds to randomly chosen visual
position). There is no such direct correlation between number’s
tag and visual input e.g. the object in position 7 can be a
second object from the left (have a number’s tag ’two’). Thus,
we presumed such training might be easier for the network
and can give interesting results.

3) Input: Visual; Output: Numbers and Gestures: This
training configuration is similar to the next one. However, the
output-input feedback loop was not used (together with gesture
input block, which was a part of that loop). Such training
corresponds to the situation where the child is producing the
gestures herself and at the same time she counts the presented
objects.



4) Input: Visual (and Gestures from a loop); Output: Num-
bers and pointing: This configuration is depicted in Fig. 2.
In this case the network uses all its inputs and outputs.
We consider this training (as well as the previous one) to
correspond to the situation where the child is producing the
gestures herself while counting the presented objects. Pointing
to the object is produced together with the number word. At
the next step (next object), such proprioceptive gesture signal
from the previous pointing is used as an input. Although, this
condition seems more complete, it is also more complicated
and might be more difficult to train. Moreover, the discrete
character of time (causing the one time step difference between
gesture input and output) might implicate that it is not as
adequate to the child pointing case as we intended it to be.

5) Input: Gestures; Output: Numbers: This training corre-
sponds to a situation when the child’s hand is guided by the
teacher and they are pointing to the object, but the child eyes
are covered so she cannot see the objects.

6) Input: Gestures; Output: Numbers and Gestures: This
is very similar training to the previous condition, the only
difference is that the gesture signal is additionally produced
by the network (there is no output-input feedback loop in this
case). This training is intend to show if such a passing of
pointing signal through the network could give any benefits
for the training (compare to gestures used as only input or
only output cases).

7) Input: Visual and Gestures; Output: Numbers: A similar
experimental configuration as used in [18]. In this condition,
the proprioceptive signal from gestures was given as an input
to the network together with the visual input (and trigger).
Ruciński compared this to a situation where the pointing is
performed by a puppet, as described in [2], and presented to
a child that is required to count (without performing pointing
herself). As the nature of the gesture signal is proprioceptive
and not visual, we would rather consider this case more similar
to the situation where the child hand is held and the pointing
is performed by an external teacher.

8) Input: Visual and Gestures; Output: Numbers and Ges-
tures: This configuration is similar to the condition described
previously with a gesture signal additionally produced by the
network.

B. Model Training

The network is trained to count the objects presented in
the form of visual input and/or in the form of propriocep-
tive gesture signal. The training uses supervised learning by
backpropagation through time. Differently to [18], the results
were obtained using one stage training - no pre-training was
used. The training data set consists of two sequences of length
12. The visual input for both these sequences was the same; it
was constant over the 12 time steps and it was representing the
positions of objects in front of the robot. In the first sequence,
the trigger input, all number target outputs and target and/or
input gestures were equal to zero throughout all time steps. For
the second sequence the trigger input was equal to one, the
number targets consisted of a sequence of words corresponding

to the numbers (from 1 to up the number of objects presented
to the model) and the remaining words of the sequence were
set to zero. Similarly, target and/or input gesture sequence
consisted of proprioceptive signal corresponding to the loca-
tions of presented objects, from left to right. The remaining
positions in the sequence were consequent repetition of the
last pointing value. This approach for gestures is reasonable
when they are given as an input; when a zero value or base
position is set in the remaining elements of the sequence, the
NN easily learns to distinguish it and stop counting when that
value appears (reaching 100% accuracy).

Such a collection of two sequences was constructed for
each of 11 possible numbers (possible amount of objects)
from 0 to 10 (giving 22 sequences, each with 12 times steps).
We will call this set a sub-epoch set, the order of numbers
(represented by pair of sequences) was chosen randomly with
an alternating trigger. Training sub-epoch and test sub-epoch
sets were randomly generated; each of them consists of all the
same numbers from 0 to 10 but each of these numbers have
objects in random, different spacial locations (for visual input
and gestures).

The Adam optimizer was used for the training. Each training
cycle consists of 20000 sub-epochs, using batch training (the
batch consists a full 22 element sub-epoch set). A starting
learning rate was chosen to be 0.005 and a hidden layer size
was set to 68 (chosen in a way described in section II-C). An
exception was made for a condition 2 (Inputs: V, Outputs: G)
and the learning rate was set to 0.02 in order to obtain good
results. The weights were initialized using Glorot uniform
initializer and biases were initialized with zero values.

The counting numbers are considered as correct when the
whole sequence for a given number of objects was fully
correct. For the gesture output, the sequence could be partially
correct when some of the sequence elements were correct (e.g
when counting 10 elements and the pointing was performed
correctly to 3 of them, the performance for that sequence
would be 30%) . As the remaining elements of the sequence
are constant and are less important from the point of view of
the correct counting (as they are repetition of the last element)
we will only consider n+1 first elements of the sequence,
where n is the number of counted objects.

C. Results

The results of all simulations are presented in Table I. The
results for counting are higher than those presented in [18].
This is especially visible in case of experimental conditions 1
(with visual input and numbers as an output). There are several
reasons for this. The main one depends on the usage of the
Adam optimizer, which was able to increase the performance
of the network and learn counting much better even when
only visual input was given. Additionally, the improvement of
the training was achieved by using batch training (with sub-
epochs sets used as batches). When gradient descent optimizer
was used we obtained results much more similar to [18]

In our study the results were not much improved when pre-
training of number recitation was used (as it was in [18]). The



TABLE I
COLLECTED RESULTS FOR STUDY 1

Experimental Conditions % of correct responsesa
Cond. Inputs Outputs Countingb Gestures

1) V N 90.3 (4.9) -
2) V G - 60.4 (8.7)
3) V N, G 86.8 (6.8) 34.2 (2.9)
4) V (+ Gc) N, G 84.9 (8.1) 32.5 (4.0)
5) G N 97.5 (1.8) -
6) G N, G 96.9 (1.6) 97.7 (1.9)
7) V, G N 96.8 (3.8) -
8) V, G N, G 98.6 (1.2) 92.0 (4.4)

aValues are presented in a form: mean (SD).
b% of correct counting responses for 1 to 10 items.
cGestures from a loop.

reason for this might be that they were already very high. For
example for the configuration 7 (inputs: V,G and outputs: N)
we obtained 96.8% (Table I) and when pre-training of numbers
(Stage 1A from Study 2) was used, additionally, we got a result
of 97.6%. Thus, those results were not presented.

All of the repetitions were separate simulations giving a
final neural network tested with test data. A one-way ANOVA
was used between groups of results for statistical analysis.

1) Counting results: As expected, and described in [18],
the results with gesture input were significantly higher than
those without them. When we compare the corresponding
results where the gestures were added as an input: the analysis
showed a strong significant difference when condition 1 with
7 and 3 with 8 were compared (p < 0.001 in both cases). It
was also visible that using gesture input instead of visual,
gave strong significant improvement as well (comparing 1
with 5 and 3 with 6 gave p < 0.001). Surprisingly, there was
no improvement of counting observed when the network was
trained to produce gestures and used them in an output-input
feedback loop. The results for such training were worse than
those where only visual input was provided (see condition 1
and 4 in Table I). What was also unexpected, the configuration
with the output-input feedback loop (4th condition) performed
worse than the one without the additional gesture loop (3rd

condition). However, the difference was not statistically sig-
nificant (p = 0.5). As mentioned before, the reason why
results with a loop are not better might be that the model
is more complicated and needs more training time or it might
be because of time step delay appearing in the output-input
loop. When gestures were used as an independent input and
output their influence on counting (compare to the case where
gestures were only the input) was not visible.

2) Gestures results: Important observation from the results
is that the pointing performance was much better when the
network was trained only to produce gestures without being
trained to count - the percentage of correct responses was
almost doubled (see conditions 2,3 and 4 in the Table I).
Obviously, the configuration with gesture inputs gave much
better gesture results, as the network have the full information
at the input (condition 6 and 8).

Fig. 3. Double pre-training. Polygons represent all-to-all connections between
the layers of neurons. Numbers in the rectangles corresponds to the number
of neurons, “nh” represents their number in the hidden layer

IV. STUDY 2: DOUBLE PRE-TRAINING

As the results from the Study 1 did not provide some
of the expected improvement of the network performance,
another experiment was proposed where a more complex
multi-stage training was introduced. In this study we check
the performance of learning to count and to produce gestures
when one or two pre-training stages were added (for number
recitation like in [18] and for pointing).

A. Experimental Conditions

There are only two types of experimental conditions con-
sidered in this study (both discribed in section III-A). They
both can correspond to a situation where a child is producing
gestures herself and counts presented objects at the same time:

• Input: Visual (and Gestures from a loop); Output: Num-
bers and pointing

• Input: Visual; Output: Numbers and Gestures

B. Model Training

The training of this model can be divided into three stages,
two pre-trainings (Stage 1A and Stage 1B) and the main
training (Stage 2). The architecture of the trained networks
from both pre-trainings can be found in Fig. 3. These two
stages could be run in parallel as they use different weights
(different parts of the NN). We considered and compared
simulations without pre-training, with one or with both pre-
trainings.

All the training stages used a supervised learning by back-
propagation through time with the Adam optimizer.

The training described below was performed in two training
conditions where a sequence of pointing proprioceptive signals
was constructed in a different way. The first condition was the
same as described in Study 1:

• “Stay at the last one”: For the trigger input set to zero,
the input gestures were equal to zero throughout all time
steps. For the trigger input set to one, input gestures
consisted of a sequence corresponding to the locations of
the presented objects, from left to right, and the remaining
gestures in the sequence were consequent repetition of the
last pointing value. As mentioned before, this approach
is reasonable when gestures are given as an input. This



condition was used in the second study to make the results
comparable with Study 1.

• “Go to base” (introduced one): When the trigger was
equal to zero, the input gestures were set to the base
position signal throughout all time steps. The base po-
sition was obtained when the robot arm was directed
down the robot body (the iCub “home position” for the
robot simulator). When the trigger was equal to one,
the input gestures consisted of sequence corresponding
to the locations of presented objects, from left to right
(as before). The remaining gestures were set to the base
position value. This condition seems to be much more
similar to a human condition, where a child simply stops
pointing after the counting is finished.

1) Stage 1A number pre-training: Psychological studies
shows that human children can recite numbers, so they acquire
a list of tags (numbers’ names), prior to acquisition of counting
skills [26]. In this training stage the network is taught to recite
the numbers’ names from 1 to 10 (same type of pre-training as
in [18]). In this stage, neural network uses only the trigger as
an input (see Fig. 3). Similarly as in Study 1, the training data
set consist of two sequences of length 12. In the first sequence,
the trigger input and all number target outputs were set to
zero throughout all the time steps. In the second sequence,
the trigger input was one and the number targets consist of a
sequence of words corresponding to the recited numbers, from
1 to 10 and the remaining 2 words were set to zero.

The training was run for 7000 epochs with a learning rate
of 0.01 and a hidden layer with 20 neurons and the weights
were updated using batch training. The size of the hidden layer
and learning rate were chosen using the same approach as
described in section II-C.

2) Stage 1B gesture pre-training: When children start to
count (around 2-3 years old [5]) they are already capable of
complex motor skills (children successfully perform reaching
task before their age of 28 months [27]). To reflect this in
our studies, we decided to add another pre-training where
the network is taught to point correctly to the locations
indicated by the objects in the visual input. In this stage, the
neural network uses visual and trigger inputs and produces
a gesture sequence as an output (see Fig. 3). This training
stage is conducted in the same manner as the training in the
experimental condition number 2 in the first studies (with
additional “go to base” condition being applied).

3) Stage 2 learning to count: This training is run in exactly
the same manner as Study 1’s trainings. With the remark
that two training conditions were considered. However, the
learning rate was again chosen in a manner described in
section II-C and set to 0.001. The hidden layer was a sum
of hidden layer neurons from Stage 1A and 1B. We found
that results for Stage 1A were practically perfect for a wide
range of hidden layer size, so the size used in that stage
(20 neurons) was chosen to optimize the performance of the
whole multi-stage training. As mentioned before this training
was conducted for two configurations with the output-input
loop and without it (see section IV-A). The network is fully

TABLE II
COLLECTED RESULTS FOR STUDY 2 - COUNTING

Pre-trainings useda

No Stage 1A Stage 1B Both

Sb Ld 84.9 (8.1) 87.9 (5.9) 95.0 (2.4) 97.5 (1.3)
NLe 86.8 (6.8) 88.5 (5.2) 95.9 (2.6) 97.8 (1.0)

Bc L 85.0 (11.7) 89.7 (5.4) 99.1 (1.4) 99.6 (0.4)
NL 87.4 (7.9) 87.4 (6.4) 99.0 (0.9) 99.5 (0.6)

a% of correct responses for 1 to 10 items, in a form: mean (SD).
b“Stay at the last one” training approach.
c“Go to the base” training approach.
dTraining with output-input gesture loop.
eTraining with no output-input gesture loop.

TABLE III
COLLECTED RESULTS FOR STUDY 2 - GESTURES

Pre-trainings used
No Stage 1A Stage 1B Both

S L 32.5 (4.0) 33.0 (2.9) 43.0 (2.9) 64.8 (2.3)
NL 34.2 (2.9) 34.8 (2.1) 45.3 (2.4) 65.1 (3.1)

B L 24.2 (2.2) 25.2 (2.5) 44.2 (2.4) 56.5 (2.3)
NL 26.7 (2.8) 25.4 (1.8) 45.2 (2.8) 56.9 (2.2)

connected, thus, it can be found that some of the weights
were not pre-trained. Their values were initialized using Glorot
uniform initializer.

C. Results

The model was trained in 15 independent repetitions, where
each of the training cycles (repetitions) finished with testing
the network with 50 different test sets. The mean values of the
results and their standard deviations (in brackets) are shown
in Table II and III. For statistical analysis a one-way ANOVA
was used to compare each of the presented results with one
another.

1) Counting results: As can be seen in the tables and in
Fig. 4 the best results were obtained when both pre-trainings
were applied and the worst when no pre-training was used,
as expected. Statistical analysis in all 4 conditions (S+L,
S+NL, B+L, B+NL) between different pre-training options
was performed:

Fig. 4. Results for different pre-training options, for the network with no
gesture loop and for both training conditions (S and B).



Fig. 5. Typical example of Stage 2 training loss functions (counting part of
it) for first 10000 sub-epochs, for trainings with different pre-training options.
Plots obtained for training with no gesture loop and for “Go to base” condition.

• with no pre-training and with Stage 1A, showed that there
is no significant difference.

• with no pre-training and with Stage 1B, showed that
there is a strong significant difference (p < 0.001 for all
conditions)

• with Stage 1A pre-training and with both pre-trainings,
showed that there is a strong significant difference
(p < 0.001 for all conditions)

• with Stage 1B pre-training and with both pre-trainings,
that there is a significant difference for the training
condition “stay at the last one” but no significance for “go
to base” (p = 0.0017, 0.02, 0.19, and 0.11 respectively)

As described above, Stage 1B had a bigger positive impact
on the training with respect to Stage 1A. However, as shown in
Fig 5, the influence of number pre-training is easily noticeable
in the first stages of the training.

As in Study 1, there is no impact of using the gesture loop
in the training. For all four pre-training options in both “stay
at the last one” and ”go to base” conditions the difference
between training with the loop or without it was statistically
not significant (p ∈ [0.32, 0.85] for all 8 considered pairs).

It was expected that the network will give better results
when trained in the “go to base” condition. As mentioned
before, in this case the neural network could potentially
recognise the situation when the base position is achieved to
stop counting. This influence is visible when Stage 1B pre-
training or both pre-trainings were used. Analysis showed that
for these training options (and for network with or without
gesture loop) the difference (between S and B conditions) is
strongly significant (p < 0.001). This influence was not found
when gestures’ pre-training was not used (“No” and “Stage
1A” pre-training options).

2) Gestures results: Similarly, as in case of counting the
best performance of the network was observed when both
pre-trainings were applied and the worst when no pre-training
was performed. Statistical analysis for all 4 conditions (S+L,
S+NL, B+L, B+NL) between pre-training options was per-
formed for gestures results:

• with no pre-training and with Stage 1A, showed that there

is no significant difference.
• with no pre-training and with Stage 1B, showed that

there is a strong significant difference (p < 0.001 for all
conditions)

• with Stage 1A pre-training and with both pre-trainings,
showed that there is a strong significant difference
(p < 0.001 for all conditions)

• with Stage 1B pre-training and with both pre-trainings,
showed that there is a strong significant difference
(p < 0.001 for all conditions)

The influence of number recitation pre-training was not visible
when comparing the training using Stage 1A pre-training with
the training where no pre-training was performed. However,
the number recitation pre-training had a very significant pos-
itive impact on the results when both pre-trainings were used
(in comparison to the situation where only gesture pre-training
was applied). This impact is stronger than expected for gesture
results (stronger than observed in case of counting results).

The difference of performance between networks with
gesture loop and without was again not observed; it was
statistically significant only in two configurations (S with
Stage 1B pre-training: p = 0.036 and for condition B when
no pre-training was performed: p = 0.016) in favour of the
network without the loop.

“Stay at the last one” training gave better pointing results,
with the exception of trainings where only Stage 1B pre-
training was used. A one-way ANOVA analysis showed a
strong significance of this difference for those conditions
(p < 0.001). This gesture trend is already visible in Stage 1B
pre-training results. Those partial results are as follows:

• “Stay at the last one”, 60.4% (8.7)
• “Go to base”, 45.3% (4.0)

It seems that in case of the training with gesture pre-training,
the neural network loses some of its capability to point in
favour of counting1. This is not visible for other pre-training
options, possibly because, in other cases there is a dedicated
(by applying number pre-training) part of the network to
produce numbers and so the part responsible for gestures is in
some way isolated. This might be also the reason why results
for training with only Stage 1B pre-training are significantly
worse than those where both pre-trainings were used.

V. CONCLUSIONS AND DISCUSSION

In this paper a neuro-robotics model with recurrent artificial
neural network capable of producing the pointing gestures
while counting the objects was proposed. The model allows
us to measure the contribution of the produced pointing signal
to learning to count. The presented studies show a high
improvement of counting when the network is pre-trained to
perform pointing and then use them while counting. Results
confirms that the generation of gestures improves the model’s
counting abilities.

1The training loss function is calculated as a sum squared error. This
definition of loss function and the fact of using gestures as real numbers
cause that their weight in the final result is, in some way, lower than the
counting weight



Moreover, the results are not only better than the one
obtained by the network with only visual input but comparable
or even better than the results where the network uses gestures
as an input. When we compare the results from the network
with gesture input (configuration 7 in Study 1) pre-trained
for recitation in “stay at the last one” training condition with
results from NN from Study 2 (with both pre-trainings) in
“go to base” condition we get the results 97.6% and 99.5%
respectively. The improvement is in favour of the network
with gestures produced as an output (ANOVA analysis showed
statistical significance, p = 0.0033). When “stay at the last
one” condition was used for both networks we obtained very
similar results (97.6% and 97.8%). This observation stays in
line with the human study presented in [2].

When multi-stage training was performed, the learning rate
values were chosen using hyper parameter search for each
stage of the training to optimize the results. Their values in pre-
trainings were higher then the one found for the final training.
This is also in accordance with neuroscience studies [28].

A few issues concerning the model are discussed below.
Due to the RNN implementation of discrete time the syn-
chrony between gestures and number words produced is easily
obtained. However, in the case of children, synchronising the
number words with counted objects may be one of the major
functions of gestures [2], [7]. To address this issue, a model
with continuous time would have to be considered.

Another possible improvement of the model could be
achieved by using number words more similar to names used
in human language. Such a change could potentially influence
the sequence of words produced by the network (e.g. if two
numbers have similar names they could be swapped causing
a string error).

Finally, a more complex visual input could be used. This
would possibly require significant extension of the network.
In this situation, a deep neural network with spatial filters
and partially unsupervised training might be implemented,
as applied for numerosity visual sensation and numerosity
comparison in [29].

The results presented in this article provide quantitative
evidence in support of cognitive embodiment theory that
number cognition and counting can be boosted by gestures.
It seems clear that the network correlated the spatial position
of the objects (and pointing procedure) with the numbers’
tags, as otherwise it would not be able to take advantage
of the produced gestures. The future, analysis of the internal
behaviour of the model can be valuable in understanding of
the contribution of pointing on learning to count.

REFERENCES

[1] F. Xu and E. S. Spelke, “Large number discrimination in 6-month-old
infants,” Cognition, vol. 74, no. 1, pp. B1–B11, 2000.

[2] M. W. Alibali and A. A. DiRusso, “The function of gesture in learning to
count: More than keeping track,” Cognitive development, vol. 14, no. 1,
pp. 37–56, 1999.

[3] K. Wynn, “Children’s acquisition of the number words and the counting
system,” Cognitive psychology, vol. 24, no. 2, pp. 220–251, 1992.

[4] ——, “Children’s understanding of counting,” Cognition, vol. 36, no. 2,
pp. 155–193, 1990.

[5] M. Le Corre and S. Carey, “One, two, three, four, nothing more: An
investigation of the conceptual sources of the verbal counting principles,”
Cognition, vol. 105, no. 2, pp. 395–438, 2007.

[6] M. H. Fischer, L. Kaufmann, and F. Domahs, “Finger counting and
numerical cognition,” Handy numbers: finger counting and numerical
cognition, p. 5, 2012.

[7] T. A. Graham, “The role of gesture in children’s learning to count,”
Journal of Experimental Child Psychology, vol. 74, no. 4, pp. 333–355,
1999.

[8] V. M. De La Cruz, A. Di Nuovo, D. N. Santo, and C. Angelo, “Making
fingers and words count in a cognitive robot,” Frontiers in behavioral
neuroscience, vol. 8, 2014.

[9] S. Goldin-Meadow and S. Jacobs, “Gestures role in learning arithmetic,”
Emerging Perspectives on Gesture and Embodiment in Mathematics,(in
Press), 2014.

[10] F. Soylu, F. K. Lester Jr, and S. D. Newman, “You can count on your
fingers: The role of fingers in early mathematical development,” Journal
of Numerical Cognition, vol. 4, no. 1, pp. 107–135, 2018.

[11] A. Cangelosi and M. Schlesinger, Developmental robotics: From babies
to robots. MIT Press, 2015.

[12] D. J. Amit, “Neural networks counting chimes,” Proceedings of the
National Academy of Sciences, vol. 85, no. 7, pp. 2141–2145, 1988.

[13] P. Rodriguez, J. Wiles, and J. L. Elman, “A recurrent neural network
that learns to count,” Connection Science, vol. 11, no. 1, pp. 5–40, 1999.

[14] K. Ahmad and T. Bale, “Simulation of quantification abilities using a
modular neural network approach,” Neural Computing & Applications,
vol. 10, no. 1, pp. 77–88, 2001.

[15] K. Ahmad, M. Casey, and T. Bale, “Connectionist simulation of quan-
tification skills,” Connection Science, vol. 14, no. 3, pp. 165–201, 2002.
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