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Abstract—Recently, AlphaZero has achieved outstanding per-
formance in playing Go, Chess, and Shogi. Players in AlphaZero
consist of a combination of Monte Carlo Tree Search and a
deep neural network, that is trained using self-play. The unified
deep neural network has a policy-head and a value-head, and
during training, the optimizer minimizes the sum of policy loss
and value loss. However, it is not clear if and under which
circumstances other formulations of the loss function are better.
Therefore, we perform experiments with different combinations
of these two minimization targets. In contrast to many recent
papers who adopt single run experiments and use the whole
history Elo ratings from self-play, we propose to use repeated
runs. The results show that this method can describe the training
performance quite well within each training run, but there is a
high self-play bias, such that it is incomparable among different
training runs. Therefore, inspired by the AlphaGo series papers, a
self-play bias avoiding performance assessment, final best player
Elo rating, is adopted to evaluate the playing strength in a
direct competition between the evolved players. For relatively
small games, based on this new evaluation method, surprisingly,
minimizing only value loss achieves the strongest playing strength
in the final best players’ round-robin tournament. These results
indicate that more research is needed into the relative importance
of value function and policy function in small games.

keywords—AlphaZero-like self-play; loss combination; Elo eval-
uation.

The AlphaGo series of papers [1]–[3] have sparked enor-
mous interest of researchers and the general public alike into
deep reinforcement learning. AlphaGo Zero [2], the successor
of AlphaGo, masters the game of Go even without human
knowledge. It generates game playing data purely by an
elegant form of self-play, training a single unified neural
network with a policy head and a value head, in a Monte Carlo
Tree Search (MCTS) searcher. AlphaZero [3] uses a single
architecture for playing three different games (Go, Chess
and Shogi) without human knowledge. Many applications
and optimization methods [4], [5] have been published and
transformed the research field into one of the most active of
current computer science.

Despite the success of AlphaGo and related methods in
various application areas, there are unexplored and unsolved
puzzles in the design and parameterization of the algorithms.
The neural network in AlphaZero is represented as fθ = (p, v)
(a unified deep network with a policy head and a value head).

Hui Wang acknowledges financial support from the China Scholarship
Council (CSC), CSC No.201706990015.

Policy p is a probability distribution of choosing the best
move. A lower policy loss (lp) indicates a more accurate
selection of the best move. Value function v is the prediction
of the final outcome. A lower value loss (lv) indicates a more
accurate prediction of the final outcome. The use of a double-
headed network by Alpha(Go) Zero is innovative, and we
know of no in-depth study of how the two losses (lp and
lv) contribute to the playing strength of the final player. In
Alpha(Go) Zero the sum of the two losses is used. Other
studies based on the AlphaGo series algorithms just use it
that way. However, the finding in the work of Matsuzaki
et al. [6] is different, which reminds us to carefully study
alternative evaluation functions. Thus, In order to increase our
understanding of the inner workings of the minimization of
the double-headed network we study different combinations
of policy and value loss in this paper. Therefore, in this work,
we investigate:
a) what will happen if we only minimize a single target?
b) is a product combination a good alternative to summation?

We perform our experiments using a light-weight AlphaZero
implementation named AlphaZeroGeneral [7] and focus on
smaller games, namely 5×5 and 6×6 Othello [8], 5×5 and
6×6 Connect Four games [9]. The smaller size of these games
allows us to do more experiments, and they also provide us
largely uncharted territory where we hope to find effects that
cannot be seen in Go or Chess.

As performance measure we use the Elo rating that can be
computed during training time of the self-play system, as a
running relative Elo. It can also be computed separately, in a
dedicated tournament between different trained players. Our
contributions can be summarized as follows:
• Experimental results show that there is a high self-

play bias in computing training Elo ratings, such that
it is incomparable among different training runs. A full
tournament is necessary to compare final best players’
Elo ratings to measure the playing strength.

• Based on a full tournament computation, in our smaller
games, minimizing the value loss gives better results than
the summation of the value and the policy loss, contra-
dicting both the default setting of AlphaZeroGeneral and
Alpha(Go) Zero, that use the sum of the two losses.

The paper is structured as follows. Part I presents related
work. Part II presents games tested in the experiments. Part III
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introduces the AlphaZero-like self-play algorithm (with im-
portant parameters and default loss function) and Bayesian
Elo system. Part IV sets up the experiments. Part V presents
the experimental results. Part VI discusses future work and
concludes the paper.

I. RELATED WORK

Deep reinforcement learning [10] is currently one of the
most active research areas in artificial intelligence, reaching
human level performance for difficult games such as Go [11],
which was almost unthinkable 10 years ago. Since Mnih et al.
reported human-level control for playing Atari 2600 games by
means of deep reinforcement learning [12], the performance
of Deep Q-networks (DQN) improved dramatically.

We have also observed a shift in DQN from imitating and
learning from expert human players [1] to relying more on
self-play. This has been advocated in the area of reinforcement
learning [13], [14] for quite some time already. Silver et
al. [2] turned to self-play to generate training data instead of
training from human data (AlphaGo Zero), which not only
saves a lot of work of collecting and labeling data from
human experts, but also shifts the constraining factor for
learning from available data to computing power, and achieves
a form of efficient curriculum learning [15]. This approach was
generalized to a framework (AlphaZero), showing the same
approach that worked in Go, also worked in Shogi and Chess,
demonstrating how to transfer the learning process [3].

Reinforcement learning is a very active field. We see a
move away from human data to self-play. After many years
of active research in MCTS [16], currently most research
effort is in improving DQN variants. AlphaGo is a complex
system with many tunable hyper-parameters. It is unclear if
the many choices concerning parameters and methods that
have been made in the AlphaGo series are close to optimal
or if they can be improved by, e.g., changing parameters [17].
This includes the choice of minimization tasks (loss functions)
used for measuring training success. For instance, [18] studied
policy and value network optimization as a multi-task learning
problem [19]. Even if the choices were very good for Go and
other complex games, this does not necessarily transfer well to
less complex tasks. For example, AlphaGo’s PUCT achieves
better results than a single evaluation function, but the result in
[6] is different while playing Othello. Moreover, [20] showed
that the value function has more importance than the policy
function in the PUCT algorithm for Othello.

II. TEST GAMES: OTHELLO/CONNECT FOUR

In our experiments, we use the games Othello and Connect
Four, each with 5×5 and 6×6 board sizes. Othello is a two-
player game. Players take turns placing their own color pieces.
Any opponent’s color pieces that are in a straight line and
bounded by the piece just placed and another piece of the
current player’s are flipped to the current player’s color. While
the last legal position is filled, the player who has most
pieces wins the game. Fig. 1(a) is the start configuration for
5×5 Othello. Connect Four is a two-player connection game.

1  2  3  4  5
1
2
3
4
5

(a) 5×5 Othello

1  2  3  4  5
1
2
3
4
5

(b) 5×5 Connect Four

Fig. 1. Our test games on 5× 5 boards

Players take turns dropping their own pieces from the top into
a vertically suspended grid. The pieces fall straight down and
occupy the lowest position within the column. The player who
first forms a horizontal, vertical, or diagonal line of four pieces
wins the game. Fig. 1(b) is a game termination example for
5×5 Connect Four where the red player wins the game.

There is a wealth of research on finding playing strategies
for these two games by means of different methods. For
example, Buro created Logistello [21] to play Othello. Chong
et al. described the evolution of neural networks for learning
to play Othello [22]. Thill et al. applied temporal difference
learning to play Connect Four [23]. Moreover, Banerjee et
al. tested knowledge transfer in General Game Playing on
small games including 4×4 Othello [24]. Wang et al. assessed
the potential of classical Q-learning based on small games
including 4×4 Connect Four [25]. Obviously, these two games
are commonly tested in game playing.

III. ALPHAZERO-LIKE SELF-PLAY

A. The Base Algorithm

According to [2], [3], the fundamental structure of
AlphaZero-like Self-play is an iteration over three different
stages (see Algorithm 1).

The first stage is a self-play tournament. The computer play-
er performs several games against itself in order to generate
data for further training. In each step of a game (episode), the
player runs MCTS to obtain an enhanced policy π based on
p provided by fθ. In MCTS, parameter c is used to balance
exploration and exploitation of game tree search. Parameter m
is the number of times to run down from the root for building
the game tree, where the fθ provides the value (v) of the
states for MCTS. For actual (self-)play, from T’ steps on, the
player always chooses the best move according to π. Before
that, the player always chooses a random move based on the
probability distribution from π. After finishing the games,
these new examples are normalized as a form of (st, πt, zt)
and stored in D.

The second stage consists of neural network training,
using data from self-play tournament. During training, there
are several epochs. In each epoch (ep), training examples
are divided into several small batches [26] according to the
specific batch size (bs). The neural network is trained to
minimize [27] the value of the loss function which (see (1))
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Algorithm 1 AlphaZero-like Self-play Algorithm
1: function ALPHAZEROGENERAL
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . , I do
4: for episode=1,. . . , E do . stage 1
5: for t=1, . . . , T ′, . . . , T do
6: Get an enhanced best move prediction πt by performing MCTS based on fθ(st)
7: Before T ′ step, select an action at randomly based on probability πt, otherwise, select an action at =

argmaxa(πt)
8: Store example (st, πt, zt) in D
9: Set st=excuteAction(st, at)

10: Label reward zt (t ∈ [1, T ]) as zT in examples
11: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
12: fθ′ ← Train fθ by performing optimizer to minimize (1) based on sampled examples
13: Set fθ = fθ′ if fθ′ is better than fθ . stage 3
14: return fθ;

sums up the mean-squared error between predicted outcome
and real outcome and the cross-entropy losses between p and
π with a learning rate (lr) and dropout (d). Dropout is used
as probability to randomly ignore some nodes of the hidden
layer. This mechanism is used to reduce overfitting [28].

The last stage is arena comparison, which is comparing the
newly trained neural network model (fθ′) with the previous
neural network model (fθ). The player will adopt the better
model for the next iteration. In order to achieve this, fθ′ and
fθ are compared by playing against each other for n games. If
the fθ′ wins more than a fraction of u games, it is replacing
the previous best fθ. Otherwise, the fθ′ is rejected and the
fθ is kept as current best model. Compared with AlphaGo
Zero, AlphaZero does not entail the arena comparison stage
anymore. However, we keep this stage for making sure that
we can safely recognize improvements.

B. Loss Function

The training loss function consists of lp and lv . The
neural network fθ is parameterized by θ. fθ takes the game
board state s as input, and provides the value vθ ∈ [−1, 1]
of s and a policy probability distribution vector p over all
legal actions as outputs. pθ is the policy provided by fθ to
guide MCTS for playing games. After performing MCTS,
we obtain an improvement estimate policy π. It is an aim
of the training to make p more similar to π. This can be
achieved by minimizing the cross entropy of both distributions.
Therefore, lp can be defined as −π> log p. The other aim is to
minimize the difference between the output value (vθ(st)) of
the s according to fθ and the real outcome (zt ∈ {−1, 1}) of
the game. Therefore, lv can be defined as a mean squared error
(v − z)2. Summarizing, the total loss function of AlphaZero
can be defined as (1).

l+ = −π> log p + (v − z)2 (1)

Note that in AlphaZero’s loss function, there is an extra
regularization term to guarantee the training stability of the

neural network. In order to pay more attention to two evalua-
tion function components, instead, we apply simple measures
to avoid overfitting such as the drop out mechanism.

C. Bayesian Elo System

The Elo rating function has been developed as a method
for calculating the relative skill levels of players in games.
Usually, in zero-sum games, there are two players, A and
B. If their Elo ratings are RA and RB , respectively, then
the expectation that player A wins the next game is EA =

1
1+10(RB−RA)/400 . If the real outcome of the next game is
SA, then the updated Elo of player A can be calculated by
RA = RA + K(SA − EA), where K is the factor of the
maximum possible adjustment per game. In practice, K should
be bigger for weaker players but smaller for stronger players.
Following [3], in our design, we adopt the Bayesian Elo
system [29] to show the improvement curve of the learning
player during self-play process. We furthermore also employ
this method to assess the playing strength of the final models.

IV. EXPERIMENTAL SETUP

TABLE I
DEFAULT PARAMETER SETTINGS

Parameter Brief Description Default Value
I number of iteration 200
E number of episode 50
T’ step threshold 15
m MCTS simulation times 100
c weight in UCT 1.0
rs number of retrain iteration 20
ep number of epoch 10
bs batch size 64
lr learning rate 0.005
d dropout probability 0.3
n number of comparison games 40
u update threshold 0.6
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(c) Minimize l+
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(d) Minimize l×

Fig. 2. Training losses for minimizing different targets in 5×5 Othello, averaged from 8 runs. All measured losses are shown, but only one of these is
minimized for. Note the different scaling for subfigure (b). Except for the l+, the target that is minimized for is also the lowest

Our experiments are performed on a GPU server with
128G RAM, 3TB local storage, 20 Intel Xeon E5-2650v3
CPUs (2.30GHz, 40 threads), 2 NVIDIA Titanium GPUs (each
with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each
with 6GB memory). On these GPUs, every algorithm training
run takes 2∼3 days. In this work, all neural network models
share the same structure, which consists of 4 convolutional
layers and 2 fully connected layers [7]. The parameter values
for Algorithm 1 used in our experiments are given in Table I.
In order to enhance reproducibility, we used values based on
work reported by [17].

A. Minimization Targets

As we want to assess the effect of minimizing different loss
functions, we employ a weighted sum loss function based on
(1):

lλ = λ(−π> log p) + (1− λ)(v − z)2 (2)

where λ is a weight parameter. This provides some flexi-
bility to gradually change the nature of the function. In our
experiments, we first set λ=0 and λ=1 in order to assess lp or
lv independently. Then we use (1) as training loss function.
Furthermore, inspired by that, in the theory of multi-attribute
utility functions in multi-criteria optimization [30], a sum
tends to prefer extreme solutions, whereas product prefers

more balanced solution. We employ a product combination
loss function as follows:

l× = −π> log p× (v − z)2 (3)

For all experiments, each setting is run 8 times to get
statistically significant results (with error bars) using the
parameters of Table I as default values. However, in order
to save training time, we reduce the iteration number to 100
in the larger games ( 6×6 Othello and 6×6 Connect Four).

B. Measurements

The chosen loss function is used to guide each training
process, with the expectation that smaller loss means a stronger
model. However, in practise, we have found that this is not
always the case and another measure is needed to check.
Therefore, following Deep Mind’s work, we employ Bayesian
Elo ratings [29] to describe the playing strength of the model
in every iteration. In addition, for each game, we use all best
players trained from the four different targets (lp, lv , l+, l×)
and 8 repetitions plus a random player to play the game with
each other for 20 times. From this, we calculate the Elo ratings
of these 33 players to show the real playing strength of a
player, rather than the playing strength only based on its own
self-play training.

158
Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 29,2023 at 15:02:32 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80
Training iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Va
lu

e

lp
lv

l+

l×

(a) Minimize lp
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(c) Minimize l+
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(d) Minimize l×

Fig. 3. Training losses for minimizing different targets in 6×6 Othello,
averaged from 8 runs. All losses are shown while we minimize only one
(similar to Fig 2). Note the different scaling for subfigure (b). Except for l+,
the target that is minimized for is the lowest

V. EXPERIMENT RESULTS

In the following, we present the experimental results from 3
aspects according to the measurements introduced above (i.e.
training loss, the whole history training Elo rating and the
tournament Elo rating of the final best player). Error bars
indicate standard deviation of the 8 runs.
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(d) Minimize l×

Fig. 4. Training losses for minimizing the four different targets in 5×5
Connect Four, aggregated from 8 runs. lv is always the lowest

A. Training Loss

We first show the training losses in every iteration during
the training phase, with different loss measures, but only one
minimization task per diagram, which means we need four of
these per game. Therefore, we can see what minimizing for a
specific target actually means for the other loss types.

For 5×5 Othello, from Fig. 2(a), we find that when min-
imizing lp only, it decreases significantly to about 0.6 at
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(b) 6×6 Othello
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(c) 5×5 Connect Four
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(d) 6×6 Connect Four

Fig. 5. The whole history Elo rating at each iteration during training for different games, aggregated from 8 runs. The training Elo for l+ and l× in panel b
and c shows inconsistent results

the end of each training, whereas lv stagnates at 1.0 after
10 iterations. Minimizing only lv (Fig. 2(b)) brings it down
from 0.5 to 0.2, but lp remains stable at a high level. In
Fig. 2(c), we see that when the l+ is minimized, both losses are
reduced significantly. The lp decreases from about 1.2 to 0.5, lv
surprisingly decreases to 0. Fig. 2(d), it is similar to Fig. 2(c),
while the l× is minimized, the lp and lv are also reduced. The
lp decreases to 0.5, the lv also surprisingly decreases to about
0.

For the larger 6×6 Othello, we find that minimizing only
lp reduces it significantly to about 0.75, where lv is stable
again after about 10 iterations (Fig. 3(a)). For minimizing lv
(Fig. 3(b)), the results show that lv is reduced from more than
0.5 to about 0.25 at the end of each training, but lp seems to
remain almost unchanged. For minimizing the l+ (Fig. 3(c)),
we find in contrast to 5×5 Othello that lp decreases from
about 1.1 to 0.4, whereas lv increases slightly from about 0.2
and then decreases to about 0.2 again. We also find a similar
behavior of lv when minimizing the l× (Fig. 3(d)), with the
difference that the final computed loss is much lower as the
values are usually smaller than one. However, the similarity
of the single losses is striking.

For 5×5 Connect Four (see Fig. 4(a)), we find that when
only minimizing lp, it is significantly reduced from 1.4 to
about 0.6, whereas lv is minimized much quicker from 1.0
to about 0.2, where it is almost stationary. Minimizing lv

(Fig. 4(b)) leads to some reduction from more than 0.5 to
about 0.15, but lp is not moving much after an initial slight
decrease to about 1.6. For minimizing the l+ (Fig. 4(c)) and
the l× (Fig. 4(d)), the behavior of lp and lv is very similar,
they both decrease steadily, until lv surprisingly reaches 0.
Of course the l+ and the l× arrive at different values, but in
terms of both lp and lv they are not different. Figures for 6×6
Connect Four (not shown) are very similar to 5×5.

B. Whole History Training Elo Rating

Following the AlphaGo series papers, we also investigate
the whole history training Elo rating of every iteration during
training. However, these works present results of single train-
ing runs, whereas we provide means and variances for 8 runs
for each target, categorized by different games in Fig. 5.

From Fig. 5(a) (small 5×5 Othello) we see that for all
minimization tasks, Elo values steadily improve, while they
raise fastest for lp. In Fig. 5(b), we find that for 6×6 Othello
version, Elo values also always improve, but much faster for
the l+ and l× target, compared to the single loss targets.

Fig. 5(c) and Fig. 5(d) show the Elo rate progression for
training players with the four different targets on the small and
larger Connect Four setting. This looks a bit different from the
Othello results, as we find stagnation (for 6×6 Connect Four)
as well as even degeneration (for 5×5 Connect Four). The
latter actually means that for decreasing loss in the training
phase, we achieve decreasing Elo rates, such that the players
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(d) 6×6 Connect Four

Fig. 6. Round-robin tournament of all final models from minimizing different targets. For each game 8 final models from 4 different targets plus a random
player (i.e. 33 in total). In panel (a) the difference is small. In panel b, c, and d, the Elo rating of lv minimized players clearly dominates.

get weaker and not stronger. In the larger Connect Four setting,
we still have a clear improvement, especially if we minimize
for lv . Minimizing for lp leads to stagnation quickly, or at least
a very slow improvement.

Overall, we display the Elo progression obtained from the
different minimization targets for one game together. However,
one shall be aware that their numbers are not directly compa-
rable due to the high self-play bias (as they stem from players
who have never seen each other). Nevertheless, the trends
are important, and it is especially interesting to see if Elo
values correlate with the progression of losses. Based on the
experimental results, we can conclude that the whole history
Elo rating is certainly good for assessing if training actually
works, whereas the losses alone do not always show that.
We may even experience contradicting outcomes as stagnating
losses and rising Elo ratings (for the big Othello setting and
lv) or completely counterintuitive results as for the small
Connect Four setting where Elo ratings and losses are partly
anti-correlated. We seemingly have experimental evidence for
the fact that training losses and Elo ratings are by no means
exchangeable as they can provide very different impressions
of what is actually happening.

C. The Final Best Player Elo Rating

In order to measure which target can achieve better playing
strength, we let all final models trained from 8 runs and 4

targets plus a random player pit against each other for 20
times in a full round robin tournament. This enables a direct
comparison of the final outcomes of the different training
processes with different targets. It is thus more informative
than the whole history training Elo due to the self-play
bias, but provides no information during the self-play training
process. In principle, we could of course do that also during
the training at certain iterations, but this is computationally
very expensive.

The results are presented in Fig. 6. and show that mini-
mizing lv achieves the highest Elo rating with small variance
for 6×6 Othello, 5×5 Connect Four and 6×6 Connect Four.
For 5×5 Othello, with 200 training iterations, the difference
between the results is small. We therefore presume that mini-
mizing lv is the best choice for the games we focus on. This is
somewhat surprising because we expected the l+ to perform
best as documented in the literature. However, this may apply
to smaller games only, and 5×5 Othello already seems to be
a border case where overfitting levels out all differences.

In conclusion, we find that minimizing lv only is an al-
ternative to the l+ target for certain cases. We also report
exceptions, especially in relation to the Elo rating as calculated
during training. The relation between Elo and loss during
training is sometimes inconsistent (5×5 Connect Four training
shows Elo decreasing while the losses are actually minimized).
A combination achieves lowest loss, but lv achieves the highest
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Elo. If we minimize the combination, minimizing the l× can
result to a higher Elo rating in these games.

VI. CONCLUSION

Most function approximators in supervised learning and
reinforcement learning use a single neural network with a
single input and output. In reinforcement learning, this is either
a policy or a value network. Alpha(Go) Zero innovatively
minimizes both policy and value, using a single unified
network with two heads, a policy head and a value head.
Alpha(Go) Zero and other works minimize the sum of policy
and value loss. Here, we study four different loss function
combinations: (1) lp, (2) lv , (3) l+, (4) l×. We use the open
source AlphaZeroGeneral system for light-weight self-play
experiments on two small games, Connect Four and Othello.
Surprisingly, we find that lv achieves the highest tournament
Elo rating, in contrast to what AlphaZero uses and in contrast
to the defaults of AlphaZeroGeneral. Much research in self-
play is going on using the default loss function. More research
is needed into the relative importance of value function and
policy function in small games. Furthermore, default hyper-
parameter settings may be non-optimal, especially for the
smaller games we investigate here.

During training, we compute a running Elo rating. We find
that the training losses trend and the Elo ratings trend are
inconsistent in some games (5×5 Connect Four and 6×6
Othello). Training Elo, while cheap to compute, can be a
misleading indicator of playing strength, influenced by self-
play training bias [2]. Our results provide the methodological
contribution that for comparing playing strength, tournament
Elo rating should be used, instead of running training Elo.

This study shows that the choice of the optimal combined
loss function can have a huge impact on Elo performance.
Unfortunately, our computational resources did not allow us
to test the approach on large board sizes, but the results
should encourage research of loss functions and alternative
Elo computation also for large scale games.
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