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Abstract—In the brain, the structure of a network of neurons
defines how these neurons implement the computations that
underlie the mind and the behavior of animals and humans.
Provided that we can describe the network of neurons as a
graph, we can employ methods from graph theory to investigate
its structure or use cellular automata to mathematically assess
its function. Additionally, these graphs can provide biologically
plausible designs for networks, which can be integrated as
reservoirs to support computing. Although, software for the
analysis of graphs and cellular automata are widely available.
Graph extraction from the image of networks of brain cells
remains difficult. Nervous tissue is heterogeneous, and differences
in anatomy may reflect relevant differences in function. Here
we introduce a deep learning based toolbox to extracts graphs
from images of brain tissue. This toolbox provides an easy-
to-use framework allowing system neuroscientists to generate
graphs based on images of brain tissue by combining methods
from image processing, deep learning, and graph theory. The
goals are to simplify the training and usage of deep learning
methods for computer vision and facilitate its integration into
graph extraction pipelines. In this way, the toolbox provides an
alternative to the required laborious manual process of tracing,
sorting and classifying. We expect to democratize the machine
learning methods to a wider community of users beyond the
computer vision experts and improve the time-efficiency of graph
extraction from large brain image datasets, which may lead to
further understanding of the human mind.

Index Terms—neural network, deep learning, graph, reservoir
computing, segmentation, cellular automata, in-painting

I. INTRODUCTION

One of the goals of systems neuroscience is to obtain a
mechanistic model that describes and explains how networks
of neurons in the brain implements perception, thought, and
behavior. Because structure implements function in biology,
an unavoidable step towards these mechanistic models is to
describe the structural connectivity of the network of neurons
in the brain. Once a connectivity map (i.e., the description
of the network) from a network of neurons is obtained,
the it can be described as a graph or a cellular automaton.
This description may then be used as constraint to leverage
methods from graph theory [1] to further analyze the network
structure, or its functional complexity [2], which could ul-
timately contribute in three ways. First, by moving further
the understanding on how to use biological substrates for
computing [3], [4]. Second, by improving computing methods
in AI by supplying biologically derived network structures that
can be used as reservoir networks [5]. Finally, by offering an
mathematical abstraction of the biological system that can be
used to compare neural networks with endogenous or induced
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pathology with the healthy ones [6], providing ground for
medical advancements.

Nonetheless, obtaining these matrices of structural connec-
tions between neural nodes is a challenging and cumbersome
endeavour. Especially from microscopy images (see Fig. 1).
Although some methods have been recently developed to au-
tomatize the process, they still rely on basic image processing
steps that demand substantial time to find suitable parameters
and curate the results [7]. Furthermore, these automatic meth-
ods are not very robust, and as an effect, the gold standard
approach still is to trace these connections manually.

Unlike other biological substrates from which networks can
be extracted, the brain is constituted of billions of neurons with
diversified morphology, and a few orders of magnitude higher
number of connections (i.e., synapses) [8]. This additional
complexity implies that different nodes in a graph network
should have different properties and represent different cell
types or structures in the brain. Because this structural in-
formation is critical to understand the brain, it is of utmost
importance that automatic tools take them into account. To
the best of our knowledge, such methods are not currently
available.

Furthermore, experimental constraints (e.g., multi-electrode
arrays, patching pipettes) frequently obstruct the view of part
of the image (black lines in Fig. 1), consequently preventing
the connection of nodes that otherwise would be linked. Al-
though these gaps can be easily handled by human intervention
(i.e., by estimating the edges that connect two nodes), no
simple image processing method can properly handle this
problem as the data in the obstructed area is missing. To
cope with this problem, one must be able to reconstruct the
missing data by inferring how it would look like based on
the surrounding area and what is typically known about the
morphology.

Modern machine learning techniques that leverage the
power of convolutional neural networks (ConvNets) may be
used to automatize many of the steps mentioned earlier. In-
painting algorithms can be used to estimate missing data
caused by image obstruction, object detection algorithms can
be employed to locate and classify diverse structures in
the brain, and unsupervised segmentation algorithms can be
leveraged to extract skeletonized versions of the image, just
to name a few. This would allow for a comprehensive graph
extraction from image in neuroscience settings. The challenge
regarding employing ConvNets is that due to its novelty and
complexity, deep learning methods are not widely available
to non-specialists in computer vision. Additionally, most of
these methods require training, which by itself is generally
poorly documented, preventing non-expert in computer vision
from experimenting and benefiting from ConvNets in their
neuroscience research.

Motivated by the foregoing shortcomings, we present a
deep learning based toolbox to extract graphs from images
of in vitro cortical networks. This toolbox is a framework
constituted by an extensible library of methods that can be
integrated into a computer vision pipeline. The library is based

Fig. 1. Raw image example as acquired from the microscope. The black lines
ending in circle are ”blind-spots” created by the multi-electrode array.

on a combination of standard image processing algorithms
available in OpenCV [9] and SKimage [10], and deep learning
based methods for object detection, image/line segmentation,
in-painting and style transfer implemented in Pytorch [11].
Additionally, the toolbox has a graphical user interface (GUI)
that simplifies the steps of assembling the graph extraction
pipeline, which includes the training of the supervised machine
learning algorithms.

The main contribution of this paper is to make available
deep learning based methods for computer vision to the neu-
roscience community through a reusable, flexible and scalable
tool. Through this toolbox, we hope to make deep learning
methods more widely accessible to neuroscientists.

II. IMAGE ACQUISITION

The images were prepared as follows: human cortical neural
networks were differentiated and matured from iPSC-derived
NSCs (ax0019, Axol bioscience). Each multi-electrode array
(MEA) was briefly sterilized using ethanol, washed with water,
UV-treated over-night, and hydrophilized by application of
foetal bovine serum for 30-60 minutes at room temperature.
The surface was subsequently double-coated using poly-L-
ornithine (0,01%) and laminin. The appropriate neuronal cell
culture media were heated to 37°C and used to create a
single-cell suspension, from which 100.000 cells were seeded
directly onto the electrode area of each MEA in a dropwise
manner. For some cultures, a feeder-layer of astrocytes (5000
per MEA) was first established, upon which 50 000 neuronal
cells were seeded onto. The MEA neuronal cultures were
kept in a standard humidified air incubator (5% CO2, 20%O2,
37°C), and 50% of the media were changed every 2-3 days.



Fig. 2. Graph extraction pipeline.

Phase contrast images were acquired at various stages of
neuronal differentiation and maturation on the MEAs using
the laboratory light microscope Carl Zeiss Axiovert 25 with 5
and 10X objectives.

III. THE PIPELINE

The kernel of the toolbox is the graph extraction pipeline
(Fig. 2). It enables visualization, correction and analysis of the
structures depicted in the input image. This pipeline consists
of an ordered sequence of methods, which will output a graph
representation of the network from the input image. Addition-
ally, some of the steps of the pipeline require preparation(i.e.,
training) in case of different acquisition setup. The obtained
graph provides weights, edge lengths and node type, which
should reflect anatomical structure.

The default pipeline combines algorithms in three major
categories that correspond to the sequential series of stages
in the pipeline: image processing, structure segmentation, and
structure mapping, which ultimately outputs a graph that can
be further pruned. What follows is a high-level description of
the stages.

A. Image processing

Image pre-processing involves doing image transformations
that allows the subsequent algorithms to perform more ro-
bustly. Our method has a set of ready-to-use algorithms that
may be employed interchangeably to compose the image
processing steps. Most of them are standard image trans-
formations like color space change and filtering (including
sharpening and blurring), widely available through OpenCV
and SKimage libraries. Additionally, deep learning based
algorithms were included, namely: style transfer [12] and in-
painting [13]. These two methods rely on VGG16 networks
pre-trained on ImageNet dataset [14], but may be adjusted
to leverage [15] other networks such as inception, which

allegedly will improve their accuracy. Because these algo-
rithms must be further fine-tuned to properly work with the
dataset from the experiments (see training), training steps were
included in the pipeline to make the process intuitive. The
reason why in-painting (Fig. 3D) and style transfer (Fig. 3E)
were included in the pipeline is because they enable to cope
with missing data. This data loss is caused by obstruction
of the field of view during experiments. These obstructions
are common in histological experiments as often electrodes
and pipettes (which are optically obstructive) are used to
measure physiological parameter from cells (see black marks
in Fig. 1). Additionally style transfer enable reducing problems
caused by differences in imaging settings, which tend to affect
segmentation, detection and classification algorithms. Finally,
to facilitate and speed up the graph extraction, the image
is subdivided in squared tiles of 256x256 pixel. The entire
pipeline is performed on each individual tile. The output of
this step is a image that is free of obstructive artifacts, such as
electrodes and pipettes, and properly balanced to match low
level features found in the remaining of the dataset.

B. Structure segmentation

In the structure segmentation stage, two things are crucial.
First is to build a mask that describes the network of neurites
(projection structures of the dendrites), which ultimately will
allow to build a connectivity map with edges and nodes.
And second, to identify which of the nodes are likely to be
morphological relevant structures such as neurons, astrocytes
(glial cells) or cluster of neurons, because this information can
be used to further prune the network map once it is obtained.

We provide two interchangeable avenues for unsupervised
segmentation: Guided watershed [16] and W-Net [17]. We
noticed that depending on the characteristics of input image
these algorithms perform the best. The main goal of this step
is to separate the structures that compose the network from
everything else and compose a mask. Additionally, supervised
methods can be employed, requiring two additional steps,
which is labeling and training as part of the pipeline. Although
we tried different methods, binary segmentation was best
obtained using the method described in Shvets et al. [18],
adapting the AlbuNet-34 to work with images of 256x256
pixels. Thus this method is provided as the standard alternative
to unsupervised segmentation.

In order to detect nodes that belong to different cell types,
the object detection algorithm, yolov3 (You Only Look Once,
version 3.0) [19], was included in the pipeline. This method
operates by detecting combinations of spatial features in the
image, locating their position and area, and classifying them
under a predefined category (namely: astrocytes, neurons and
clusters of neurons; see Fig. 3F) with an explicit probability.
This algorithm requires training, and substantial amount of
data to be trained (see training). The center of these detected
areas is used by later steps in the pipeline to discriminate
synaptic nodes from cell body nodes.



Fig. 3. Graph extraction example. A- 256 x 256 Crop of a raw image as acquired from the microscope. B- Segmentation of the electrode area in grey.
C- Mask of the area to be in-painted. D- Intermediate step in the inpainting process. E- End result of the in-painting algorithm. F- Cells identified by type
with yolov3, blue boxes are neurons, yellow box is a cluster of cells, astrocytes are omitted. G- Intermediate step of the structure segmentation. H- Graph
extraction example, the red represents the nodes, the blue are the edges connecting the nodes and the yellow is the thinned (skeletonized) version of the
network identified. I- Graph output describing the network in H.

C. Structure Mapping

Once the previous stages are performed to every patch of
the image, the information is used to reconstitute the complete
binary mask of the image and proceed with the following
steps: Thinning and Graph extraction.

1) Thinning: The next step is to skeletonize the mask so
no pixel in the mask has two or more neighbor pixels that
belongs to the mask and are neighbor to each other (see Fig.
3H, yellow lines). To do that, we implemented the improved
Zhang-Suen Thinning algorithm [20]. This method was chosen
because it produced less artifacts in the intersection of lines
(blobs and missing pixels).

2) Graph extraction: Having obtained the skeletonized
image we then detect the positions of nodes and the edges
that connect them so we can create a graph. The graph is
generated through the NetworkX [21] library. To detect the
nodes, we filter the image with series of 3x3 filters. Each
filter represent one possible scenario for a node where the
center pixel belongs to the filter and one or at least three
other neighbors also belong to it and are not neighbors to each
other. This guarantees that intersection nodes and end-of-the-
line nodes are contemplated, but those points that belong to
lines are ignored.

Edges between nodes are detected by the following steps.
Firstly, the skeleton is segmented in edges by removing the
node pixels from the skeletonized mask, each one of these
edges has its own label automatically defined as 1 to the
number of available edges. Secondly, these segmented edges
are dilated. Thirdly, the edges that overlap with two nodes
are added to the graph as a bidirectional edge. Finally, the
overlapping segmented edge is removed from the set of

possible edges. The process repeats until no edges are left
(see Fig. 3H blue lines).

If the Structure Detection step has been executed success-
fully, the nodes which are closest to the center of the regions
of interest generated by the object detection algorithm will
acquire the category of the identified object (e.g., neuron,
cluster).

This type of representation of the network in graph is anal-
ogous to a connectivity estimation, which is highly relevant in
neuroscience to infer functionality. Hence the graph extraction
method can contribute to connectivity analysis as performed
by Maccione et al. [2] and Ullo et al. [22], but without
the cumbersome and time-demanding step of extracting the
connectivity map manually.

D. Graph pruning

Graph pruning is the procedure of editing the connections
in the graph to remove false positives and include false
negative nodes and edges. The process has two components:
one automatic and one manual. Nodes that are identified as
belonging to identified astrocytes are removed, and all the as-
sociated edges, because these connections do not translate into
possibly functional connections with respect of transmitting
information. This process is done automatically without the
intervention of the user. As the last step, it is given to the
user the opportunity to edit the graph extracted by removing
or adding new edges, tracing new edges between them and
assigning properties to each node. This is done through graphic
interface where the representation of the connectivity map
(Fig. 3H) is overlapped with the ground truth image (Fig. 3A).



E. Training

In order to use the methods that depend on supervised
learning, the user has to provide first a set of good examples so
the algorithm can be properly trained. This process is usually
poorly documented and the data format that the algorithm
should receive is usually obscure. We make this step explicit,
by declaring exactly what should be the data format, and
providing a simple interface that the users can use to generate
the training data themselves and train the model.

1) Training in-painting: To train the in-painting [13] net-
work, we need a set of ground truth images, and a set
of masks that would match in shape and size the typical
artifact obstructing the original image. To generate this data,
we segmented the dark areas of original raw image using
a simple threshold. We dilated the segmented areas with a
5x5 circular kernel to include the edges of the artifact areas.
We randomly cropped the mask image in images of 256x256
pixels. The images in which 1/4th of the area was occupied
by the electrode mask were selected for the mask pool. Each
mask was then copied 35 times and rotated cumulatively by
10 degrees until we had 36 versions of the same mask in all
orientations.

To extract the ground truth images, we cropped patches of
256x256 pixels from the original image where no pixel in the
patch overlapped with the coordinates of a pixel belonging
to a mask. To expand the dataset, the selected patches were
flipped and rotated 90, 180 and 270 degrees.

2) Training Semantic Segmentation: Semantic segmenta-
tion using Albunet-34 requires a binary mask of 256x256
pixels (matching the image input size). For each of the images
in the training set the user has to paint the mask with an inbuilt
interface implemented with tkinter. The dataset is amplified
by adding horizontal and vertical flipped version of the input
image and matching mask. As training metric we used the
variation of the Jaccard Index [18]:

I =
1

n

n∑
i=1

(
yiŷi

yi + ŷi − yiŷi
) (1)

Where I is the metric for intersection over union of binary
pixels, yi is the ground truth binary value of the pixel in the
target mask, and ŷi is the prediction probability associated to
the same pixel.

3) Training object detection: To train the Yolov3, we de-
fined regions of interests (ROIs) by drawing a bounding boxes
from a subset of patches (100 images, randomly picked). This
ROIs are constrained by the vertical and horizontal coordinates
of its centroid and its height and with as ratios of the original
image. Each ROI is labeled as an instance of a class of objects.

In our dataset, we defined three labeled structures: neurons,
astrocytes and cluster of neurons. Only neurons and cluster
of neurons were relevant for the graph extraction, thus only
these two labels are displayed. The labeling of astrocytes was
required to prevent falsely detecting astrocytes as neurons.
Once training data is available, training follows by pointing

the location of the data in the storage unit and running the
training function.

Because the amount of data was limited, the network was
pre-trained with the COCO dataset [23] to learn and then
fine-tuned and cross-validated using the labeled images. Our
implementation of Yolov3 operates by predicting 3 boxes in
2 different scales. Thus, the tensor is N x N x[2*(4+1+3)],
where is for the 4 bounding box offsets, 1 for objectness
prediction, and 3 is for the class predictions. Furthermore we
chose 6 clusters in the k-means algorithm to establish our
binding box priors. In our dataset the 6 clusters were (7x9),
(15x16), (22x19), (31x32), (55 x 49), (89x91).

The training progress was displayed on every set of epochs,
which could be defined by the user, and it could be interrupted
at any time. The set of weights with the smaller error was
highlighted to facilitate the use of the pipeline.

IV. DISCUSSION

We presented here a deep learning based pipeline to build
a graph that represents the connectivity of a network of
biological neurons extracted from a microscopy image. This
method represents a substantial step forward in developing
neuromorphic networks. Because it provides means to explore
how biologically developed connections might implement
brain-like computing and intelligence.

Many solutions exist to extract network graphs from images,
including some generic flexible tools. But these tools assume
that the network to be extracted is homogeneous (i.e., all
the nodes are equal). This is a major problem in neuro-
science because biological neurons form highly heterogeneous
networks. In particular, the tools available cannot account
for the difference between neurons and synapses as nodes.
Additionally, they cannot account for differences between cell
types (i.e., neurons vs. glia). This is a major source of error
for describing a network. The abundance of false positives
can lead to a description that is much bigger and dense, hence
increasing the level of complexity which by itself increases the
challenge of analysis. Our toolbox circumvents this problem
by integrating machine learning methods into an easy to use
pipeline to extract graphs from network of neurons. Because
the algorithm detects objects by category, further developments
may be implemented to extract sub-populations of neurons and
include more cell types. One possible avenue is to develop a
specific dataset for brain cell-type detection, which is currently
unavailable in the best of our knowledge.

A second major challenge in the path of automatizing graph
extraction from images of in vitro neural networks is that
these images often come with major artifacts (e.g., electrodes,
pipettes, objects that obstruct the view). We eliminated these
artifacts by combining in-painting techniques and style transfer
through deep learning methodologies. Although not perfect,
we demonstrate that both techniques can provide qualitatively
satisfactory results, allowing to reconstruct a plausible net-
work, despite the artifact. One further point of development
could be to apply techniques to improve the resolution, as it



Fig. 4. Inpaint Training. Each column shows inpainting applied to a different patch of image (ground truth is the lowest row) that was free from visual
occlusion. Masks (in the second row) were extracted from areas in black occupied by the of the electrodes in other patches, rotated and applied on top of the
ground truth to create the input image (first row). The third row shows the output of the inpainting.

may increase the performance of in-painting and style transfer
techniques.

We anticipate that this toolbox will enable neuroscientists
to extract graphs from network of neurons in a more time-
efficient way and consequently contribute in the pursue of the
understanding of perception, intelligence and behavior.
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