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Evolutionary Dynamic Multi-objective

Optimization Via Regression Transfer Learning

Zhenzhong WANG, Min JIANG∗, Xing GAO∗, Liang FENG, Weizhen HU, and Kay Chen TAN

Abstract

Dynamic multi-objective optimization problems (DMOPs) remain a challenge to be settled, because of conflicting

objective functions change over time. In recent years, transfer learning has been proven to be a kind of effective

approach in solving DMOPs. In this paper, a novel transfer learning based dynamic multi-objective optimization

algorithm (DMOA) is proposed called regression transfer learning prediction based DMOA (RTLP-DMOA). The

algorithm aims to generate an excellent initial population to accelerate the evolutionary process and improve the

evolutionary performance in solving DMOPs. When an environmental change is detected, a regression transfer

learning prediction model is constructed by reusing the historical population, which can predict objective values.

Then, with the assistance of this prediction model, some high-quality solutions with better predicted objective values

are selected as the initial population, which can improve the performance of the evolutionary process. We compare the

proposed algorithm with three state-of-the-art algorithms on benchmark functions. Experimental results indicate that

the proposed algorithm can significantly enhance the performance of static multi-objective optimization algorithms

and is competitive in convergence and diversity.
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I. INTRODUCTION

Many optimization problems in the real world [1] [2] involve multiple optimization functions which conflict

with each other and change over time. These dynamic optimization problems are called Dynamic Multi-objective

Optimization Problems (DMOPs) [3]. For example, in the design of job scheduling systems [4], a number of decision

variables, such as procedures, components, and operation time, are involved, which determine objective functions

of energy consumption, production, and stability. These conflicting objective functions always change with time.

Hence, efficient DMOAs should rapidly arrange scheduling schemes according to the changing environments, and

this ability is critical to robust scheduling systems.
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In recent years, in order to solving DMOPs, a variety of DMOAs have been proposed. These existing methods

can be roughly grouped into the following three categories: The first category of DMOAs is based on maintaining

diversity. Gong et al. [5] proposed a general framework to decompose decision variables into two subpopulations

according to the interval similarity between each decision variable and interval parameters, and a strategy on the

basis of change intensity is adopted to track the POF. In [6], Jiang et al. developed a framework based on domain

adaptive and non-parametric estimation to keep the exploration-exploitation of DMOPs in terms of temporal and

spatial views. The second is a memory-based method. Chen et al. [7] implemented a dynamic two-archive strategy

to simultaneously maintain two co-evolving populations. One population is concerned on convergence while the

other focuses on diversity. Branke et al. [8] proposed a memory scheme to enhance the evolutionary process. In

this algorithm, some excellent solutions are saved which can be used for guiding towards to optimal solutions.

The third category of DMOAs is based on prediction. Muruganantham et al. [9] presented a population prediction

strategy based on the Kalman filter technique. The Kalman filter technique [10] can guide the search for new

Pareto-optimal solutions to generate a large number of high-quality initial individuals. Then, the algorithm finds the

optimal at this moment based on a decomposition-based differential evolution algorithm. Rong et al. [11] presented

a prediction model to track the moving POS by clustering the whole population into several subpopulations. In

addition, the number of clusters depends on the intensity of environmental change. Zhou et al. [12] proposed

a population prediction method to predict a whole population instead of predicting some isolated points. The

algorithm uses center points to predict the next center point, and the previous manifolds are used to estimate the

next manifold. The optimal population at this moment is determined based on a decomposition-based differential

evolution algorithm. Hu et al. [13] designed a promising approach based on Incremental Support Vector Machine

(ISVM) [14] classifier in solving DMOPs, the ISVM is trained from the past Pareto-optimal set, then high-quality

initial individuals are filtered through the trained ISVM. Jiang et al. [15] presented a framework based on transfer

learning [16] to predict an effective initial population for solving DMOPs. The transfer component analysis (TCA)

[16] is used in this framework for the domain adaptation problem [17].

Traditional machine learning approaches are usually based on the assumption that the samples follow the

Independent Identically Distributed (IID). Nevertheless, this hypothesis will be broken when dealing with DMOPs,

since the solution distribution fails to satisfy the IID hypothesis. Although there is a DMOA based on transfer

learning. However, it leads to poor diversity when samples clustering in the high dimensional latent space created

by TCA.

In this paper, a regression transfer learning prediction based DMOA (RTLP-DMOA) is proposed. The algorithm

aims to generate an excellent initial population to enhance the ability of existing multi-objective optimization

algorithms for DMOPs. When the environment has changed, a regression transfer learning prediction model is

constructed by utilizing the historical population information which can predict objective values in the new en-

vironment. Then, with the assistance of this regression prediction model, some high-quality solutions with better

predicted objective values can be identified and selected as an initial population, which can improve the individuals’

performance of the evolutionary process significantly.

The contributions of this work are as follows: 1) The proposed algorithm can make full use of historical
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information and predict high-quality initial population to improve the evolutionary performance of the existing static

multi-objective optimization algorithms (SMOAs) in solving DMOPs. 2) The proposed algorithm can overcome the

difficulty that solution distributions fail to meet the IID hypothesis. Compared with other prediction methods, the

RTLP-DMOA is promising.

The rest of the paper is organized as follows: In Section II, we describes the basic concepts of DMOPs and

presents the related transfer learning method used in the RTLP-DMOA. Section III gives the designed RTLP-DMOA

in detail. In Section IV, experimental results and analysis are shown. Conclusions are drawn in Section V.

II. PRELIMINARY STUDIES

A. Dynamic Multi-objective Optimization

The mathematical form of DMOPs is as follows:

min F (x, t) =< f1(x, t), f2(x, t), ..., fm(x, t) > (1)

where x ∈ Ω, and x =< x1, x2, ..., xn > is the n-dimensional decision vector, and t is the environment variable.

F =< f1, f2, ..., fm > is the m-dimensional objective vector. The goal of DMOAs is to find solutions at environment

t so that all objectives are as small as possible. Nevertheless, one solution cannot satisfy the minimum of all

conflicting objectives. Hence, a trade-off method called Pareto dominance is introduced to compare these solutions.

The set of optimal trade-off solutions is called the Pareto-optimal solutions (POS) in the decision space and the

Pareto-optimal front (POF) in the objective space [18].

Definition 1: (Dynamic Decision Vector Domination) At environment t, a decision vector x1 Pareto-dominates

another vector x2 denoted by x1 ≻t x2, if and only if










fj(x2, t) ≥ fj(x1, t), ∀j = 1, ...,m

fj(x2, t) > fj(x1, t), ∃j = 1, ...,m

(2)

Definition 2: (Dynamic Pareto-Optimal Set, DPOS) If a decision vector x∗ at environment t satisfies

DPOS = {x∗|∄x, x ≻t x
∗} , (3)

then all x∗ are called dynamic Pareto-optimal solutions, and the set of dynamic Pareto-optimal solutions is called

the dynamic POS (DPOS).

Definition 3: (Dynamic Pareto-Optimal Front, DPOF) DPOF is the Pareto-optimal front of the DPOS for the

DMOPs at the environment t

DPOF = {y∗|y∗ = F (x∗, t), x∗ ∈ DPOS}.

B. TrAdaboost.R2

TrAdaboost [19] is a classification algorithm based on the boosting method. The aim of TrAdaBoost is to filter

out dissimilar samples in the past source domain to those in the target domain. In this way, TrAdaboost improves

the classification accuracy. The source data set is combined with the target domain set to form a single data set.
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At each boosting step, TrAdaBoost increases the relative weights of target instances that are misclassified. When

a source instance is misclassified, however, its weight is decreased. In this way, TrAdaBoost makes use of those

source instances that are most similar to the target data while ignoring those that are dissimilar. In [20], the authors

introduce TrAdaboost-based algorithms for transfer regression task, called TrAdaboost.R2.

TrAdaboost.R2 is an ensemble method in which each weak regression hypothesis hi (i = 1, ...,K) can map the

source domain data set Xsource and the target domain data Xtarget to Y ∈ R. A strong regression hypothesis h

is determined by combining these weak hypotheses. In each training round, TrAdaboost.R2 increases the relative

weights of instances from the target domain. Meanwhile, TrAdaboost.R2 decreases the weights of the instances

from the source domain. When the regression error of a instance caused by hi is large, hi has a substantial influence

on the changing weight of the instance. In this way, TrAdaboost.R2 reuses source instances that are most similar to

the target data and ignores those that are dissimilar. In the next round, these modified weights are inputed into the

next regression hypothesis hi+1, instances that are dissimilar to the target domain weaken their impacts of learning

process, and instances with large weights help the learning algorithm in training better regressions.

III. PROPOSED ALGORITHM

The framework of RTLP-DMOA is illustrated in Algorithm 1. In brief, RTLP-DMOA initializes randomly a

population initPop with size N , and then executes a SMOA to optimize the population at environment t = 0. If

environmental changes are detected, the environment variable t is updated as t = t + 1. Then, the last population

Pt−1 is inputted into the procedure of regression transfer. In the procedure of regression transfer, a regression

hypothesis ht is determined with historical information which can predict objective vectors of individuals at the

new environment. Next, in the procedure called initial population prediction, the ht is employed to predict the

objective vectors and some high-quality individuals are selected according to their predictive objective vectors.

These individuals are regarded as an excellent initial population initPop and inputted into a SMOA to accelerate

the evolutionary process. The details of RTLP-DMOA are presented in the following section.

A. Regression Transfer

The regression transfer process returns a strong regression hypothesis ht for environment t. The strong regression

hypothesis ht adapts to the solution distribution at current environment. When an individual x is given, ht(x) outputs

a predicted objective vector of x. Therefore, in the subsequent process of RTLP-DMOA, an excellent individual x

with better predicted objective vectors ht(x) can be selected as a member of the initial population.

The strong regression hypothesis ht is integrated with several weak regression hypotheses ht
i (i = 1, ...,K , K

is the maximum number of iterations for training). These weak regression hypotheses are trained with the past

population information. The last population Pt−1 combined with their objective values Ft−1(Pt−1) are regarded as

source domain set Dsource. The target domain set Dtarget is comprised of P̂t which is sampled from U(a, b) in

the current decision space and their objective values Ft(P̂t), where a and b are the lower bound and upper bound

of the decision variable at environment t. Dsource and Dtarget are combined into a set D as the training data.
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Algorithm 1: RTLP-DMOA

Input: The dynamic multi-optimization problem Ft(·), the population size N , a SMOA

Output: the population Pt of Ft(·)

1 Initialize the environment variable t = 0;

2 Initialize randomly a population initPop with N ;

3 Pt = SMOA(initPop, Ft);

4 while the environment has changed do

5 t = t+ 1;

6 ht = Regression-Transfer(Ft, Ft−1, Pt−1);

7 initPop = Initial-Population-Prediction(ht, N);

8 Pt = SMOA(initPop, Ft);

9 return Pt

10 end

The process for training weak regression hypotheses is as follows: First of all, the weight vector w1
i (x) is

initialized as 1
|D| , w

t
i(x) denotes the weight of x for training ht

i at environment t. In the main training loop, for

training ht
i, a Support Vector Regression (SVR) [21] is implemented as a basic learner to obtain the weak regression

hypothesis ht
i from D and wt

i . Then, the adjusted error eti(x) of each individual x ∈ D for training ht
i is calculated

as

eti(x) =











|Ft−1(x)−ht
i(x)|

Et
i

, x ∈ Dsource

|Ft(x)−ht
i(x)|

Et
i

, x ∈ Dtarget

, (4)

where Et
i is the maximum error, it is described as

Et
i = max{max{Ft−1(x) − ht

i(x)|x ∈ Dsource},

max{Ft(x) − ht
i(x)|x ∈ Dtarget}}.

(5)

The eti(x) is bigger when the difference between the predicted object vector ht
i(x) and the true objective vector

F (x) become bigger, and the adjusted error ǫti for ht
i is calculated as

ǫti =
∑

x∈Dtarget

eti(x)w
t
i(x). (6)

When eti is small, ǫti becomes smaller. Next, the weight vector is updated according to eti and ǫti: If a training

individual from the Dsource has a bigger eti, the individual may be more dissimilar to the distribution of the target

domain. Therefore, its training weight must be reduced more. However, if a training individual from the target

domain has a bigger eti, then its training weight should be increased more for ht
i to adapt the target domain. So,

the weights can be updated as

wt
i+1(x) =











wt
i(x)β

eti(x), x ∈ Dsource

wt
i(x)β

−eti(x)
i , x ∈ Dtarget

, (7)

October 23, 2019 DRAFT



6

where βi = ǫti/(1 − ǫti), and β = 1/(1 +
√

2 ln|Dsource|/K). In this way, individuals adapted to the solution

distribution of the target domain have large weights; otherwise, they have small weights. Then, modified weights

wt
i+1 are inputted into next SVR to learn ht

i+1. Thus, in the next round, individuals with low weights that are

dissimilar to the target domain weaken their impacts of the learning process and those with large weights will help

the learning algorithm train better regression hypotheses. These weak regression hypotheses (ht
i, i = 1, ...,K) may

gradually adapt to the target domain. After K iterations, we obtain the final
⌈

K
2

⌉

weak regression hypotheses and

combine them to acquire a strong regression ht.

The details of regression transfer are shown in Procedure REGRESSION TRANSFER.

Procedure(REGRESSION TRANSFER)

Input: Dynamic optimization functions Ft and Ft−1, the population Pt−1

Output: A regression hypothesis ht

1 Dsource = {Pt−1, Ft−1(Pt−1)};

2 Sample P̂t from U(a, b);

3 Dtarget = {P̂t, Ft(P̂t)};

4 D = Dsource ∪Dtarget;

5 Initialize the weight vector w1
i = 1

|D| ;

6 Set the maximum number of iterations K;

7 for i = 1,. . . ,K do

8 Call a SVR with D and wt
i , and get a regression hypothesis ht

i : X → Rm;

9 Calculate the adjusted error according to (4) for each individuals;

10 Calculate the adjusted error of ht
i according to (6);

11 Update the weight vector according to (7);

12 end

13 return ht = the weighted median of ht
i(x) for the final

⌈

K
2

⌉

, and using ln(1/βi) as the weight for hypothesis

ht
i(x).

B. Initial Population Prediction

In this section, the initial population prediction is utilized to identify some excellent solutions as the initial

population with the assistance of ht.

To begin with, a test population P test
t is sampled from U(a, b), where a and b are the lower bound and upper

bound of the decision variable at environment t. Then, objective values ht(P test
t ) are predicted, and the non-

dominated front F can be determined by fast non-dominated sort [22] according to predicted objective values.

Then, we select the first i non-dominated fronts as initPop and limit the size of initPop does not exceed the

population size N . Next, some Gaussian noises are added to initPop until the population size is N . The initial

population initPop is to accelerate the evolutionary process and improve the evolutionary performance for the

current environment.
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Procedure(INITIAL POPULATION PREDICTION)

Input: A regression hypothesis ht, the population size N

Output: An initial population initPop

1 Sample P test
t from U(a, b);

2 initPop = ∅;

3 Use ht to predict the objective value ht(P test
t );

4 F = fast-non-dominated-sort(P test
t , ht(P test

t ));

5 i = 1;

6 while |initPop|+|Fi|≤ N do

7 initPop = initPop ∪ Fi; //Fi represents the i-th non-dominated front.

8 i = i+ 1;

9 end

10 Add Gaussian noise to initPop until the population size is N ;

11 return initPop

The details of initial population prediction are presented in Procedure INITIAL POPULATION PREDICTION.

IV. EXPERIMENTS

A. Compared Algorithms

Three DMOAs used for comparison in the experiment are as follows:

1) dCOEA [23]: It is a DMOA with dynamic competition-cooperative co-evolution.

2) PPS [24]: It is a DMOA based on population prediction.

3) SGEA [25]: It is a DMOA based on steady state and maintaining population diversity.

B. Test Problems

All compared algorithms are evaluated on 8 benchmark DMOPs selected from FDA [26] and DMOP [23]. The

FDA benchmark comprises FDA1, FDA2, FDA3, FDA4, and FDA5. The DMOP benchmark contains dMOP1,

dMOP2, and dMOP3.

DMOPs is divided into three categories: Type I problem indicates POS changes, but the POF does not change.

Type II problem indicates changes in POS and POF. Type III problem implies the POF changes but the POS does

not change.

FDA1, FDA4, and dMOP3 belong to Type I problem. FDA3, FDA5, and dMOP2 belong to Type II problem.

Type III contains FDA2 and dMOP1.

The dynamics of a DMOP is controlled by

t =
1

nt

⌊

τ

τt

⌋

, (8)

where τ , nt, and τt refer to the generation counter, severity of change, and frequency of change, respectively.
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C. Performance Indicators

1) The Inverted Generational Distance (IGD) metric [27] can measure the convergence of obtained solutions. A

small IGD value represents the convergence of the solution is improved. IGD is defined as

IGD(POF ∗, POF ) =
1

N

∑

p∗∈POF∗

min
p∈POF

‖p∗ − p‖
2
, (9)

where POF ∗ is the true POF of a multi-objective optimization problem, and POF is an approximation set of POF

obtained by a multi-objective optimization algorithm and N is the number of individuals in the POF ∗.

The MIGD [7] metric is a variant of IGD. The MIGD can be described as the average of the IGD values in all

environments during a run.

MIGD(POF ∗
t , POFt) =

1

|T |

∑

t∈T

IGD(POF ∗
t , POFt), (10)

where T is a set of discrete time points during a run and |T | is the cardinality of T .

2) The Maximum Spread (MS) [24] can quantify the extent of obtained solutions covers the true POF. A large

MS value indicates additional coverage for the true POF by solutions obtained by the algorithm. MS is calculated

as follows:

MS =

√

√

√

√

1

m

m
∑

k=1

[

min [Fmax
k , fmax

k ]−max
[

Fmin
k , fmin

k

]

Fmax
k − Fmin

k

]2

, (11)

where Fmax
k and Fmin

k represents maximum and minimum of k-th objective in true POF, respectively; and fmax
k

and fmin
k represent the maximum and minimum of k-th objective in the obtained POF, respectively. This metric is

also modified for evaluating DMOAs.

D. Parameter Settings

Parameter settings in RTLP-DMOA are as follows: We set the size of the population N to 100 and set the number

of iterations K for training ht to 10. The size of P̂t and P test
t are set to 50 and 500, respectively. We choose

RM-MEDA [27] as the SMOA optimizer for RTLP-DMOA, and the number of cluster is 4 in RM-MEDA. The

parameters in SVR are set by default [28].

Consistent with the experimental configuration in this study [25]: We fix the nt to 10. The frequency of change

τt values are 5, and 10. The number of iterations of compared algorithms is 3 × nt × τt + 50, of which 50 are

the number of iterations at the initial time. Hence, in each population of configurations, the problem is changed by

3× nt times.

E. Experimental Results

Experimental comparison results of RTLP-DMOA with other three state of the art DMOAs. MIGD values and

MS values are presented in Tables I and Table II, respectively. The best metric values are highlighted in bold.

As the experimental results show, in Table I, the proposed RTLP-DMOA performs better than the other three

algorithms in 9 out of 16 test instances for MIGD values. It clearly shows that the proposed RTLP-DMOA performs
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TABLE I

MEAN AND STANDARD DEVIATION VALUES OF MIGD METRIC FOR DIFFERENT DYNAMIC TEST SETTINGS

Problem τt,nt RTLP-RM-MEDA dCOEA PPS SGEA

FDA1

(5,10) 0.0051(0.0013) 0.0661(0.0128) 0.2061(0.0769) 0.0338(0.0081)

(10,10) 0.0049(0.0011) 0.0413(0.0068) 0.0476(0.0204) 0.0132(0.0025)

FDA2

(5,10) 0.0228(0.0046) 0.0774(0.0390) 0.0888(0.0348) 0.0121(0.0014)

(10,10) 0.0223(0.0529) 0.0491(0.0329) 0.0619(0.0107) 0.0083(0.0006)

FDA3

(5,10) 0.1425(0.0066) 0.2640(0.0355) 0.4143(0.0101) 0.0612(0.0327)

(10,10) 0.1455(0.0081) 0.1910(0.0338) 0.2003(0.0183) 0.0405(0.0180)

FDA4

(5,10) 0.1116(0.0092) 0.1604(0.0066) 0.3191(0.0203) 0.1603(0.0642)

(10,10) 0.1189(0.0091) 0.1296(0.0048) 0.2196(0.0215) 0.1241(0.0664)

FDA5

(5,10) 0.3615(0.0027) 0.4387(0.0469) 0.6577(0.0318) 0.5221(0.0395)

(10,10) 0.3612(0.0053) 0.3691(0.0403) 0.5037(0.0355) 0.4002(0.0088)

DMOP1

(5,10) 0.0469(0.0620) 0.0702(0.0157) 0.4182(0.1674) 0.0136(0.0079)

(10,10) 0.0495(0.0085) 0.0395(0.0066) 0.0499(0.0091) 0.0084(0.0057)

DMOP2

(5,10) 0.0425(0.0101) 0.1103(0.0207) 0.1563(0.0126) 0.0345(0.0036)

(10,10) 0.0427(0.0097) 0.0850(0.0098) 0.4293(0.0195) 0.0162(0.0005)

DMOP3

(5,10) 0.0047(0.0081) 0.0512(0.0101) 0.1717(0.0804) 0.1734(0.0858)

(10,10) 0.0044(0.0077) 0.0287(0.0123) 0.1134(0.0079) 0.1252(0.0143)

better than the compared algorithms on FDA1, FDA4, FDA5, and DMOP3 under all configurations for the MIGD

values. We can find that RTLP-DMOA achieves a good performance of MIGD values for tri-objective problems. This

is because the prediction method based on the transfer learning method have a strong ability to explore complicated

different solution distributions. However, it performs worse than SGEA for FDA3, DMOP1, and DMOP2 under

all dynamic test settings. Experimental results of MIGD values indicate that the proposed RTLP-DMOA maintains

better convergence over the other three state of the art DMOAs under most test functions.

It can be clearly found from the Table II that the proposed RTLP-DMOA obtains the best results in 13 out of

16 instances for MS values. Apart from FDA3 and DMOP1, RTLP-DMOA performs better than the compared

algorithms under all configurations. It is worth noting that RTLP-DMOA achieves the maximum value of MS

on tri-objective problems: FDA4 and FDA5. Nevertheless, RTLP-DMOA is a little worse than SGEA on FDA3.

Overall, the diversity of solutions obtained by RTLP-DMOA are extremely better than the other three algorithms

in most case.

F. Discussion

In this subsection, we perform a comparative experiment to verify whether the combination with the regression

transfer learning prediction can improve performance. We compare RTLP-RM-MEDA with RM-MEDA. RM-MEDA

is originally used to solve the static multi-objective problem and not applicable for DMOPs. Table III indicates

that RTLP-RM-MEDA performs better than RM-MEDA in all test functions at nt = 10 and τt = 5 configuration
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TABLE II

MEAN AND STANDARD DEVIATION VALUES OF MS METRIC FOR DIFFERENT DYNAMIC TEST SETTINGS

Problem τt,nt RTLP-RM-MEDA dCOEA PPS SGEA

FDA1

(5,10) 0.9983(0.0026) 0.8697(0.0249) 0.8721(0.0333) 0.9441(0.0378)

(10,10) 0.9985(0.0024) 0.8921(0.0211) 0.9635(0.0149) 0.9782(0.0110)

FDA2

(5,10) 0.9988(0.0047) 0.8267(0.0505) 0.9013(0.0497) 0.9934(0.0053)

(10,10) 0.9939(0.0036) 0.8672(0.0285) 0.9356(0.0121) 0.9930(0.0034)

FDA3

(5,10) 0.8809(0.0035) 0.5031(0.0427) 0.6001(0.0404) 0.8843(0.0711)

(10,10) 0.8585(0.0253) 0.5873(0.0356) 0.6180(0.0299) 0.9437(0.0775)

FDA4

(5,10) 1.0000(0.0000) 0.9649(0.7774) 0.9984(0.0008) 0.9997(0.0001)

(10,10) 1.0000(0.0000) 0.9702(0.0063) 0.9990(0.0001) 0.9996(0.0001)

FDA5

(5,10) 1.0000(0.0000) 0.9304(0.0380) 0.9974(0.0024) 0.9997(0.0001)

(10,10) 1.0000(0.0000) 0.9551(0.0369) 0.9979(0.0039) 0.9995(0.0001)

DMOP1

(5,10) 0.9961(0.0011) 0.8643(0.0414) 0.9301(0.0667) 0.9555(0.0305)

(10,10) 0.9823(0.0006) 0.8881(0.0255) 0.9782(0.0339) 0.9849(0.0179)

DMOP2

(5,10) 0.9962(0.0028) 0.7556(0.0563) 0.8513(0.0139) 0.9502(0.0130)

(10,10) 0.9980(0.0263) 0.8145(0.0253) 0.9600(0.0147) 0.9810(0.0004)

DMOP3

(5,10) 0.9969(0.0013) 0.8782(0.0136) 0.8559(0.0315) 0.5031(0.0248)

(10,10) 0.9991(0.0014) 0.9104(0.0093) 0.8880(0.0183) 0.5838(0.0296)

for MIGD values. The RTLP-RM-MEDA improves the RM-MEDA for MIGD values by 22.66%96.39%. Table IV

indicates that RTLP-RM-MEDA performs better than RM-MEDA in all test instances for MS values. RTLP-RM-

MEDA improves the RM-MEDA for MS values by 0.08%39.88%. The ablation study reveals that the designed

regression transfer learning prediction can significantly improve the performance of SMOAs.

TABLE III

MEAN AND STANDARD DEVIATION VALUES OF MIGD METRIC FOR DIFFERENT PROBLEMS AT nt = 10 AND τt = 5

Problem RM-MEDA RTLP-RM-MEDA

FDA1 0.1309(0.0287) 0.0051(0.0013)

FDA2 0.1429(0.0333) 0.0228(0.0046)

FDA3 0.2110(0.0285) 0.1425(0.0066)

FDA4 0.1691(0.0140) 0.1116(0.0092)

FDA5 0.5522(0.0160) 0.3615(0.0027)

DMOP1 0.4187(0.0689) 0.0469(0.0620)

DMOP2 0.0696(0.0149) 0.0425(0.0101)

DMOP3 0.0235(0.0125) 0.0047(0.0081)
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TABLE IV

MEAN AND STANDARD DEVIATION VALUES OF MS METRIC FOR DIFFERENT PROBLEMS AT nt = 10 AND τt = 5

Problem RM-MEDA RTLP-RM-MEDA

FDA1 0.8515(0.0365) 0.9983(0.0026)

FDA2 0.9447(0.0098) 0.9988(0.0047)

FDA3 0.6634(0.1033) 0.8809(0.0035)

FDA4 0.9992(0.0002) 1.0000(0.0000)

FDA5 0.9988(0.0002) 1.0000(0.0000)

DMOP1 0.7121(0.0759) 0.9961(0.0011)

DMOP2 0.9274(0.0190) 0.9962(0.0028)

DMOP3 0.9692(0.0105) 0.9969(0.0013)

V. CONCLUSION

This paper has proposed the RTLP-DMOA in solving DMOPs. When the environment has changed, a regression

hypothesis which adapts to the solution distribution for predicting objective values is deduced. Then, excellent

individuals are identified according to their predicted objective values and selected as an initial population, which

can improve the performance of the evolutionary process.

From experimental comparison results, the proposed RTLP-DMOA is very competitive in most test functions.

In our future work, we will integrate some advanced machine learning methods into evolutionary computing to

enhance the evolutionary performance of existing static multi-objective optimization algorithms and solve the real

world problems [29] [30].
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