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Abstract—The coupled complex-valued memristive neural net-
works (CCVMNNSs) are investigated in this study. First, we
analyze the passivity of the proposed network model by designing
an appropriate controller and using certain inequalities as
well as Lyapunov functional method, and provide a passivity
condition for the considered CCVMNN:Ss. In addition, a criterion
for guaranteeing synchronization of this kind of network is
established. Finally, the effectiveness and correctness of the
acquired theoretical results are verified by a numerical example.

Index Terms—memristive neural networks, synchronization,
passivity, state coupling

I. INTRODUCTION

Recently, coupled neural networks (CNNs) have been
widely concerned owning to their extensive application in
secure communication, chaos generator design, brain science,
etc. As we all know, these applications heavily depend on the
dynamic behaviors of CNNs, especially the synchronization
and passivity of CNNs [1]-[5]. In [2], the impulsive synchro-
nization of Markovian jumping randomly CNNs was consid-
ered by using multiple integral approach. Some conditions for
guaranteeing synchronization of CNNs were obtained in [3].
Ren et al. [5] analyzed the passivity of CNNs with directed
and undirected topologies.

In 1971, Chua [6] first proposed the concept of mem-
ristor. Unlike resistor, because the memristance depends on
the amount of charge passing through it, the memristor can
remember its past dynamic history. Therefore, the memristor
is widespread used in signal processing as well as device
modeling, especially in simulating synaptic behavior [7]-[11].
Moreover, memristive neural networks (MNNs) can better
present the neural processes in the human brain [12]. In recent
years, coupled memristive neural networks (CMNNs) have
been extensively studied and numerous interesting studies on
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CMNNs have been reported [13]-[15]. In [13], the robust
synchronization of CMNNs with uncertain parameters was
discussed.

In fact, complex-valued neural networks (CVNNs) are ex-
tensions of real-valued neural networks in which the states,
connection weights as well as activation functions are all
complex-valued. Certain practical problems cannot be solved
by real-valued neural networks but can be better solved with
CVNNSs. In addition, CVNNs have a wide range of applica-
tions, including emotion analysis, analogy amplification, com-
puter version, imaging, etc. Hence, a large number of studies
have been conducted on the dynamic behavior of CVNNs
[16]-[19]. Complex-valued MNNs (CVMNNs) can be also
built by replacing resistors with memristor in VLSI circuits
of CVNNs as described in [20], which is widely applied
in image processing, engineering optimization and pattern
recognition. Therefore, it is meaningful to study the passivity
and synchronization in CVMNNSs [20]-[23]. The authors in
[20] considered the exponential stability of CVMNNs. The
synchronization of uncertain fractional-order CVMNNs with
multiple time delays was analyzed in [21]. To the best of
our knowledge, the passivity and synchronization of coupled
CVMNNs (CCVMNNSs) has not yet been studied.

Accordingly, the principal goal in the present study is
to investigate the passivity and synchronization problems
of CCVMNN:S . Firstly, a criterion for ensuring passivity of
CCVMNN:Ss is put forward by constructing an appropriate con-
troller and using Lyapunov functional method. Secondly, we
also establish a synchronization condition for the considered
network. Finally, a numerical simulation is given to verify the
correctness of the results.

II. PRELIMINARIES

RY and C¥ respectively symbol the N-dimensional real
vector space and the N-dimensional complex vector space.
Am(+), An(+) denote the minimal and the maximal eigenvalue
of the corresponding matrix. Let e = ef* +ie! be a complex
number, where ¢ symbols the imaginary unit, which satisfies
i = /=1 and eff,e! € R are the real and imaginary part
of e. The norm in CV is denoted as || - ||. For any vector



e(t) € CN, |le(t)] = H(t)e(t) where H denotes the
conjugate transposition. Let e?(t),e(t) € RY be the real
and imaginary part of e(t) € CV, then one has [le(t)|| =

V(R @) Teli(t) + (el (1) Tel (t).
III. PASSIVITY AND SYNCHRONIZATION OF CCVMNNS
A. Network model

On the basis of the physical characteristics of memristor, a
single CVMNN model can be described by

4(t) =—ax(t) + Z buj(2.(8))h (25 (t — 75(¢)))
j=1
+ 2 di (@) f5(21), e =120 ()

where z,(t) denotes the complex-valued state variable of
t-th neuron. @, > 0 is the self-inhibition. b,;(z,(t)) and
d,;j(z,(t)) represent complex-valued memristors synaptic con-
nection weights. h;(-) and f;(-) stand for complex-valued
activation functions for the delayed configuration and non-
delayed one of the j-th neuron. The time-varying delay 7 (%)
satisfies 0 < Tj(t) < Tj <7 = j_{n2ax n{Tj}, f‘j(f) < Vi< 1.

Let (1), bij(z(t), dj(z(t)), h;(-), and f;(-) be the
following:
2(t) = 2/ (t) + iz (¢),

bij(z.(t)) = bk (2 (1)) +iby; (= (1)),

duj(2,(t)) = 43 (2] (t)) + id); (2] (1)),

Fi(z(®) = (=1 (@0) +if] (= (1)),
h (Zj(t —Tj () = hf(ZgR(t —7;(t))) + Zhgl( (t— 75 (1)),
where 2[%(t), b5(2(t)), dii(z" (1)), £lH(z7 (1)), hit(=5i(t—
7;(t))) are the real parts of
z(t), by(2(t),  dig(2(1)), fi(2(8) bzt — 75(2))).
respectively. 7 is the imaginary unit which satisfies i = v/—1.
2 (), b((1),  d(=), fZ®), ki -
7;(t))) are the imaginary parts of
z(t), biy(2(t),  dij(z(1)), fi(2(t) bz — 75(2))),
respectively.

In accordance with the voltage-current characteristic of
memristor, one has

bl t)| < T,
R = { e
bLj’ |ZL (t)| > Fbv
bl HOIESW
b=l (1) = { N
‘ bLj’ |ZL (t)| > Fbv
dR»(ZR(t)) _ 6%57 |ZLR(t)| < Fw
e dft, |z > 1,
dl. L) < Ty,
PACTOVIE SO
dLj’ |ZL (t)| > FL?
: . LR I R I IR I jR I
where ¢,j € {1,2,--- ,n}; bLJ, bLJ, bLJ, bLJ, d, dy;, dY, d;

are all constants. I', > 0 represents the threshold level.

Let b = ma}f{l B BEY, B = max{[bll, |b];]},
L I U )
= 1~ B b, = — B = Jdf ~
dI = |d1 - dl |’ (L )n><n = (b{z)nxm
BR = ding(3, (5% %z;’ (@5) z;’ (015)°)
B' = diag(}2)_, (b )_27221(1% )J i (b)),
DE (dR)nxn’ DI = ({)an’ D =
diag(7_, (d15)% 52, (d5)%, -+ 20 (d)?), DT =
diag(32)_, (d1;)? 7ZJ (d3)7 - 300 ()2

In thls section, we consider the followmg CCVMNNs
consisting of N CVMNNSs (1):

Zs(t) :_AZS(t)—i_B(Zs(t))h(m)+D(Zs(t))f(Zs (t))+u5(t)
N
+9Y GwMZy(t) + 24(t), s=1,2,-- N, (2)
k=1

where Zs(t) = (Za(t),Zs2(t), - ,Zsn(t) € C"
represents the complex-valued state variable of the s-

th node. 0 < A = diag(ai,az, - -,a,) € R"*™,
Zs(t) = (Za(t — 1i(t)), Zs2(t — m2(t)), -, Zsn(t —
()" € C". W(Z(t) = (h(Za(t — 71(1))), ha(Zsa(t —
72(t))), s hn(Zsn(t — Tn(t))))T € C" f(Z(t) =
(fl(Z51(t))5f2(Z52(t))v"' 7fn(an(t)))T e Cy M €
R™*™ symbols the inner coupling matrix. B(Zs(t)) =
(0 (Zs.(t))nxn € C™", D(Zs(t)) = (du(Z (t)))nm €

Cn*", where ¢, = 1,2, ,n. us(t) = ul(t) + iul(t)
(us1(t),usa(t), -+ ,usn(t)T € C™ is the controller to be
designed for obtaining a certain control objective. z(t) =
B () +izl(t) = (zs1(t), ws2(t), -, 2sn(t))T € C™ denotes
the external input of the network. ¢ > 0 is the overall
coupling strength. G = (G4, ) nx N stands for coupling weight
between nodes, where G, = Gis > 0 if and only if

there exists a connection between node s and node x; if not,
Gsx = Grs = 0(s # k); and

N
_ZGSI{; 521725"' 7N'
N
Then, the network (2) can be separated into real and
imaginary parts as follows:

ZE(t) = — AZE(t) + BR(ZE)h(ZE (1) + ul () +a (1)
—BN(ZL(t)h (ZL(t)+ DR(Zf(thR(ZSR(t))
—DNZ{ () f1(Zi() +gZGmMZR<> 3)

ZI(t) = — AZL(t) + BR(ZF)h' (Z ())+us()+ws(t)
+BN(ZL ()W (ZE(6)+D™(ZE 1) 1 (ZL(t))

N
+DN(Z{ () fH(Z() +gZGmMZI<> )
where R (ZE(t)) = (W (ZzEt -

(), h(ZEE — 7)), B Z5(E — ()T

h(Z1(t)) = (M (ZLt — m(), hz(ZsI2(t -



72(1))),: - hI(ZI t — m@)",  fHZER) =
(fIH(Z5 (1), fz (Z5@)), -, U ZE 0N, f1(ZIt) =
(F(ZL1), 15(Z50)), - fa(ZE, )T, ZF () =
(Zfl(t)azs%(t)a"' ,Zgl(t))T, BR( =
(bﬁ('))nxm ZsI t) = (Zsll(t)v ZsI2(t)7 T 7Zsln(t))T7 DR() =
(dLj('))"Xnv u?(t) = (u?l(t)aug(t)a' ausRn(t))Ta BI() =
(b;‘(-))nm, ug(t) = (ugy (1), ugo(t), -+, uly ()", DI() =
(dLIj('))anv aff(t) = (@l (t), 2 (t), - 2l ()", xl(t) =
( sl(t)a s2(t)a o ,Ign(t))T.

Assumption 1. For any a1, s € R, the real part fE(-) and
the imaginary part fL(-) of function fs(-) and the real part
hE(.) and the imaginary part hL(-) of function hs(-) satisfy

FEOI < FE RO F,

Ihd ()] < HY, |hi(-)| < HY,

|fF(en) = fE(az)| <If|ar —aql,

[fs (1) = fi(a2)| <I{lar —azl,

7 (an) =h (az) | <nfflar —azl,

g (@) —hg(az)| <nglar —asl,
where FE FI
constants.

HE, HI, 18 1Lk, b are positive

Suppose Zo(t) = (Zo1(t), Zoz(t), -, Zon(t))T € C™ is

an arbitrary solution of the network (2), then
Zo(t)=—AZy(t)+B(Zo(t))h(Zo(t))+D(Zo(t)) f (Zo(t)), (5)

where Zo(t) = Z{(t)+iZ{ (t). Then, Eq. (5) can be separated
into real and imaginary parts as follows:

Zg'(t) == AZg (t)+ B (Zg' ())h ™ (Z5' () — B (Z5 ())h' (2,
. +D(Zg () (25 (1) — DN (Zg (D)) (Z5 (1)),
Z5(t) == AZ§(t)+ B (Zg' (t))h' (Z§ () + B' (Z5 (£)) ™ (Z5' (1))
+DR(Zg (1) f1(Z5 () + D' (Z5 (1) f7(Z5'(t)).
Let es(t) = Zs(t) — Zo(t), then
és(t) = — Aes(t) + B(Zs(1))M(Zs (1) — B(Zo(t) h(Zo(1))
+D( s()F(Zs(1) +us(t) — D(Zo(t) f(Zo(t))
+gZGSKMeK ) +as(t), s=1,2,--- N (6)

where e (t) = (es1(t), es2(t), - ,esn(t))?.
By separating (6) into real and imaginary parts, one has

el (t) = — Ael(t) + DH(ZF ()P (el () + al () +ul(t)
= DN(Z{(1) P (es(1)) + B (Z(1))Q (K (1))

6(®)

= — Ae(t) + DH(ZI()) P! (1)) + x(t) +ul(t)
+DNZ{() PR (edi(t) + BR(YR( £)Q" (e (1))

)+g Z Gs,.;Me

é(t)

+ BL(ZE(1) QR (eE(t)

H—\/

where ef(t) = (eff(
( gl( )7 s2(t)7 7e£n(t)
(1)), efh(t — ;
(eqr(t — 7(t),ela(t — mo(t),--- el
PRElY) = fHZE) —_f(Z5H0),
(ZL) — f1(Z5t), QF(el() =
R (ZEH(t)) and Q (el (1)) = ' (ZL(t)) —

Definition IIL.1. For any to,t; € RT and to
exists a constant p > 0 satisfy

WV
<
=
]
]

/t LR (1) + @ (0) T (1))t >
Vi(t2) — Vi(tr) — p / LR TR () + (@ ()T (8)dt,

where V(t) : RT — RY is the storage function, then the
network (6) is called passive.

Definition IIL.2. The network (2) is synchronized if
Jim |Z.() — Zo(t)]| =0,

under the condition ©4(t) =0, s=1,2,---,N.

s=1,2,---,N,

B. Passivity control

The following state feedback controller is designed for the
network (2):

ul(t) =Tl (t) —sign(el (t))(DEFE+ D' F!
+BRAR+ B AT,
ul(t)=-YTel(t)—sign(el(t))(DRF'+ D' FR 0
+BRAT+B'HR),
where s = 1,2,---, N, TF = diag(vf, off,... olf) €
R™" and T! = diag(vf,vi,---,vl) € R"™" are the

positive definite controller gain matrices. R > v > 0
and R > ol > 0. FE = (FEFE,... FB)T,
F= (F117F217 aFé>T’ HE = (HﬁvHQRa aHsz%)Tv
and H! = (H{ HI--- HHT. sign(eft) =
diag(sign(efi (1)), sign(e (1)), -+ -, sign(ef, (1)) and
sign(e; (t)) = diag(sign(eg, (t)), sign(ezo(t)), -+ . sign(eg,, (t))).
The output vector y4(t) € C" of the system (6) is described
as follows:

ys(t) =
where W7 € R™*"™ and W, € R"*"™,

Wies(t) + Waz(t),



For convenience, we denote

et (t) = ((ef())T, (e

e!(t) = ((e1 ()", (ex(

LT = diag((11")*, (I3) %),
L' = diag((1)%, (13)%, -+ , (1})?),
¢ = diag((n?")*, m3")?, -+, ()
¢ = diag((n1)?, (m3)?, D7)
x(t) = (i (t), 25 (1), -+, an(t)"
y(t) = (i (8), 93" (), -y ()7,
. 1 1 1
T d1ag(1 — 1_72,~-~ , 1_%1).

Theorem IIl1.1. If there exists a constant p > 0 such that

\I/{% =" <0 d \I/{ = <0 8
@y own) SO @y g S0 ®

where U = Iy @ (—2A+ DR 2L+ DI+ BR 4 Bl R4
20°0) + gG @ (M + M7T), 2f =2 = Iy ® (I, — W),
vl = IN®(—2A+2L1+DR+D1+BI+BR T1+2<f )+

gG R (M+MT), VE =Vl = Iy @ (-2 (WS +Wa) —pl,,),
then the network (6) is said to be passive under the controller

.
Proof. We construct a Lyapunov functional as follows:
N )2

T R n? W
V() = ;< +2zz/( 71_% a5
77] 5]

+2;j 1/H(t o d6+z

Then,
N

V() <2> (ef ()" Al (t)+ D (ZE (1) PR (el () + 2l (t)

s=1

=D (Z{(t)) P! (es(t))+ B (Z(1))Q" (el (1)) ~Y el (1)

N
—B'(ZL(1)Q"(el(1)+9 D GonMefi(t)+(DR(ZE (1))

—DR(Zg () T (Zg (t))isign( S(®))(DFFF 4+ DTF!
+BRAEE B H—(D'(ZL(t)) - D' (Z () f!
+(BM(ZI(1) - BR(ZO()))hR(Zo()) (B'(Z!(t)

—BI(zL@)n! (Z (1) +2Z (Ael(t)+ 2L (t)

+DR(Z (1) P (et ))+DI(ZI(t)) e () =T'eg(t)

— DN(Zg))) fH(Z5H (1) + (BR(Z(t) — BR(Z4'(1)))
xh!(ZE(t)) —sign(el(t))(DRF +DIFR BRA'+ B O
+(BNZ{ (1) =B (Z5(1)h™ (Zg' (1)) +2(e™ (1) (In
® (CF))ef(t) — 2(eR(1)" (In @ ¢M)eli(t) +2(e" (1)"
I

x (I ® (¢'T))e’ (t) =2(eT (1)) (Iv @ ¢ )el

From Assumption 1, one has

t). )

N

2) ()" Dz 1) PR (1))

=) (In@ DR)eR(t)+ (eF(t ); In @ L®)ef(t). (10)

<(e®(1)(In ® DN (t) + (' (1) (In ® LNe (1), (11)
<(e' () (In @ DP)el (t) + (e (1)) (In ® LT)e' (t), (12)

<(e' (1) Iy ® DNe (t) + (1) (I ® LM)e(t). (13)

Moreover,
2 Z )" B (ZF(1)Q" (eF(1))

<(eR( ) (In © BF)e" () +(B(1) (I @ ¢(F)eli(t). (14)
Similarly,

N

=2 ()T BN (Z{(£)Q" (eX(?))

<) Iy ® BT () + (@) Uy ® D, (15)
N

2) (es®)BH(ZI(1)Q" (el (D))
)

—

S

<(eI:(t))T(IN ® BR)e! (1) + (e7(£) "Iy @ ¢T)el(t), (16)
N

2) (ex(t)" B! (Z{(t) Q" (F (1))
s=1

<(eM () Uy ® BNe! () + (eR(8) (I ® ¢F)eR(1). (17)

+BZ0)Q! (T2 0)Q" TBHHD (2] (1) n additon,

—DR(ZEW) £ (ZL () +gZGmMe (t)+(D(Z1(t))

k=1

N N
2922 TGSNMe (t)

s=1kr=1



What’s more,

T(DH(Z )

22
S S CIL:

SlLl]l

=2 Z |(eR(t)T|DRFE.
Slmllarly,
N
2> (e (1) (D' (Z5 (1))
s;l
<2) |l ()T |D"FY,
s;l
2 (et (t)"(D*(ZE (1)
s;l
<2 |(el(1)"|DRF!
s;l
2 (et (t)"(D"(ZL (1)) -
s;l
<2)_|(el(t)"|D'FF,
s;l
2 (el (1) (BR(ZE (1)
s;l
<2)_|(ef)"|BRA",
s;l
2 (eff(1))"(B"(Z5 (1)
s;l
<2)_|(efe)"|B A,
s;l
2 (et (t)" (B (2F (1))
s;l
<2 |(el(1)"|BRH'
s;l
2 (et (t)"(B'(ZL(1))
N

(18)

19)

— D™(Zg () (25 (1))

iR R
— d,;|F}

(20)

21

— DR(Zg())) ' (Z5 (1))

(22)

DN (Zy W) (Z5' (1))

(23)

27)

Egs. (9)-(27) yield
V(t) <(e®®)T (In ® (24+DR+2L7+ D'+ BR+ BT —YF
+2¢ ) +9G @ (M+M"))ef (1) + (' (1) (In®(
— 2442 + DR 4+ D' + B 4+ BE — 1! + 2¢'T)
+9G @ (M + MT))el (t) +2(e™ () T2 (t)
+2(ef ()Tl (t).
Furthermore,
V() = ™) 2 (6) + (v (1) 2! (1)]
= pl(@ () 2 (t) + (2 (1) T2 (1))

where ©fi(t) = (("(t)", (@"(1))")" and @'(t) =
((efNT, (2 (#))T)T. From (8), it is easy to obtain

V() <) "2 () + (' (1) 2 (1)
+pl(@(6) T2 (1) + (27 (1) 2" (1)].

By integrating (28) about ¢ over the time period from ¢; to 2,
one has

Vits) — Vi) < / R + @ ()T ()t

(28)

+p / TR )20+ (@ (1) (1),

where t2 > t;. Namely,

/t W) 2R ) + 0 O) 2 (Dldt > V(t2) - V(L)

—y / @R TR () + (@ ()T (8)dt

for any to,t; € RT and t5 > t1.

According to Definition III.1, we can obtain that the network
(6) is passive under the controller (7). O
C. Synchronization control
Theorem IIL2. The network (2) is synchronized under the
controller (7) if

Ui <0 and ¥l <0, (29)

where Ul = Iy @ (=24 + D + 2L% + D' + B + B! —
TE4+207T) + gG @ (M + M7T), ¥ = Iy ® (—2A+2L" +
DE 4+ DI + B + BE — Y1 4 2¢'T) + gG @ (M + MT).

Proof. We construct the same Lyapunov functional as in
Theorem III.1 in this subsection. Then, one obtains

V(t) <(e®(t)T (Iy @ (—2A+ DR + 2R + D' + BR 4 B!
— TR+ 20°T) + G @ (M + MT)) el (1)
+(e! (1) (In ® 24 +2L! + DR 4+ D! + B! + BR



— Y+ 20T + gG & (M + M"))el (t)
<alle(®)||?,

where o = max{ A (V1) Ay (U1)}.

According to (30) and the definition of V'(¢), we can obtain
V(t) is non-increasing and bounded. Hence, lim; 4o,V (¥)
exists and satisfies lim;_, y oV (t) > 0. In addition, from (30),
we can get

(30)

Vit
e < Y. 61)
«
From (31), it is easy to derive that lim_, fg lle(d)||ds
exists and is a nonnegative real number. Moreover,
: e (9))?
o< Y[ AR,
*1] 1
< lim (BT (In ® (2¢7T))eR(6)ds
t— oo t—r
t
R : R 2
iy © (20 Jim [ 1en)a8
=0. (32)
Similarly,
: (njes;(9))?
0< 1 Ldé =0. 33
t—)lr'ipoozz/ 75 (£) ]‘_’YJ ( )
s=1 j=1 J
From (32) and (33), we can easily know that
Jim ST ((F ) el () + (elB)Tel(t)]  exists and
—+00
is a nonnegative real number. Suppose that
N
Jim > [(eF () el (1) + (e(1) el ()] = 8> 0.
s=1
Then, there exists a real number ¢ > 0 satisfying
= ﬁ
DIl @) el () + (el(t)Tel(t)] > 5 for t >
s=1
Then, one has
B
le®I* >3, t>e (34)
Combined (30) and (34), one has
V(t) < %ﬁ t>e (35)
By (35), we can acquire
+oo | +oo Ozﬂ
—V(e) <V (4+00)=V(e) = / V(t)dt </ Tdt =—00,

which is unreasonable. Therefore,
N

: R \WT R I \N\T I
tl}I-lpoozl[(es (t)) es (t) + (es (t)) es (t)] - 0
Then, we can obtain
Jim_[le(t)| = 0.

Consequently, the network (2) achieves synchronization. [

IV. NUMERICAL EXAMPLES
Example IV.1. Consider the following CCVMNN:

Zo(t) = — AZy(t) + B(Zs(t))h(Zs(t)) + us(t) + x4(t)
N

+ g Z GSHMZH(t)7

where s = 1,2,--- .6, fli(w) = fil(w_) = hf'(w) = hl(w)

L (i = 1,2,3) A = diag(13,0.8,12), M

dlag(05 0.4,0.6), g—0.3,Tj()—1—TJe cT=1,

+D(Zs(1) f(Zs(1)) (36)

2+j’ j=1,2,3, and the matrices B(Z;(t)), D(Zs(t)), G =
(Gsk)exe are selected as follows:
R
bR (25 (1) = 0.36, |z%(t)] < 1.5,
M —0.28, |zB(t)| > 1.5,
=025, |2l (1) <15,
| —042,  [2B@)] > 1.5,
=022, 20 <15,
1 033, [2B@)] > 1.5,
B 0.33, [2B@t) < 1.5,
1 027, |ZE@®)] > 1.5,
bEL (25 (1)) = 0.26, [25(t) < 1.5,
22052 025, [2R(t)] > 1.5,
0.18, [2B() <15
bl (2B (1)) = o ’
2 (z2 () { —0.14, |2R(t)] > 1.5,
R
bR (22 (1)) — 0.25, |2E(t)] < 1.5,
S17es —0.45, |zE(t)| > 1.5,
—0.34, |2B@) <15
bi (2B (1)) = T ’
2 (zs () { 025, |R(t)] > 1.5,
B (5 (1)) = 017, |2R(@®)| < 1.5,
83178 021, [R(t)]> 1.5,
bl ( I (t)) _ —0.35, |25{1(t)| < 1.5,
Hss 027, |2L,(t)] > 1.5,
I
b (1 (1)) = 0.26, |z1,(¢)] < 1.5,
12151 0.16, |2!,(t)] > 1.5,
I
bl (ZI (t)) _ —0.22, |251(t)| < 1.5,
1Al 0.13, |2,(t)] > 1.5,
I
bl (ZI (t)) _ —0.32, |252(t)| < 1.5,
ez 0.26, |25, (t)] > 1.5,
I
oLy = { 038 1ROl <L,
2\t 012, |25, (t)] > 1.5,
I
bL (o1, (8) = 0.12, |zl,(t)] < 1.5,
2372 011, |25 (t)] > 1.5,
I
b[ (ZI (t)) — 0'257 |253(t)| < 1 57
e —0.33, |zL,(t)] > 1.5,
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|2L3(t)] > 1. 5
|25 ()] <

|2l (8)] > 1. 5
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Fig. 1. The norms of es(t), zs(t), zs(t), s=1,2,--,6.

—-0.6 0.2 0.1 0 0.2 0.1
02 -07 0.1 0 0.3 0.1
0.1 0.1 -09 0.1 0.5 0.1

0 0 0.1 —-04 0.2 0.1
0.2 0.3 0.5 02 -14 02
0.1 0.1 0.1 0.1 0.2 —-0.6

Obviously, ff(-), fI(-), hE(-), and Kf()(i = 1,2,3)
satisfy Assumption 1 with Fff = Ff = HE = HI =05
and 1B = [ = pff = 77] = 0.5. The input x4 (t) =
0.6scos(t) + i0.3scos(t), xs2(t) = 0.2scos(t) + i0.2scos(t),
xs3(t) = 0.4scos(t) + i0.5scos(t). The parameters in the
controller (7) are chosen as follows: T# = diag(0.9,1.2,0.6),
T! = diag(0.8,1.0,0.9). Take W; and W5 as follows:

0 0.4 0 -0.1 0.2 0.3
Wiy=1 02 —-05 02 , Way = 0 -04 0.1
0.3 0 -0.2 0.2 0.5 -03

By using the MATLAB, it is easy to obtain that p = 3.7220
which satisfies the condition (8). On the basis of Theorem
III.1, the system (36) is passive under controller (7). Fig. 1
shows the evolutions of error, output and input of six nodes
when the system (36) is passive. Similarly, through a simple
operation based on the above parameters by utilizing the
MATLAB, we can obtain

AT ={-1.6951, —1.5403, —1.4313, —1.4060, —1.3738,
—1.2863, —1.2558, —1.2236, —1.1933, —1.1625,
—1.1547, —1.0496, —1.0448, —1.0245, —0.9988,
—0.9288, —0.9011, —0.8297},

A®T) ={~1.8403, —1.5951, —1.5236, —1.4933, —1.4547,
—1.3496, —1.3313, —1.3060, —1.2738, —1.2011,
—1.1863, —1.0625, —1.0558, —0.8448, —0.8245,



—0.7988, —0.7288, —0.6297},

which satisfy the condition (29). According to Theorem III.2,
the system (36) achieves synchronization. Fig. 2 depicts the
simulation result of synchronization.

V. CONCLUSION

This study has concerned with a type of CCVMNNGs.
By using certain inequalities, Lyapunov functionals as well
as the design of suitable controller, a novel criterion for
ensuring passivity of the considered network has been derived.
Similarly, we have also carried out some discussion on the
synchronization of CCVMNNs. A simulation example has
been performed to confirm the correctness of our results at
the end.
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