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Abstract—The notion of experience has often been neglected
within the domain of evolutionary computation while in machine
learning a large variety of methods has emerged in the recent
years under the umbrella of transfer learning. Notably, realizing
experience-based methods suffers from a variety of conceptual
key problems. The first one being in regards to what constitutes
problem-similarity from an algorithm perspective and the second
one being what constitutes the transferable experience by itself.
Ideally, one would envision that a learning optimization algorithm
could be expected to act similarly to a human-problem solver
who tackles novel tasks initially without any preconceptions.
Experience only comes into play until sufficient similarity to
known problems is established. Our paper therefore has two
aims. First, to outline existing related fields and methodologies
and highlight their insufficiencies. Second, to make the case for
experience-based optimization by a demonstration using a novel
and statistics-based approach with a real-coded genetic algorithm
as a case study. In this paper we do not claim to construct
universal problem solvers, but instead propose that from an
algorithm-specific-view, problem characteristics can be learned
and harnessed to improve future performance of similarly-
structured optimization tasks.

Keywords—Evolutionary Computation, Statistical Learning,
Stochastic Optimization, Knowledge Transfer, Machine Learning

I. INTRODUCTION

Historically, the school of thought concerning evolutionary
computation as a means of problem solving may be traced
back as early as to the late 1940s with Turing first propos-
ing functionally similar mechanisms in his considerations on
intelligent machines [1], [2]. The subsequent decades saw
the advancement of these key ideas towards most of today’s
foundational framework. The rough concept of an evolutionary
algorithm may therefore be described as follows [3]: Given a
population of individuals within some environment that has
limited resources, competition for these resources results in
only the fittest individuals surviving, which in turn leads to a
rise in fitness of the population as a whole. In mathematical
terms, individuals of a population correspond to elements
in a bounded set of candidate solutions which through an
evolutionary process is sub-sequentially transformed using
variation and selection operators such that the candidates
become optimizers of a function which in turn emulates a
computational mean to calculate fitness values.

Evolutionary algorithms have been proven as being viable

for applications in structural engineering [3], with one fre-
quently cited example being the design of a radio antenna
for the ST5 spacecraft [4], [5], but also more recently for
the training and evolution of deep neural network archi-
tectures [6]-[7]. However, advances in the development of
evolutionary search methods have not stopped since the turn of
the millennium. Notable progresses have been made towards
multi-objective optimization [8], many-objective optimization
[9] and statistics-based approaches [10]. The latter explicitly
try to abandon the arbitrariness introduced by variation and
selection operators. While evolutionary problem solving has
been proven as immensely effective in studies, their effective-
ness may be curbed by computationally expensive function
evaluations in practical applications. For instance, the objective
function evaluated at a single point in the search space might
correspond to a value of aerodynamic performance obtained
from a computational fluid dynamics simulation, which in
turn may take from minutes up to several hours for a single
calculation. For this reason, surrogate-assisted methods have
been developed in engineering design, which try to spare
function evaluations by operating on a regression model built
prior or during to the optimization process [11], [12]. However,
barely any of the existing work tries to consider to exploit
similarities in the tasks self from an algorithm perspective.
In this paper, we therefore propose a novel approach towards
experience-based evolutionary computation.

We will first discuss in Section II existing works in the domain
of continuous evolutionary optimization and outline their in-
sufficiencies in regards to characterizing tasks and harnessing
their similarities. Subsequently, in Section III we introduce the
theoretical framework for our experiments. We note, that our
key assumption is that what characterizes problems are not ex-
plicit landscape characteristics or similarities among solutions,
but instead emerging preferences in stochastic properties of the
variation and selection operators in the evolutionary search.
Thus we assume that similar problems might be characterized
by similar statistics they create during the search. Not only
does this abstract notably from existing concepts of problem
similarity, but also provides a means of defining an algorithm
specific view of problems. We therefore investigate these ideas
in a case-study using an extended continuous genetic algo-
rithm. Finally, we conclude this study in Section IV and give
an outlook on further interests of investigation. We remark,



that in the spirit evolutionary computation, one likewise might
find a suitable analogy in biology to our concept of problem
similarity in the form of similar environmental pressures faced
in the convergent evolution [13] of different species.

II. RELATED WORK

The first notable step towards experience-based evolutionary
optimization was made in 2004 through the CIGAR framework
[14]. Tt proposes a cased-based approach where intermediate
and final solutions from previously solved optimization tasks
are kept in a storage. Whenever a new optimization prob-
lem is tackled, this case-base is queried and solutions are
retrieved from similar previously tackled problems using a
task-similarity measure. The latter are then used to partially
initialize the population on the new task with them. The paper
upfront remarks that defining task similarity measures is in
principle non-trivial. As an alternative it suggests that at times
it is more reasonable to operate on basis of solution similarity
instead. As however, many different problems might have
very similar intermediate solutions, suggests that as a way of
coping with this uncertainty, the case-retrieval and subsequent
injection procedure should be performed periodically during
the optimization. We remark, that this procedure of periodical
case-retrieval and solution injection is also reflected in many
recently developed algorithms. Notable works to this regard
concern the repeating construction of a linear mapping be-
tween ranked intermediate solutions of a task, which is then
subsequently used to map final or current best solution of a
past or concurrent related task into the population [15]-[17].
Note, that their work assumes that for effectiveness of their
method, task similarity and thus complementarity can be or
has been established a priori.

A more sophisticated approach utilizing a periodic injection
procedure is represented by AMTEA [18]. Within their work
Gaussian distributions are used to model the final populations
from previously tackled optimization tasks. When new tasks
are encountered, periodically a mixture model is constructed
from the repository to approximate the current generation. The
obtained weights of the mixture model are then used to sample
proportionally new child solutions from the previously solved
source tasks. Note, that their work reflects a problem similarity
through solution similarity philosophy. However, otherwise
barely any of the existing works have attempted to further
characterize problem similarity. Most notable, at this point is
the cumulative complementarity proposed in the context of
MFEA [19]. However, the calculation of this measure is aside
from benchmark functions for practical applications infeasible
as it requires the explicit calculation of gradients and integrals.
Note, that also the inclusion of gradient information is specific
to the algorithm, as it performs local improvements in the
sense of Lamarckian learning through hill climbing. A more
agnostic measure proposed for task similarity is the Pearson
correlation of ranked samples of source and target task, which
has been used in the context of MFEA as computationally
cheap alternative to calculating the cumulative complementar-

ity [20]. However, notably might be too simplistic to consider
any algorithm specific behaviour.

III. FRAMEWORK AND EXPERIMENTS

A. Theoretical Framework

Similar to [14], we follow the definition of Mitchell [21]

to define a machine-learning program. An algorithm is said to
learn from experience E with respect to some class of source
tasks S and performance measure P, if its performance at
target tasks 7', as measured by P, improves with experience
E. Note that we took the liberty of extending the definition
to differ between so called source tasks and target tasks. This
differentiation is common within the research field of transfer
learning [22], [23] and has been also used in recent literature
on knowledge transfer in evolutionary computation [24]. From
this definition we can derive the following use cases of interest:
1) S = T the classical machine learning case where the
source tasks are identical to the target tasks of interest, 2)
S # T the source tasks are different to the target tasks and at
last 3) S ~ T meaning source and target task possess some
quantifiable notion of complementarity. E.g., the source tasks
S C T form a subset of the target tasks. The latter two cases
are referred to as transfer learning in the literature.
We note that there is a gray area when trying to differ between
case 2) and 3). Specifically, the notion of complementarity
between two mathematically seemingly different problems
might not be human-intuitive at all. On the other side, two
seemingly complementary problems from a human perspective
might not possess any forms of transferable experience from
an algorithmic point of view. We therefore argue strongly for
the algorithmic perspective: Two problems are complementary
for an algorithm A if they possess beneficial transferable
experience E in regards to each other.

B. Algorithm and Setup

1) Algorithm: In our study, we consider as a base the
continuous genetic algorithm [25], [26]. Unlike the binary
version, it does not differ between genotype and phenotype.
Thus, solutions are directly represented in the search space by
vectors

7'r7l(j))7 (D

where n is the dimension of the search space x and the
variable indicates the j-th solution. Subsequently one can also
define variation operators which act upon the solutions. In
our following study we use the one point crossover operator
defined analogously to the binary case and draw mutations
from a multivariate Gaussian mutation operator

x(j) = (21(5), 22(5), - -~

Ax ~ N -exp[—x''Y x], (2)

with diagonal covariance ¥ = 1 - 0~2 which upon mutation
shifts solutions such that

x =x+ Ax. 3)
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Fig. 1. Illustration of extensions we use within our algorithmic framework.

To foster the use of experience through assessment of problem
characteristic properties in our framework, we keep in the
following track of all mutations performed.

The necessary modification to the genetic algorithm is
illustrated in Fig.1. We will further distinguish in the following
between improving

f(x(j);;efore) - f(x(j)zfter) >0 (4)
and worsening mutations
f(X(j)iefore) - f(x(j)fzfter) <0. (5)

The idea is that once we have stored the mutations outside
of the algorithm, we can filter them according to whether they
are improving or worsening and subsequently aggregate them
into bins B to build histograms. The latter can be considered
to serve as better adapted distributions p(x1,zo,- - ,z,) for
mutation sampling on the problems of interest. Note, that
the constructed histograms do not necessarily behave like
Gaussian normal distributions, thus we have to explicitly use
a resampling technique. For this reason we use the inverse
transform sampling technique [27]. For a histogram with only
one random variable we first calculate the cumulative density
function given by

CDF(z) = /x p(z) dz’. (6)

Note that 0 <CDF(x)< 1, thus we uniformly sample a
random number u € [0,1] and use CDF !(u) to generate
a pseudo-random number x, according to the distribution
p. The multivariate case works analogously, however one
starts first with a marginalized cumulative probability density
and subsequently conditions it upon randomly generated
components until a full point in the search space is obtained.

60

Fig. 2. Corresponding fitness landscape of Rastrigin’s function. The bench-
mark problem is characterized by steep local extrema arranged in a grid pattern
on top of a flat global gradient.

2) Setup: In the following we consider a series of experi-
ments for demonstration on Rastrigin’s function given by

d
f(x) =10d + ) _[27 — 10cos (27;)] (7)
=1

and illustrated in Fig.2. Additionally we will also consider
Ackley’s function which shares human-intuitive similarities
to Rastrigin. Our experiments are based upon a modified
version of the DEAP library for evolutionary computation [28].
We choose the crossover probability to be 0.2, the mutation
probability as 0.5, the population size as 30 and limit the
maximum number of generations to 100. The variance of the
mutation operator is set to ¢ = 0.71. Tournament selection
with a size of 4 is further chosen. The initial population is
initialized randomly on the complete search space. In all cases,
except when explicitly mentioned, obtained minimum fitness
values are averaged over 1000 runs to retrieve expressive
statistics. Note, that we use in this paper the term fitness in
the sense of a fitness cost which we want to minimize.

C. Experiments

In the following, we first consider the scenario of learning
and applying experience on the same original task. This
experiment mainly serves as baseline to understand how
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Fig. 3. Left panel: Sampling distribution modeled as independent in the
random variables through usage of marginalized distributions. Right panel:
Sampling distributions respecting the dependencies of the random variables.



Fig. 4. Left panel: Gaussian bell shape of the full sampling distribution.
Right panel: Sampling distribution of worsening mutations, visibly resembling
strongly to a Gaussian except for the deviation in the origin.

and whether the concepted method is working correctly.
Succeedingly, we consider the case of transferring learned
experience to a task of different mathematical structure but
with a similar structure from a human perspective. And at
last, the case where the target task is a high dimensional
generalization of the original one.

1) Identical source and target task: The problem of
learning experience on a source task and applying to an
identical target task mainly serves as a baseline. In order for
one to conclude that viable experience E has been learned
one would expect that first, experience can be harvested
which significantly differs in its characteristics from the
default stochastic behavior of the operators. And second,
reapplying this experience to the ’training problem’ shows
significant performance improvement in comparison to the
default approach.

In our case, we consider the distribution of improving
mutations as the learnable experience we are interested in.
For the case of a Gaussian variation operator, we expect that
experience we want to harvest and reapply differs significantly
from the standard statistical behavior of the variation operator.
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Fig. 5. Comparison of different experience-based sampling strategies to

sampling variations without experience. The average minimum fitness at the
origin corresponds to a value of f = 9.87, while the final achieved value of
the naive run to f = 0.10.
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Fig. 6. Comparison of the behavior of the Bhattacharya distance and fraction
of experience-based to naive fitness over the steepness parameter a after 100
generations. Notably, one finds that a relative reduction in the fitness does not
translate necessarily into a reduction of the Bhattacharya distance.

We thus filter in the following for improving mutations and
reconstruct the resulting distribution. It is shown in the right
panel of Fig.3 that the recovered distribution significantly
differs from a Gaussian shape. For comparison, whereas in
Fig.4 the distribution of worsening mutations shows strong
Gaussian behavior akin to that of the original variation
operator. Thus one may conclude that the learned experience
of ’worsening mutations’ is not a helpful experience as it
does not differ much from stochastic noise. In the following
we therefore do not want to use this distribution to restrict
the sampling.

In regards to the second expectation that reapplying
the experience to the training problem should reveal an
obvious performance improvement, we test this by explicitly
sampling from the distribution of improving mutations. We
further compare this to an approach where we model the
sampling distribution as independent in its random variables
p(z,y) = p(x)p(y) by using marginalized distributions.

In the following we use the same algorithm configuration for
our experiments as detailed in Section III-B2. The results are
shown in Fig. 5, where we have chosen to plot the generation
number over the percentage of achieved fitness in comparison
to the value at generation 100 of the algorithm with standard
sampling procedure, i.e. z = 100% - (f§ — f,)/(f319 — f3).
We find significant performance improvement on the training
problem, where by sampling from the new distribution
we achieve the same fitness value as the 'naive’ sampling
approach after only 30% of function evaluations. Crudely
approximating the experience-based sampling distribution
as independent in the random variables we still achieve a
competitive result at 50% of the function evaluations in
comparison to the naive approach.

2) Different source and target task: In the following we
consider the scenario of different source and target task. For



this reason, we explicitly choose Ackley’s functions, given by

d d
1 1
2
p E_O x7 | +exp — E_O cos(2mx;)

f(x) = —aexp|—0.2

+a+exp(l),
®)

where the constants are usually chosen as a = 20, b = 0.2
and ¢ = 2m. Ackley’s function is characterized by a steep
funnel towards the global optimum, steep gradients towards
local minima, comparably flat outer regions and a large search
space. However, it shares human-intuitive complementarities
with Rastrigin since the location and frequency of local
minima are partly the same. We therefore expect that if
the ’experience’ of optimizing Ackley’s function is similar
to that of Rastrigin’s function, the experience gained from
Rastrigin’s function should likewise lead to performance gains
on Ackley’s function. To measure this ’experience’ similarity
we employ in the following the Bhattacharya distance [29]

Dg(p,q) =—In | > V/p(x)q(x) | , ©)

xeX

where x € X in our case corresponds to the vectors des-
ignating the respective bins. The Bhattacharya distance mea-
sures the degree of overlap between probability distributions.
Note, that in principle other statistical measures such as the
symmetrized Kullback-Leibler distance could also be used.
However, we have chosen the former one as it handles better
singularities appearing in discrete settings. In our experiments
we again choose the same algorithm configuration as detailed
in Section III-B2, but vary the steepness parameter a of
Ackley’s function over the experiments. We expect a ’less’
steep function to be more akin to Rastrigin. The results are
plotted in Fig.6, where we compare the behavior of the
Bhattacharya distance to the percentual fraction of average
minimum fitness achieved after 100 generations in compari-
son to the achieved fitness without any transferred sampling
procedure, i.e y = 100% - f{5ans/ fitd, over varying steepness
parameter a. While an increasing similarity of Ackley’s to
Rastrigin’s function is indeed reflected in the Bhattacharya
distances at about a = 5, this is notably not translated into
a performance increase for the experience-based sampling
method.

Further, we test how sampling directly from the distribution
of improving mutations built from Ackley’s function compares
to sampling from the distribution of Rastrigin’s function.
The corresponding result is shown in Fig.7. At first glance,
it is evident that both improved sampling procedures work
better on the target problem. However, their advantage is
only realized after about 20 generations. Surprisingly this also
holds true for the sampling distribution built from Ackley’s
function, which even performs slightly worse in comparison
to the procedure from Rastrigin at generation 100. We attribute
this behavior to the long tail evident after 20 generations
in the naive sampling approach. Thus, improving mutations
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Fig. 7. Comparison of the minimum average fitness value achieved when
using experience harvested on Ackley and Rastrigin to the naive approach.

from generation 20 to 100 may simply be oversampled in
comparison to the earlier beneficial ones.

3) Complementary source and target: Finally, we consider
the scenario where a strong complementarity is given between
source and target task. In our scenario, we consider higher
dimensional generalizations of Rastrigins function and try
to reapply the sampling distribution learned from the lower
dimensional problem for d = 2. The source task is therefore a
subproblem of the target task. In the following experiment
we thus want to compare the fraction of fitness reduction
y = 100% - (fitd — flvars)/fitd we can achieve with
rising dimension. We compare two approaches: In the first
one, we again model the distribution through marginalized
distributions and independent random variables, where in the
second we explicitly use the 2d distribution which respects
variable dependencies. While the former, is obviously more
convenient for generalization to higher dimensions, the latter
approach requires some additional considerations for use of
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Fig. 8. Percentual fitness reduction after 100 generations on generalized

Rastrigin’s function for increasing dimension d through improved sampling
procedures learned from d=2. Compared are the improved samplings where
the distribution is modeled through independent (red) and dependent (blue)
random variables.



sampling in higher dimensional search spaces. In our case, we
simply successively sample points from the 2d distribution and
concatenate them to a vector until the latter has reached the
dimension of the target task. To avoid introducing any biases
by this partition, we additionally scramble the vector before
applying it to mutate a solution in the population.

We again use the algorithm configuration as detailed in Section
III-B2. The calculated results are plotted in Fig.8. As expected,
the fitness reduction is the highest for the dimension of the
source task. Overall, the sampling from the two-dimensional
distribution achieves higher performance than from the crude
uncorrelated approximation. However, most remarkable is that
both methods still lead to a fitness reduction of up to ~ 10%
upon ten-fold increase of dimensionality.

IV. CONCLUSION

In conclusion, the key contribution of our paper lies in
making the point, that problems can be characterized by
minable and learnable statistic properties. For this reason,
we considered a case-study of a modified continuous genetic
algorithm. As the modification allows us to store mutations of
solutions, we can thus also filter them and build distributions
of worsening and improving mutations. The distribution of
worsening mutations has been shown not to differ statistically
much from the default behavior of the mutation operator
and was not considered further. However, the distribution of
improving mutations encoded problem specific characteristics.
Thus we reused this experience for improved sampling on our
source problem and showed that on Rastrigin’s function we
could achieve competitive performance to the 'naive’ approach
after only 30% of the function evaluations. We could also
show that transferring to the intuitive complementary Ackley’s
function likewise resulted in performance gains. However, the
attempt to quantify this using the Bhattacharya distance did not
turned out to be successful. Applying our resampling approach
to Ackley’s function reveals that it slightly performs worse
than the experience from Rastrigin’s function. We attributed
this mismatch due to sampling on Ackley’s function not being
adequate in regards to the convergence characteristics. At last,
we have tested how transferable the learned experience is to
higher dimensional generalization of the Rastrigin benchmark
function. When considering a ten-fold increase in the dimen-
sions, we could still see a reduction of fitness of more than
10%.

For our future work, we plan to improve the distribution
building process to account for any oversampling and possibly
operate also on fewer samples. We may also further employ
unsupervised machine learning to this regard as a compu-
tationally cheaper toolbox for resampling. The Bhattacharya
distance has been tested as a means to quantify problem
similarity, however has been shown to be inadequate for our
demonstrated case. Thus it is of interest to find a proper
distance metric. We note that our learning method is a form
of statistics over fitness-gradient samples, where the integrated
time evolution of the statistics is what we consider as the algo-
rithm specific problem perspective. It is interesting to expand

upon these considerations from a theoretical point of view.
Further, it would be of interest to develop similar learning
and transfer methods for state-of-the-art algorithms such as
CMA-ES. At last, we note that the results for performance
improvement upon the higher dimensional generalization are
very motivating. As this could be useful for optimization prob-
lems where the search space dimension corresponds to an out
of computational necessity chosen level of problem resolution.
It would be a tremendous success if a similar strategy could
be replicated and shown to save function evaluations on an
expensive real-world optimization problem.
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